Unverified Commit 655f9382 authored by Jean-Marc Valin's avatar Jean-Marc Valin
Browse files

training code

parent 8521f075
from __future__ import print_function
from keras.models import Sequential
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import GRU
from keras.layers import SimpleRNN
from keras.layers import Dropout
from keras import losses
import h5py
from keras import backend as K
import numpy as np
print('Build model...')
main_input = Input(shape=(None, 22), name='main_input')
#x = Dense(44, activation='relu')(main_input)
#x = GRU(44, dropout=0.0, recurrent_dropout=0.0, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
x = GRU(128, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
#x = GRU(128, return_sequences=True)(x)
#x = GRU(22, activation='relu', return_sequences=True)(x)
x = Dense(22, activation='sigmoid')(x)
#x = Dense(22, activation='softplus')(x)
model = Model(inputs=main_input, outputs=x)
batch_size = 32
print('Loading data...')
with h5py.File('denoise_data.h5', 'r') as hf:
all_data = hf['denoise_data'][:]
window_size = 500
nb_sequences = len(all_data)//window_size
print(nb_sequences, ' sequences')
x_train = all_data[:nb_sequences*window_size, :-22]
x_train = np.reshape(x_train, (nb_sequences, window_size, 22))
y_train = np.copy(all_data[:nb_sequences*window_size, -22:])
y_train = np.reshape(y_train, (nb_sequences, window_size, 22))
#y_train = -20*np.log10(np.add(y_train, .03));
all_data = 0;
x_train = x_train.astype('float32')
y_train = y_train.astype('float32')
print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
# try using different optimizers and different optimizer configs
model.fit(x_train, y_train,
validation_data=(x_train, y_train))
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment