encoder.rs 62.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

use context::*;
use partition::*;
use transform::*;
use quantize::*;
use plane::*;
use rdo::*;
use ec::*;
use std::fmt;
use util::*;
use cdef::*;

use bitstream_io::{BE, LE, BitWriter};
use std::rc::Rc;
use std::io::*;
use std::io;
use std;

extern {
    pub fn av1_rtcd();
    pub fn aom_dsp_rtcd();
}

#[derive(Debug, Clone)]
pub struct Frame {
    pub planes: [Plane; 3]
}

impl Frame {
    pub fn new(width: usize, height:usize) -> Frame {
        Frame {
            planes: [
                Plane::new(width, height, 0, 0),
                Plane::new(width/2, height/2, 1, 1),
                Plane::new(width/2, height/2, 1, 1)
            ]
        }
    }
}

#[derive(Debug)]
pub struct ReferenceFramesSet {
43 44
    pub frames: [Option<Rc<Frame>>; (REF_FRAMES as usize)],
    pub loop_filter: [DeblockState; (REF_FRAMES as usize)]
45 46 47 48 49
}

impl ReferenceFramesSet {
    pub fn new() -> ReferenceFramesSet {
        ReferenceFramesSet {
50 51
            frames: Default::default(),
            loop_filter: Default::default()
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        }
    }
}

const MAX_NUM_TEMPORAL_LAYERS: usize = 8;
const MAX_NUM_SPATIAL_LAYERS: usize = 4;
const MAX_NUM_OPERATING_POINTS: usize = MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS;

const PRIMARY_REF_NONE: u32 = 7;
const PRIMARY_REF_BITS: u32 = 3;

arg_enum!{
    #[derive(Copy, Clone, Debug, PartialEq)]
    pub enum Tune {
        Psnr,
        Psychovisual
    }
}

impl Default for Tune {
    fn default() -> Self {
        Tune::Psnr
    }
}

#[derive(Copy, Clone, Debug, PartialEq)]
pub enum ChromaSampling {
    Cs420,
    Cs422,
    Cs444
}

impl Default for ChromaSampling {
    fn default() -> Self {
        ChromaSampling::Cs420
    }
}

#[derive(Copy, Clone)]
pub struct Sequence {
  // OBU Sequence header of AV1
    pub profile: u8,
    pub num_bits_width: u32,
    pub num_bits_height: u32,
    pub bit_depth: usize,
    pub chroma_sampling: ChromaSampling,
    pub max_frame_width: u32,
    pub max_frame_height: u32,
    pub frame_id_numbers_present_flag: bool,
    pub frame_id_length: u32,
    pub delta_frame_id_length: u32,
    pub use_128x128_superblock: bool,
    pub order_hint_bits_minus_1: u32,
    pub force_screen_content_tools: u32,  // 0 - force off
                                           // 1 - force on
                                           // 2 - adaptive
    pub force_integer_mv: u32,      // 0 - Not to force. MV can be in 1/4 or 1/8
                                     // 1 - force to integer
                                     // 2 - adaptive
    pub still_picture: bool,               // Video is a single frame still picture
    pub reduced_still_picture_hdr: bool,   // Use reduced header for still picture
    pub monochrome: bool,                  // Monochrome video
    pub enable_filter_intra: bool,         // enables/disables filterintra
    pub enable_intra_edge_filter: bool,    // enables/disables corner/edge/upsampling
    pub enable_interintra_compound: bool,  // enables/disables interintra_compound
    pub enable_masked_compound: bool,      // enables/disables masked compound
    pub enable_dual_filter: bool,         // 0 - disable dual interpolation filter
                                          // 1 - enable vert/horiz filter selection
    pub enable_order_hint: bool,     // 0 - disable order hint, and related tools
                                     // jnt_comp, ref_frame_mvs, frame_sign_bias
                                     // if 0, enable_jnt_comp and
                                     // enable_ref_frame_mvs must be set zs 0.
    pub enable_jnt_comp: bool,        // 0 - disable joint compound modes
                                     // 1 - enable it
    pub enable_ref_frame_mvs: bool,  // 0 - disable ref frame mvs
                                     // 1 - enable it
    pub enable_warped_motion: bool,   // 0 - disable warped motion for sequence
                                     // 1 - enable it for the sequence
    pub enable_superres: bool,// 0 - Disable superres for the sequence, and disable
                              //     transmitting per-frame superres enabled flag.
                              // 1 - Enable superres for the sequence, and also
                              //     enable per-frame flag to denote if superres is
                              //     enabled for that frame.
    pub enable_cdef: bool,         // To turn on/off CDEF
    pub enable_restoration: bool,  // To turn on/off loop restoration
    pub operating_points_cnt_minus_1: usize,
    pub operating_point_idc: [u16; MAX_NUM_OPERATING_POINTS],
    pub display_model_info_present_flag: bool,
    pub decoder_model_info_present_flag: bool,
    pub level: [[usize; 2]; MAX_NUM_OPERATING_POINTS],	// minor, major
    pub tier: [usize; MAX_NUM_OPERATING_POINTS],  // seq_tier in the spec. One bit: 0
                                                  // or 1.
    pub film_grain_params_present: bool,
    pub separate_uv_delta_q: bool,
}

impl Sequence {
    pub fn new(width: usize, height: usize, bit_depth: usize, chroma_sampling: ChromaSampling) -> Sequence {
        let width_bits = 32 - (width as u32).leading_zeros();
        let height_bits = 32 - (height as u32).leading_zeros();
        assert!(width_bits <= 16);
        assert!(height_bits <= 16);

        let profile = if bit_depth == 12 {
            2
        } else if chroma_sampling == ChromaSampling::Cs444 {
            1
        } else {
            0
        };

        let mut operating_point_idc = [0 as u16; MAX_NUM_OPERATING_POINTS];
        let mut level = [[1, 2 as usize]; MAX_NUM_OPERATING_POINTS];
        let mut tier = [0 as usize; MAX_NUM_OPERATING_POINTS];

        for i in 0..MAX_NUM_OPERATING_POINTS {
            operating_point_idc[i] = 0;
            level[i][0] = 1;	// minor
            level[i][1] = 2;	// major
            tier[i] = 0;
        }

        Sequence {
            profile: profile,
            num_bits_width: width_bits,
            num_bits_height: height_bits,
            bit_depth: bit_depth,
            chroma_sampling: chroma_sampling,
            max_frame_width: width as u32,
            max_frame_height: height as u32,
            frame_id_numbers_present_flag: false,
            frame_id_length: 0,
            delta_frame_id_length: 0,
            use_128x128_superblock: false,
            order_hint_bits_minus_1: 0,
            force_screen_content_tools: 0,
            force_integer_mv: 2,
            still_picture: false,
            reduced_still_picture_hdr: false,
            monochrome: false,
            enable_filter_intra: true,
            enable_intra_edge_filter: true,
            enable_interintra_compound: false,
            enable_masked_compound: false,
            enable_dual_filter: false,
            enable_order_hint: false,
            enable_jnt_comp: false,
            enable_ref_frame_mvs: false,
            enable_warped_motion: false,
            enable_superres: false,
            enable_cdef: true,
            enable_restoration: true,
            operating_points_cnt_minus_1: 0,
            operating_point_idc: operating_point_idc,
            display_model_info_present_flag: false,
            decoder_model_info_present_flag: false,
            level: level,
            tier: tier,
            film_grain_params_present: false,
            separate_uv_delta_q: false,
        }
    }
}

#[derive(Debug)]
pub struct FrameState {
    pub input: Frame,
    pub rec: Frame,
    pub qc: QuantizationContext,
}

impl FrameState {
    pub fn new(fi: &FrameInvariants) -> FrameState {
        FrameState {
            input: Frame::new(fi.padded_w, fi.padded_h),
            rec: Frame::new(fi.padded_w, fi.padded_h),
            qc: Default::default(),
        }
    }
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#[derive(Copy, Clone, Debug)]
pub struct DeblockState {
    pub levels: [u8; PLANES+1],
    pub sharpness: u8,
    pub deltas_enabled: bool,
    pub delta_updates_enabled: bool,
    pub ref_deltas_enabled: bool,
    pub ref_deltas: [i8; REF_FRAMES],
    pub mode_deltas_enabled: bool,
    pub mode_deltas: [i8; 2],
}

impl Default for DeblockState {
    fn default() -> Self {
        DeblockState {
            levels: [0; PLANES+1],
            sharpness: 0,
            deltas_enabled: false,
            delta_updates_enabled: false,
            ref_deltas_enabled: false,
            ref_deltas: [1, 0, 0, 0, 0, -1, -1, -1],
            mode_deltas_enabled: false,
            mode_deltas: [0, 0]
        }
    }
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
// Frame Invariants are invariant inside a frame
#[allow(dead_code)]
#[derive(Debug)]
pub struct FrameInvariants {
    pub width: usize,
    pub height: usize,
    pub padded_w: usize,
    pub padded_h: usize,
    pub sb_width: usize,
    pub sb_height: usize,
    pub w_in_b: usize,
    pub h_in_b: usize,
    pub number: u64,
    pub show_frame: bool,
    pub showable_frame: bool,
    pub error_resilient: bool,
    pub intra_only: bool,
    pub allow_high_precision_mv: bool,
    pub frame_type: FrameType,
    pub show_existing_frame: bool,
    pub use_reduced_tx_set: bool,
    pub reference_mode: ReferenceMode,
    pub use_prev_frame_mvs: bool,
    pub min_partition_size: BlockSize,
    pub globalmv_transformation_type: [GlobalMVMode; ALTREF_FRAME + 1],
    pub num_tg: usize,
    pub large_scale_tile: bool,
    pub disable_cdf_update: bool,
    pub allow_screen_content_tools: u32,
    pub force_integer_mv: u32,
    pub primary_ref_frame: u32,
    pub refresh_frame_flags: u32,  // a bitmask that specifies which
    // reference frame slots will be updated with the current frame
    // after it is decoded.
    pub allow_intrabc: bool,
    pub use_ref_frame_mvs: bool,
    pub is_filter_switchable: bool,
    pub is_motion_mode_switchable: bool,
    pub disable_frame_end_update_cdf: bool,
    pub allow_warped_motion: bool,
    pub cdef_damping: u8,
    pub cdef_bits: u8,
    pub cdef_y_strengths: [u8; 8],
    pub cdef_uv_strengths: [u8; 8],
    pub config: EncoderConfig,
    pub ref_frames: [usize; INTER_REFS_PER_FRAME],
    pub rec_buffer: ReferenceFramesSet,
307
    pub loop_filter: DeblockState
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

impl FrameInvariants {
    pub fn new(width: usize, height: usize, config: EncoderConfig) -> FrameInvariants {
        // Speed level decides the minimum partition size, i.e. higher speed --> larger min partition size,
        // with exception that SBs on right or bottom frame borders split down to BLOCK_4X4.
        // At speed = 0, RDO search is exhaustive.
        let mut min_partition_size = if config.speed <= 1 { BlockSize::BLOCK_4X4 }
                                 else if config.speed <= 2 { BlockSize::BLOCK_8X8 }
                                 else if config.speed <= 3 { BlockSize::BLOCK_16X16 }
                                 else { BlockSize::BLOCK_32X32 };

        if config.tune == Tune::Psychovisual {
            if min_partition_size < BlockSize::BLOCK_8X8 {
                // TODO: Display message that min partition size is enforced to 8x8
                min_partition_size = BlockSize::BLOCK_8X8;
                println!("If tune=Psychovisual is used, min partition size is enforced to 8x8");
            }
        }
        let use_reduced_tx_set = config.speed > 1;

        FrameInvariants {
            width,
            height,
            padded_w: width.align_power_of_two(3),
            padded_h: height.align_power_of_two(3),
            sb_width: width.align_power_of_two_and_shift(6),
            sb_height: height.align_power_of_two_and_shift(6),
            w_in_b: 2 * width.align_power_of_two_and_shift(3), // MiCols, ((width+7)/8)<<3 >> MI_SIZE_LOG2
            h_in_b: 2 * height.align_power_of_two_and_shift(3), // MiRows, ((height+7)/8)<<3 >> MI_SIZE_LOG2
            number: 0,
            show_frame: true,
            showable_frame: true,
            error_resilient: true,
            intra_only: false,
            allow_high_precision_mv: true,
            frame_type: FrameType::KEY,
            show_existing_frame: false,
            use_reduced_tx_set,
            reference_mode: ReferenceMode::SINGLE,
            use_prev_frame_mvs: false,
            min_partition_size,
            globalmv_transformation_type: [GlobalMVMode::IDENTITY; ALTREF_FRAME + 1],
            num_tg: 1,
            large_scale_tile: false,
            disable_cdf_update: false,
            allow_screen_content_tools: 0,
            force_integer_mv: 0,
            primary_ref_frame: PRIMARY_REF_NONE,
            refresh_frame_flags: 0,
            allow_intrabc: false,
            use_ref_frame_mvs: false,
            is_filter_switchable: false,
            is_motion_mode_switchable: false, // 0: only the SIMPLE motion mode will be used.
            disable_frame_end_update_cdf: false,
            allow_warped_motion: false,
            cdef_damping: 3,
            cdef_bits: 3,
            cdef_y_strengths: [0*4+0, 1*4+0, 2*4+1, 3*4+1, 5*4+2, 7*4+3, 10*4+3, 13*4+3],
            cdef_uv_strengths: [0*4+0, 1*4+0, 2*4+1, 3*4+1, 5*4+2, 7*4+3, 10*4+3, 13*4+3],
            config,
            ref_frames: [0; INTER_REFS_PER_FRAME],
370 371
            rec_buffer: ReferenceFramesSet::new(),
            loop_filter: Default::default()
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
        }
    }

    pub fn new_frame_state(&self) -> FrameState {
        FrameState {
            input: Frame::new(self.padded_w, self.padded_h),
            rec: Frame::new(self.padded_w, self.padded_h),
            qc: Default::default(),
        }
    }
}

impl fmt::Display for FrameInvariants{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Frame {} - {}", self.number, self.frame_type)
    }
}

#[allow(dead_code,non_camel_case_types)]
#[derive(Debug,PartialEq,Clone,Copy)]
pub enum FrameType {
    KEY,
    INTER,
    INTRA_ONLY,
    SWITCH,
}

//const REFERENCE_MODES: usize = 3;

#[allow(dead_code,non_camel_case_types)]
#[derive(Debug,PartialEq)]
pub enum ReferenceMode {
  SINGLE = 0,
  COMPOUND = 1,
  SELECT = 2,
}

pub const ALL_REF_FRAMES_MASK: u32 = (1 << REF_FRAMES) - 1;

impl fmt::Display for FrameType{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            FrameType::KEY => write!(f, "Key frame"),
            FrameType::INTER => write!(f, "Inter frame"),
            FrameType::INTRA_ONLY => write!(f, "Intra only frame"),
            FrameType::SWITCH => write!(f, "Switching frame"),
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub struct EncoderConfig {
    pub limit: u64,
    pub quantizer: usize,
    pub speed: usize,
    pub tune: Tune
}

impl Default for EncoderConfig {
    fn default() -> Self {
        EncoderConfig {
            limit: 0,
            quantizer: 100,
            speed: 0,
            tune: Tune::Psnr,
        }
    }
}

pub fn write_ivf_header(output_file: &mut dyn io::Write, width: usize, height: usize, num: usize, den: usize) {
    let mut bw = BitWriter::<LE>::new(output_file);
    bw.write_bytes(b"DKIF").unwrap();
    bw.write(16, 0).unwrap(); // version
    bw.write(16, 32).unwrap(); // version
    bw.write_bytes(b"AV01").unwrap();
    bw.write(16, width as u16).unwrap();
    bw.write(16, height as u16).unwrap();
    bw.write(32, num as u32).unwrap();
    bw.write(32, den as u32).unwrap();
    bw.write(32, 0).unwrap();
    bw.write(32, 0).unwrap();
}

pub fn write_ivf_frame(output_file: &mut dyn io::Write, pts: u64, data: &[u8]) {
    let mut bw = BitWriter::<LE>::new(output_file);
    bw.write(32, data.len() as u32).unwrap();
    bw.write(64, pts).unwrap();
    bw.write_bytes(data).unwrap();
}

trait UncompressedHeader {
    // Start of OBU Headers
    fn write_obu_header(&mut self, obu_type: OBU_Type, obu_extension: u32)
            -> io::Result<()>;
    fn write_sequence_header_obu(&mut self, seq: &mut Sequence, fi: &FrameInvariants)
            -> io::Result<()>;
    fn write_frame_header_obu(&mut self, seq: &Sequence, fi: &FrameInvariants)
            -> io::Result<()>;
    fn write_sequence_header(&mut self, seq: &mut Sequence, fi: &FrameInvariants)
                                    -> io::Result<()>;
    fn write_color_config(&mut self, seq: &mut Sequence) -> io::Result<()>;
    // End of OBU Headers

    fn write_frame_size(&mut self, fi: &FrameInvariants) -> io::Result<()>;
476
    fn write_loop_filter(&mut self, fi: &FrameInvariants) -> io::Result<()>;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    fn write_frame_cdef(&mut self, seq: &Sequence, fi: &FrameInvariants) -> io::Result<()>;
}
#[allow(unused)]
const OP_POINTS_IDC_BITS:usize = 12;
#[allow(unused)]
const LEVEL_MAJOR_MIN:usize = 2;
#[allow(unused)]
const LEVEL_MAJOR_BITS:usize = 3;
#[allow(unused)]
const LEVEL_MINOR_BITS:usize = 2;
#[allow(unused)]
const LEVEL_BITS:usize = LEVEL_MAJOR_BITS + LEVEL_MINOR_BITS;
const FRAME_ID_LENGTH: usize = 15;
const DELTA_FRAME_ID_LENGTH: usize = 14;

impl<'a> UncompressedHeader for BitWriter<'a, BE> {
    // Start of OBU Headers
    // Write OBU Header syntax
    fn write_obu_header(&mut self, obu_type: OBU_Type, obu_extension: u32)
            -> io::Result<()>{
        self.write_bit(false)?; // forbidden bit.
        self.write(4, obu_type as u32)?;
        self.write_bit(obu_extension != 0)?;
        self.write_bit(true)?; // obu_has_payload_length_field
        self.write_bit(false)?; // reserved

        if obu_extension != 0 {
            assert!(false);
            //self.write(8, obu_extension & 0xFF)?; size += 8;
        }

        Ok(())
    }

    fn write_sequence_header_obu(&mut self, seq: &mut Sequence, fi: &FrameInvariants)
        -> io::Result<()> {
        self.write(3, seq.profile)?; // profile, 3 bits
        self.write(1, 0)?; // still_picture
        self.write(1, 0)?; // reduced_still_picture
        self.write_bit(false)?; // display model present
        self.write_bit(false)?; // no timing info present
        self.write(5, 0)?; // one operating point
        self.write(12,0)?; // idc
        self.write(5, 31)?; // level
        self.write(1, 0)?; // tier
        if seq.reduced_still_picture_hdr {
            assert!(false);
        }

        self.write_sequence_header(seq, fi)?;

        self.write_color_config(seq)?;

        self.write_bit(seq.film_grain_params_present)?;

        self.write_bit(true)?; // add_trailing_bits

        Ok(())
    }

    fn write_sequence_header(&mut self, seq: &mut Sequence, fi: &FrameInvariants)
        -> io::Result<()> {
        self.write_frame_size(fi)?;

        if !seq.reduced_still_picture_hdr {
            seq.frame_id_numbers_present_flag = false;
            seq.frame_id_length = FRAME_ID_LENGTH as u32;
            seq.delta_frame_id_length = DELTA_FRAME_ID_LENGTH as u32;

            self.write_bit(seq.frame_id_numbers_present_flag)?;

            if seq.frame_id_numbers_present_flag {
              // We must always have delta_frame_id_length < frame_id_length,
              // in order for a frame to be referenced with a unique delta.
              // Avoid wasting bits by using a coding that enforces this restriction.
              self.write(4, seq.delta_frame_id_length - 2)?;
              self.write(3, seq.frame_id_length - seq.delta_frame_id_length - 1)?;
            }
        }

        self.write_bit(seq.use_128x128_superblock)?;
        self.write_bit(seq.enable_filter_intra)?;
        self.write_bit(seq.enable_intra_edge_filter)?;

        if !seq.reduced_still_picture_hdr {
            self.write_bit(seq.enable_interintra_compound)?;
            self.write_bit(seq.enable_masked_compound)?;
            self.write_bit(seq.enable_warped_motion)?;
            self.write_bit(seq.enable_dual_filter)?;
            self.write_bit(seq.enable_order_hint)?;

            if seq.enable_order_hint {
              self.write_bit(seq.enable_jnt_comp)?;
              self.write_bit(seq.enable_ref_frame_mvs)?;
            }
            if seq.force_screen_content_tools == 2 {
              self.write_bit(true)?;
            } else {
              self.write_bit(false)?;
              self.write_bit(seq.force_screen_content_tools != 0)?;
            }
            if seq.force_screen_content_tools > 0 {
              if seq.force_integer_mv == 2 {
                self.write_bit(true)?;
              } else {
                self.write_bit(false)?;
                self.write_bit(seq.force_integer_mv != 0)?;
              }
            } else {
              assert!(seq.force_integer_mv == 2);
            }
            if seq.enable_order_hint {
              self.write(3, seq.order_hint_bits_minus_1)?;
            }
        }

        self.write_bit(seq.enable_superres)?;
        self.write_bit(seq.enable_cdef)?;
        self.write_bit(seq.enable_restoration)?;

        Ok(())
    }

    fn write_color_config(&mut self, seq: &mut Sequence) -> io::Result<()> {
        let high_bd = seq.bit_depth > 8;

        self.write_bit(high_bd)?; // high bit depth

        if seq.bit_depth == 12 {
            self.write_bit(true)?; // 12-bit
        }

        if seq.profile != 1 {
            self.write_bit(seq.monochrome)?; // monochrome?
        } else {
            unimplemented!(); // 4:4:4 sampling at 8 or 10 bits
        }

        self.write_bit(false)?; // No color description present

        if seq.monochrome {
            assert!(false);
        }

        self.write_bit(false)?; // color range

        let subsampling_x = seq.chroma_sampling != ChromaSampling::Cs444;
        let subsampling_y = seq.chroma_sampling == ChromaSampling::Cs420;

        if seq.bit_depth == 12 {
            self.write_bit(subsampling_x)?;

            if subsampling_x {
                self.write_bit(subsampling_y)?;
            }
        }

        if !subsampling_y {
            unimplemented!(); // 4:2:2 or 4:4:4 sampling
        }

        self.write(2, 0)?; // chroma_sample_position == CSP_UNKNOWN

        self.write_bit(false)?; // separate uv delta q

        Ok(())
    }

#[allow(unused)]
    fn write_frame_header_obu(&mut self, seq: &Sequence, fi: &FrameInvariants)
        -> io::Result<()> {
      if seq.reduced_still_picture_hdr {
        assert!(fi.show_existing_frame);
        assert!(fi.frame_type == FrameType::KEY);
        assert!(fi.show_frame);
      } else {
        if fi.show_existing_frame {
          self.write_bit(true)?; // show_existing_frame=1
          self.write(3, 0)?; // show last frame

          //TODO:
          /* temporal_point_info();
            if seq.decoder_model_info_present_flag &&
              timing_info.equal_picture_interval == 0 {
            // write frame_presentation_delay;
          }
          if seq.frame_id_numbers_present_flag {
            // write display_frame_id;
          }*/

          self.byte_align()?;
          return Ok((()));
        }
        self.write_bit(false)?; // show_existing_frame=0
        self.write(2, fi.frame_type as u32)?;
        self.write_bit(fi.show_frame)?; // show frame

        if fi.show_frame {
          //TODO:
          /* temporal_point_info();
              if seq.decoder_model_info_present_flag &&
              timing_info.equal_picture_interval == 0 {
            // write frame_presentation_delay;*/
        } else {
          self.write_bit(fi.showable_frame)?;
        }

        if fi.frame_type == FrameType::SWITCH {
          assert!(fi.error_resilient);
        } else {
          if !(fi.frame_type == FrameType::KEY && fi.show_frame) {
            self.write_bit(fi.error_resilient)?; // error resilient
          }
        }
      }

      self.write_bit(fi.disable_cdf_update)?;

      if seq.force_screen_content_tools == 2 {
        self.write_bit(fi.allow_screen_content_tools != 0)?;
      } else {
        assert!(fi.allow_screen_content_tools ==
                seq.force_screen_content_tools);
      }

      if fi.allow_screen_content_tools == 2 {
        if seq.force_integer_mv == 2 {
          self.write_bit(fi.force_integer_mv != 0)?;
        } else {
          assert!(fi.force_integer_mv == seq.force_integer_mv);
        }
      } else {
        assert!(fi.allow_screen_content_tools ==
                seq.force_screen_content_tools);
      }

      if seq.frame_id_numbers_present_flag {
        assert!(false); // Not supported by rav1e yet!
        //TODO:
        //let frame_id_len = seq.frame_id_length;
        //self.write(frame_id_len, fi.current_frame_id);
      }

      let mut frame_size_override_flag = false;
      if fi.frame_type == FrameType::SWITCH {
        frame_size_override_flag = true;
      } else if seq.reduced_still_picture_hdr {
        frame_size_override_flag = false;
      } else {
        self.write_bit(frame_size_override_flag)?; // frame size overhead flag
      }

      if seq.enable_order_hint {
        assert!(false); // Not supported by rav1e yet!
      }
      if fi.error_resilient || fi.intra_only {
      } else {
        self.write(PRIMARY_REF_BITS, fi.primary_ref_frame)?;
      }

      if seq.decoder_model_info_present_flag {
        assert!(false); // Not supported by rav1e yet!
      }

      if fi.frame_type == FrameType::KEY {
        if !fi.show_frame {  // unshown keyframe (forward keyframe)
          assert!(false); // Not supported by rav1e yet!
          self.write(REF_FRAMES as u32, fi.refresh_frame_flags)?;
        } else {
          assert!(fi.refresh_frame_flags == ALL_REF_FRAMES_MASK);
        }
      } else { // Inter frame info goes here
        if fi.intra_only {
          assert!(fi.refresh_frame_flags != ALL_REF_FRAMES_MASK);
          self.write(REF_FRAMES as u32, fi.refresh_frame_flags)?;
        } else {
          // TODO: This should be set once inter mode is used
          self.write(REF_FRAMES as u32, fi.refresh_frame_flags)?;
        }

      };

      if (!fi.intra_only || fi.refresh_frame_flags != ALL_REF_FRAMES_MASK) {
        // Write all ref frame order hints if error_resilient_mode == 1
        if (fi.error_resilient && seq.enable_order_hint) {
          assert!(false); // Not supported by rav1e yet!
          //for _ in 0..REF_FRAMES {
          //  self.write(order_hint_bits_minus_1,ref_order_hint[i])?; // order_hint
          //}
        }
      }

      // if KEY or INTRA_ONLY frame
      // FIXME: Not sure whether putting frame/render size here is good idea
      if fi.intra_only {
        if frame_size_override_flag {
          assert!(false); // Not supported by rav1e yet!
        }
        if seq.enable_superres {
          assert!(false); // Not supported by rav1e yet!
        }
        self.write_bit(false)?; // render_and_frame_size_different
        //if render_and_frame_size_different { }
        if fi.allow_screen_content_tools != 0 && true /* UpscaledWidth == FrameWidth */ {
          self.write_bit(fi.allow_intrabc)?;
        }
      }

      let frame_refs_short_signaling = false;
      if fi.frame_type == FrameType::KEY {
        // Done by above
      } else {
        if fi.intra_only {
          // Done by above
        } else {
          if seq.enable_order_hint {
            assert!(false); // Not supported by rav1e yet!
            self.write_bit(frame_refs_short_signaling)?;
            if frame_refs_short_signaling {
              assert!(false); // Not supported by rav1e yet!
            }
          }

          for i in 0..7 {
            if !frame_refs_short_signaling {
              self.write(REF_FRAMES_LOG2 as u32, fi.ref_frames[i] as u8)?;
            }
            if seq.frame_id_numbers_present_flag {
              assert!(false); // Not supported by rav1e yet!
            }
          }
          if fi.error_resilient && frame_size_override_flag {
            assert!(false); // Not supported by rav1e yet!
          } else {
            if frame_size_override_flag {
               assert!(false); // Not supported by rav1e yet!
            }
            if seq.enable_superres {
              assert!(false); // Not supported by rav1e yet!
            }
            self.write_bit(false)?; // render_and_frame_size_different
          }
          if fi.force_integer_mv != 0 {
          } else {
            self.write_bit(fi.allow_high_precision_mv);
          }
          self.write_bit(fi.is_filter_switchable)?;
          self.write_bit(fi.is_motion_mode_switchable)?;
          self.write(2,0)?; // EIGHTTAP_REGULAR
          if fi.error_resilient || !seq.enable_ref_frame_mvs {
          } else {
            self.write_bit(fi.use_ref_frame_mvs)?;
          }
        }
      }

      if !seq.reduced_still_picture_hdr && !fi.disable_cdf_update {
        self.write_bit(fi.disable_frame_end_update_cdf)?;
      }

      // tile
      self.write_bit(true)?; // uniform_tile_spacing_flag
      if fi.width > 64 {
        // TODO: if tile_cols > 1, write more increment_tile_cols_log2 bits
        self.write_bit(false)?; // tile cols
      }
      if fi.height > 64 {
        // TODO: if tile_rows > 1, write increment_tile_rows_log2 bits
        self.write_bit(false)?; // tile rows
      }
      // TODO: if tile_cols * tile_rows > 1 {
      // write context_update_tile_id and tile_size_bytes_minus_1 }

      // quantization
      assert!(fi.config.quantizer > 0);
      self.write(8,fi.config.quantizer as u8)?; // base_q_idx
      self.write_bit(false)?; // y dc delta q
      self.write_bit(false)?; // uv dc delta q
      self.write_bit(false)?; // uv ac delta q
      self.write_bit(false)?; // no qm

      // segmentation
      self.write_bit(false)?; // segmentation is disabled

      // delta_q
      self.write_bit(false)?; // delta_q_present_flag: no delta q

      // loop filter
865
      self.write_loop_filter(fi)?;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
      // cdef
      self.write_frame_cdef(seq, fi)?;
      // loop restoration
      if seq.enable_restoration {
          self.write(6,0)?; // no y, u or v loop restoration
      }
      self.write_bit(false)?; // tx mode == TX_MODE_SELECT ?

      let mut reference_select = false;
      if !fi.intra_only {
        reference_select = fi.reference_mode != ReferenceMode::SINGLE;
        self.write_bit(reference_select)?;
      }

      let skip_mode_allowed =
        !(fi.intra_only  || !reference_select || !seq.enable_order_hint);
      if skip_mode_allowed {
        unimplemented!();
        self.write_bit(false)?; // skip_mode_present
      }

      if fi.intra_only || fi.error_resilient || !seq.enable_warped_motion {
      } else {
        self.write_bit(fi.allow_warped_motion)?; // allow_warped_motion
      }

      self.write_bit(fi.use_reduced_tx_set)?; // reduced tx

      // global motion
      if !fi.intra_only {
          for i in LAST_FRAME..ALTREF_FRAME+1 {
              let mode = fi.globalmv_transformation_type[i];
              self.write_bit(mode != GlobalMVMode::IDENTITY)?;
              if mode != GlobalMVMode::IDENTITY {
                  self.write_bit(mode == GlobalMVMode::ROTZOOM)?;
                  if mode != GlobalMVMode::ROTZOOM {
                      self.write_bit(mode == GlobalMVMode::TRANSLATION)?;
                  }
              }
              match mode {
                  GlobalMVMode::IDENTITY => { /* Nothing to do */ }
                  GlobalMVMode::TRANSLATION => {
                      let mv_x = 0;
                      let mv_x_ref = 0;
                      let mv_y = 0;
                      let mv_y_ref = 0;
                      let bits = 12 - 6 + 3 - !fi.allow_high_precision_mv as u8;
                      let bits_diff = 12 - 3 + fi.allow_high_precision_mv as u8;
                      BCodeWriter::write_s_refsubexpfin(self, (1 << bits) + 1,
                                                        3, mv_x_ref >> bits_diff,
                                                        mv_x >> bits_diff)?;
                      BCodeWriter::write_s_refsubexpfin(self, (1 << bits) + 1,
                                                        3, mv_y_ref >> bits_diff,
                                                        mv_y >> bits_diff)?;
                  }
                  GlobalMVMode::ROTZOOM => unimplemented!(),
                  GlobalMVMode::AFFINE => unimplemented!(),
              };
          }
      }

      if seq.film_grain_params_present && fi.show_frame {
          unimplemented!();
      }

      if fi.large_scale_tile {
          unimplemented!();
      }
      self.write_bit(true)?; // trailing bit
      self.byte_align()?;

      Ok(())
    }
    // End of OBU Headers

    fn write_frame_size(&mut self, fi: &FrameInvariants) -> io::Result<()> {
        // width_bits and height_bits will have to be moved to the sequence header OBU
        // when we add support for it.
        let width_bits = 32 - (fi.width as u32).leading_zeros();
        let height_bits = 32 - (fi.height as u32).leading_zeros();
        assert!(width_bits <= 16);
        assert!(height_bits <= 16);
        self.write(4, width_bits - 1)?;
        self.write(4, height_bits - 1)?;
        self.write(width_bits, (fi.width - 1) as u16)?;
        self.write(height_bits, (fi.height - 1) as u16)?;
        Ok(())
    }

955 956 957 958 959 960 961 962 963 964 965
    fn write_loop_filter(&mut self, fi: &FrameInvariants) -> io::Result<()> {
        assert!(fi.loop_filter.levels[0] < 64);
        self.write(6, fi.loop_filter.levels[0])?; // loop filter level 0
        assert!(fi.loop_filter.levels[1] < 64);
        self.write(6, fi.loop_filter.levels[1])?; // loop filter level 1
        if PLANES > 1 && (fi.loop_filter.levels[0] > 0 || fi.loop_filter.levels[1] > 0) {
            assert!(fi.loop_filter.levels[2] < 64);
            self.write(6, fi.loop_filter.levels[2])?; // loop filter level 2
            assert!(fi.loop_filter.levels[3] < 64);
            self.write(6, fi.loop_filter.levels[3])?; // loop filter level 3
        }
966
        self.write(3,0)?; // loop filter sharpness
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        self.write_bit(fi.loop_filter.deltas_enabled)?; // loop filter deltas enabled
        if fi.loop_filter.deltas_enabled {
            self.write_bit(fi.loop_filter.delta_updates_enabled)?; // deltas updates enabled
            if fi.loop_filter.delta_updates_enabled {
                // conditionally write ref delta updates
                let prev_ref_deltas = if fi.primary_ref_frame == PRIMARY_REF_NONE {
                    [1, 0, 0, 0, 0, -1, -1, -1]
                } else {
                    fi.rec_buffer.loop_filter[fi.ref_frames[fi.primary_ref_frame as usize]].ref_deltas
                };
                for i in 0..REF_FRAMES {
                    let update = fi.loop_filter.ref_deltas[i] != prev_ref_deltas[i];
                    self.write_bit(update)?;
                    if update {
                        self.write_signed(7,fi.loop_filter.ref_deltas[i])?;
                    }
                }
                // conditionally write mode delta updates
                let prev_mode_deltas = if fi.primary_ref_frame == PRIMARY_REF_NONE {
                    [0, 0]
                } else {
                    fi.rec_buffer.loop_filter[fi.ref_frames[fi.primary_ref_frame as usize]].mode_deltas
                };
                for i in 0..2 {
                    let update = fi.loop_filter.mode_deltas[i] != prev_mode_deltas[i];
                    self.write_bit(update)?;
                    if update {
                        self.write_signed(7,fi.loop_filter.mode_deltas[i])?;
                    }
                }
            }
        }
        Ok(())
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    }

    fn write_frame_cdef(&mut self, seq: &Sequence, fi: &FrameInvariants) -> io::Result<()> {
        if seq.enable_cdef {
            assert!(fi.cdef_damping >= 3);
            assert!(fi.cdef_damping <= 6);
            self.write(2, fi.cdef_damping - 3)?;
            assert!(fi.cdef_bits < 4);
            self.write(2,fi.cdef_bits)?; // cdef bits
            for i in 0..(1<<fi.cdef_bits) {
                assert!(fi.cdef_y_strengths[i]<64);
                assert!(fi.cdef_uv_strengths[i]<64);
                self.write(6,fi.cdef_y_strengths[i])?; // cdef y strength
                self.write(6,fi.cdef_uv_strengths[i])?; // cdef uv strength
            }
        }
        Ok(())
    }
}

#[allow(non_camel_case_types)]
pub enum OBU_Type {
  OBU_SEQUENCE_HEADER = 1,
  OBU_TEMPORAL_DELIMITER = 2,
  OBU_FRAME_HEADER = 3,
  OBU_TILE_GROUP = 4,
  OBU_METADATA = 5,
  OBU_FRAME = 6,
  OBU_REDUNDANT_FRAME_HEADER = 7,
  OBU_TILE_LIST = 8,
  OBU_PADDING = 15,
}

// NOTE from libaom:
// Disallow values larger than 32-bits to ensure consistent behavior on 32 and
// 64 bit targets: value is typically used to determine buffer allocation size
// when decoded.
fn aom_uleb_size_in_bytes(mut value: u64) -> usize {
  let mut size = 0;
  loop {
    size += 1;
    value = value >> 7;
    if value == 0 { break; }
  }
  return size;
}

fn aom_uleb_encode(mut value: u64, coded_value: &mut [u8]) -> usize {
  let leb_size = aom_uleb_size_in_bytes(value);

  for i in 0..leb_size {
    let mut byte = (value & 0x7f) as u8;
    value >>= 7;
    if value != 0 { byte |= 0x80 };  // Signal that more bytes follow.
    coded_value[i] = byte;
  }

  leb_size
}

fn write_obus(packet: &mut dyn io::Write, sequence: &mut Sequence,
                            fi: &mut FrameInvariants) -> io::Result<()> {
    //let mut uch = BitWriter::<BE>::new(packet);
    let obu_extension = 0 as u32;

    let mut buf1 = Vec::new();
    {
        let mut bw1 = BitWriter::<BE>::new(&mut buf1);
      bw1.write_obu_header(OBU_Type::OBU_TEMPORAL_DELIMITER, obu_extension)?;
      bw1.write(8,0)?;	// size of payload == 0, one byte
    }
    packet.write(&buf1).unwrap();
    buf1.clear();

    // write sequence header obu if KEY_FRAME, preceded by 4-byte size
    if fi.frame_type == FrameType::KEY {
        let mut buf2 = Vec::new();
        {
            let mut bw2 = BitWriter::<BE>::new(&mut buf2);
            bw2.write_sequence_header_obu(sequence, fi)?;
            bw2.byte_align()?;
        }

        {
            let mut bw1 = BitWriter::<BE>::new(&mut buf1);
            bw1.write_obu_header(OBU_Type::OBU_SEQUENCE_HEADER, obu_extension)?;
        }
        packet.write(&buf1).unwrap();
        buf1.clear();

        let obu_payload_size = buf2.len() as u64;
        {
            let mut bw1 = BitWriter::<BE>::new(&mut buf1);
            // uleb128()
            let mut coded_payload_length = [0 as u8; 8];
            let leb_size = aom_uleb_encode(obu_payload_size, &mut coded_payload_length);
            for i in 0..leb_size {
                bw1.write(8, coded_payload_length[i])?;
            }
        }
        packet.write(&buf1).unwrap();
        buf1.clear();

        packet.write(&buf2).unwrap();
        buf2.clear();
    }

    let mut buf2 = Vec::new();
    {
        let mut bw2 = BitWriter::<BE>::new(&mut buf2);
        bw2.write_frame_header_obu(sequence, fi)?;
    }

    {
        let mut bw1 = BitWriter::<BE>::new(&mut buf1);
        bw1.write_obu_header(OBU_Type::OBU_FRAME_HEADER, obu_extension)?;
    }
    packet.write(&buf1).unwrap();
    buf1.clear();

    let obu_payload_size = buf2.len() as u64;
    {
        let mut bw1 = BitWriter::<BE>::new(&mut buf1);
        // uleb128()
        let mut coded_payload_length = [0 as u8; 8];
        let leb_size = aom_uleb_encode(obu_payload_size, &mut coded_payload_length);
        for i in 0..leb_size {
            bw1.write(8, coded_payload_length[i])?;
        }
    }
    packet.write(&buf1).unwrap();
    buf1.clear();

    packet.write(&buf2).unwrap();
    buf2.clear();

    Ok(())
}

/// Write into `dst` the difference between the blocks at `src1` and `src2`
fn diff(dst: &mut [i16], src1: &PlaneSlice<'_>, src2: &PlaneSlice<'_>, width: usize, height: usize) {
    for j in 0..height {
        for i in 0..width {
            dst[j*width + i] = (src1.p(i, j) as i16) - (src2.p(i, j) as i16);
        }
    }
}

// For a transform block,
// predict, transform, quantize, write coefficients to a bitstream,
// dequantize, inverse-transform.
pub fn encode_tx_block(fi: &FrameInvariants, fs: &mut FrameState, cw: &mut ContextWriter, w: &mut dyn Writer,
                  p: usize, bo: &BlockOffset, mode: PredictionMode, tx_size: TxSize, tx_type: TxType,
                  plane_bsize: BlockSize, po: &PlaneOffset, skip: bool, bit_depth: usize) -> bool {
    let rec = &mut fs.rec.planes[p];
    let PlaneConfig { stride, xdec, ydec, .. } = fs.input.planes[p].cfg;

    if mode.is_intra() {
      mode.predict_intra(&mut rec.mut_slice(po), tx_size, bit_depth);
    }

    if skip { return false; }

    let mut residual: AlignedArray<[i16; 64 * 64]> = UninitializedAlignedArray();
    let mut coeffs_storage: AlignedArray<[i32; 64 * 64]> = UninitializedAlignedArray();
    let mut rcoeffs: AlignedArray<[i32; 64 * 64]> = UninitializedAlignedArray();
    let coeffs = &mut coeffs_storage.array[..tx_size.area()];

    diff(&mut residual.array,
         &fs.input.planes[p].slice(po),
         &rec.slice(po),
         tx_size.width(),
         tx_size.height());

    forward_transform(&residual.array, coeffs, tx_size.width(), tx_size, tx_type, bit_depth);
    fs.qc.quantize(coeffs);

    let has_coeff = cw.write_coeffs_lv_map(w, p, bo, &coeffs, tx_size, tx_type, plane_bsize, xdec, ydec,
                            fi.use_reduced_tx_set);

    // Reconstruct
    dequantize(fi.config.quantizer, &coeffs, &mut rcoeffs.array, tx_size, bit_depth);

    inverse_transform_add(&rcoeffs.array, &mut rec.mut_slice(po).as_mut_slice(), stride, tx_size, tx_type, bit_depth);
    has_coeff
}

pub fn encode_block_a(seq: &Sequence,
                 cw: &mut ContextWriter, w: &mut dyn Writer,
                 bsize: BlockSize, bo: &BlockOffset, skip: bool) -> bool {
    cw.bc.set_skip(bo, bsize, skip);
    cw.write_skip(w, bo, skip);
    if !skip && seq.enable_cdef {
        cw.bc.cdef_coded = true;
    }
    cw.bc.cdef_coded
}

pub fn encode_block_b(fi: &FrameInvariants, fs: &mut FrameState,
                 cw: &mut ContextWriter, w: &mut dyn Writer,
                 luma_mode: PredictionMode, chroma_mode: PredictionMode,
                 bsize: BlockSize, bo: &BlockOffset, skip: bool, bit_depth: usize) {
    let is_inter = !luma_mode.is_intra();
1203
    if is_inter { assert!(luma_mode == chroma_mode); };
1204

1205
    cw.bc.set_block_size(bo, bsize);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    cw.bc.set_mode(bo, bsize, luma_mode);

    if fi.frame_type == FrameType::INTER {
        cw.write_is_inter(w, bo, is_inter);
        if is_inter {
            let ref_frame = LAST_FRAME;
            cw.fill_neighbours_ref_counts(bo);
            cw.bc.set_ref_frame(bo, bsize, ref_frame);
            cw.write_ref_frames(w, bo);
            let mode_context = cw.find_mvrefs(bo, ref_frame);
            //let mode_context = if bo.x == 0 && bo.y == 0 { 0 } else if bo.x ==0 || bo.y == 0 { 51 } else { 85 };
            // NOTE: Until rav1e supports other inter modes than GLOBALMV
            assert!(luma_mode == PredictionMode::GLOBALMV);
            cw.write_inter_mode(w, luma_mode, mode_context);
        } else {
            cw.write_intra_mode(w, bsize, luma_mode);
        }
    } else {
        cw.write_intra_mode_kf(w, bo, luma_mode);
    }

    let PlaneConfig { xdec, ydec, .. } = fs.input.planes[1].cfg;

    if luma_mode.is_directional() && bsize >= BlockSize::BLOCK_8X8 {
        cw.write_angle_delta(w, 0, luma_mode);
    }

    if has_chroma(bo, bsize, xdec, ydec) && !is_inter {
        cw.write_intra_uv_mode(w, chroma_mode, luma_mode, bsize);
        if chroma_mode.is_directional() && bsize >= BlockSize::BLOCK_8X8 {
            cw.write_angle_delta(w, 0, chroma_mode);
        }
    }

    // these rules follow TX_MODE_LARGEST
    let tx_size = match bsize {
        BlockSize::BLOCK_4X4 => TxSize::TX_4X4,
        BlockSize::BLOCK_8X8 => TxSize::TX_8X8,
        BlockSize::BLOCK_16X16 => TxSize::TX_16X16,
        _ => TxSize::TX_32X32
    };
1247 1248 1249 1250 1251 1252
    cw.bc.set_tx_size(bo, tx_size);
    // Were we not hardcoded to TX_MODE_LARGEST, block tx size would be written here

    if skip {
        cw.bc.reset_skip_context(bo, bsize, xdec, ydec);
    }
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

    // TODO: Extra condition related to palette mode, see `read_filter_intra_mode_info` in decodemv.c
    if luma_mode == PredictionMode::DC_PRED && bsize.width() <= 32 && bsize.height() <= 32 {
        cw.write_use_filter_intra(w,false, bsize); // Always turn off FILTER_INTRA
    }

    // Luma plane transform type decision
    let tx_set = get_tx_set(tx_size, is_inter, fi.use_reduced_tx_set);

    let tx_type = if tx_set > TxSet::TX_SET_DCTONLY && fi.config.speed <= 3 && !skip {
        // FIXME: there is one redundant transform type decision per encoded block
        rdo_tx_type_decision(fi, fs, cw, luma_mode, bsize, bo, tx_size, tx_set, bit_depth)
    } else {
        TxType::DCT_DCT
    };

    if is_inter {
        // Inter mode prediction can take place once for a whole partition,
        // instead of each tx-block.
        let num_planes = 1 + if has_chroma(bo, bsize, xdec, ydec) { 2 } else { 0 };
        for p in 0..num_planes {
            let plane_bsize = if p == 0 { bsize }
            else { get_plane_block_size(bsize, xdec, ydec) };

            let po = bo.plane_offset(&fs.input.planes[p].cfg);

            let rec = &mut fs.rec.planes[p];

            luma_mode.predict_inter(fi, p, &po, &mut rec.mut_slice(&po), plane_bsize);
        }
1283
        write_tx_tree(fi, fs, cw, w, luma_mode, bo, bsize, tx_size, tx_type, skip, bit_depth); // i.e. var-tx if inter mode
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    } else {
        write_tx_blocks(fi, fs, cw, w, luma_mode, chroma_mode, bo, bsize, tx_size, tx_type, skip, bit_depth);
    }
}

pub fn write_tx_blocks(fi: &FrameInvariants, fs: &mut FrameState,
                       cw: &mut ContextWriter, w: &mut dyn Writer,
                       luma_mode: PredictionMode, chroma_mode: PredictionMode, bo: &BlockOffset,
                       bsize: BlockSize, tx_size: TxSize, tx_type: TxType, skip: bool, bit_depth: usize) {
    let bw = bsize.width_mi() / tx_size.width_mi();
    let bh = bsize.height_mi() / tx_size.height_mi();

    let PlaneConfig { xdec, ydec, .. } = fs.input.planes[1].cfg;

    fs.qc.update(fi.config.quantizer, tx_size, luma_mode.is_intra(), bit_depth);

    for by in 0..bh {
        for bx in 0..bw {
            let tx_bo = BlockOffset {
                x: bo.x + bx * tx_size.width_mi(),
                y: bo.y + by * tx_size.height_mi()
            };

            let po = tx_bo.plane_offset(&fs.input.planes[0].cfg);
            encode_tx_block(fi, fs, cw, w, 0, &tx_bo, luma_mode, tx_size, tx_type, bsize, &po, skip, bit_depth);
        }
    }

    // these are only valid for 4:2:0
    let uv_tx_size = match bsize {
        BlockSize::BLOCK_4X4 | BlockSize::BLOCK_8X8 => TxSize::TX_4X4,
        BlockSize::BLOCK_16X16 => TxSize::TX_8X8,
        BlockSize::BLOCK_32X32 => TxSize::TX_16X16,
        _ => TxSize::TX_32X32
    };

    let mut bw_uv = (bw * tx_size.width_mi()) >> xdec;
    let mut bh_uv = (bh * tx_size.height_mi()) >> ydec;

    if (bw_uv == 0 || bh_uv == 0) && has_chroma(bo, bsize, xdec, ydec) {
        bw_uv = 1;
        bh_uv = 1;
    }

    bw_uv /= uv_tx_size.width_mi();
    bh_uv /= uv_tx_size.height_mi();

    let plane_bsize = get_plane_block_size(bsize, xdec, ydec);

    if bw_uv > 0 && bh_uv > 0 {
        let uv_tx_type = uv_intra_mode_to_tx_type_context(chroma_mode);
1335
        fs.qc.update(fi.config.quantizer, uv_tx_size, true, bit_depth);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

        for p in 1..3 {
            for by in 0..bh_uv {
                for bx in 0..bw_uv {
                    let tx_bo =
                        BlockOffset {
                            x: bo.x + ((bx * uv_tx_size.width_mi()) << xdec) -
                                ((bw * tx_size.width_mi() == 1) as usize),
                            y: bo.y + ((by * uv_tx_size.height_mi()) << ydec) -
                                ((bh * tx_size.height_mi() == 1) as usize)
                        };

                    let mut po = bo.plane_offset(&fs.input.planes[p].cfg);
                    po.x += bx * uv_tx_size.width();
                    po.y += by * uv_tx_size.height();

                    encode_tx_block(fi, fs, cw, w, p, &tx_bo, chroma_mode, uv_tx_size, uv_tx_type,
                                    plane_bsize, &po, skip, bit_depth);
                }
            }
        }
    }
}

// FIXME: For now, assume tx_mode is LARGEST_TX, so var-tx is not implemented yet
// but only one tx block exist for a inter mode partition.
pub fn write_tx_tree(fi: &FrameInvariants, fs: &mut FrameState, cw: &mut ContextWriter, w: &mut dyn Writer,
1363
                       luma_mode: PredictionMode, bo: &BlockOffset,
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
                       bsize: BlockSize, tx_size: TxSize, tx_type: TxType, skip: bool, bit_depth: usize) {
    let bw = bsize.width_mi() / tx_size.width_mi();
    let bh = bsize.height_mi() / tx_size.height_mi();

    let PlaneConfig { xdec, ydec, .. } = fs.input.planes[1].cfg;

    fs.qc.update(fi.config.quantizer, tx_size, luma_mode.is_intra(), bit_depth);

    let po = bo.plane_offset(&fs.input.planes[0].cfg);
    let has_coeff = encode_tx_block(fi, fs, cw, w, 0, &bo, luma_mode, tx_size, tx_type, bsize, &po, skip, bit_depth);

    // these are only valid for 4:2:0
    let uv_tx_size = match bsize {
        BlockSize::BLOCK_4X4 | BlockSize::BLOCK_8X8 => TxSize::TX_4X4,
        BlockSize::BLOCK_16X16 => TxSize::TX_8X8,
        BlockSize::BLOCK_32X32 => TxSize::TX_16X16,
        _ => TxSize::TX_32X32
    };

    let mut bw_uv = (bw * tx_size.width_mi()) >> xdec;
    let mut bh_uv = (bh * tx_size.height_mi()) >> ydec;

    if (bw_uv == 0 || bh_uv == 0) && has_chroma(bo, bsize, xdec, ydec) {
        bw_uv = 1;
        bh_uv = 1;
    }

    bw_uv /= uv_tx_size.width_mi();
    bh_uv /= uv_tx_size.height_mi();

    let plane_bsize = get_plane_block_size(bsize, xdec, ydec);

    if bw_uv > 0 && bh_uv > 0 {
        let uv_tx_type = if has_coeff {tx_type} else {TxType::DCT_DCT}; // if inter mode, uv_tx_type == tx_type

1399
        fs.qc.update(fi.config.quantizer, uv_tx_size, false, bit_depth);
1400 1401 1402 1403 1404 1405 1406 1407 1408

        for p in 1..3 {
            let tx_bo = BlockOffset {
                x: bo.x  - ((bw * tx_size.width_mi() == 1) as usize),
                y: bo.y  - ((bh * tx_size.height_mi() == 1) as usize)
            };

            let po = bo.plane_offset(&fs.input.planes[p].cfg);

1409
            encode_tx_block(fi, fs, cw, w, p, &tx_bo, luma_mode, uv_tx_size, uv_tx_type,
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
                            plane_bsize, &po, skip, bit_depth);
        }
    }
}

fn encode_partition_bottomup(seq: &Sequence, fi: &FrameInvariants, fs: &mut FrameState,
                             cw: &mut ContextWriter, w_pre_cdef: &mut dyn Writer, w_post_cdef: &mut dyn Writer,
                             bsize: BlockSize, bo: &BlockOffset) -> f64 {
    let mut rd_cost = std::f64::MAX;

    if bo.x >= cw.bc.cols || bo.y >= cw.bc.rows {
        return rd_cost;
    }

    let bs = bsize.width_mi();

    // Always split if the current partition is too large
    let must_split = bo.x + bs as usize > fi.w_in_b ||
        bo.y + bs as usize > fi.h_in_b ||
        bsize >= BlockSize::BLOCK_64X64;

    // must_split overrides the minimum partition size when applicable
    let can_split = bsize > fi.min_partition_size || must_split;

    let mut partition = PartitionType::PARTITION_NONE;
    let mut best_decision = RDOPartitionOutput {
        rd_cost,
        bo: bo.clone(),
        pred_mode_luma: PredictionMode::DC_PRED,
        pred_mode_chroma: PredictionMode::DC_PRED,
        skip: false
    }; // Best decision that is not PARTITION_SPLIT

    let hbs = bs >> 1; // Half the block size in blocks
    let mut subsize: BlockSize;

    let cw_checkpoint = cw.checkpoint();
    let w_pre_checkpoint = w_pre_cdef.checkpoint();
    let w_post_checkpoint = w_post_cdef.checkpoint();

    // Code the whole block
    if !must_split {
        partition = PartitionType::PARTITION_NONE;

        if bsize >= BlockSize::BLOCK_8X8 {
            let w: &mut dyn Writer = if cw.bc.cdef_coded {w_post_cdef} else {w_pre_cdef};
            cw.write_partition(w, bo, partition, bsize);
        }
        let mode_decision = rdo_mode_decision(seq, fi, fs, cw, bsize, bo).part_modes[0].clone();
        let (mode_luma, mode_chroma) = (mode_decision.pred_mode_luma, mode_decision.pred_mode_chroma);
        let skip = mode_decision.skip;
        let mut cdef_coded = cw.bc.cdef_coded;
        rd_cost = mode_decision.rd_cost;

        cdef_coded = encode_block_a(seq, cw, if cdef_coded  {w_post_cdef} else {w_pre_cdef},
                                   bsize, bo, skip);
        encode_block_b(fi, fs, cw, if cdef_coded  {w_post_cdef} else {w_pre_cdef},
                       mode_luma, mode_chroma, bsize, bo, skip, seq.bit_depth);

        best_decision = mode_decision;
    }

    // Code a split partition and compare RD costs
    if can_split {
        cw.rollback(&cw_checkpoint);
        w_pre_cdef.rollback(&w_pre_checkpoint);
        w_post_cdef.rollback(&w_post_checkpoint);

        partition = PartitionType::PARTITION_SPLIT;
        subsize = get_subsize(bsize, partition);

        let nosplit_rd_cost = rd_cost;

        if bsize >= BlockSize::BLOCK_8X8 {
            let w: &mut dyn Writer = if cw.bc.cdef_coded {w_post_cdef} else {w_pre_cdef};
            cw.write_partition(w, bo, partition, bsize);
        }

        rd_cost = encode_partition_bottomup(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                            bo);
        rd_cost += encode_partition_bottomup(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                             &BlockOffset { x: bo.x + hbs as usize, y: bo.y });
        rd_cost += encode_partition_bottomup(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                             &BlockOffset { x: bo.x, y: bo.y + hbs as usize });
        rd_cost += encode_partition_bottomup(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                             &BlockOffset { x: bo.x + hbs as usize, y: bo.y + hbs as usize });

        // Recode the full block if it is more efficient
        if !must_split && nosplit_rd_cost < rd_cost {
            cw.rollback(&cw_checkpoint);
            w_pre_cdef.rollback(&w_pre_checkpoint);
            w_post_cdef.rollback(&w_post_checkpoint);

            partition = PartitionType::PARTITION_NONE;

            if bsize >= BlockSize::BLOCK_8X8 {
                let w: &mut dyn Writer = if cw.bc.cdef_coded {w_post_cdef} else {w_pre_cdef};
                cw.write_partition(w, bo, partition, bsize);
            }

            // FIXME: redundant block re-encode
            let (mode_luma, mode_chroma) = (best_decision.pred_mode_luma, best_decision.pred_mode_chroma);
            let skip = best_decision.skip;
            let mut cdef_coded = cw.bc.cdef_coded;
            cdef_coded = encode_block_a(seq, cw, if cdef_coded {w_post_cdef} else {w_pre_cdef},
                                       bsize, bo, skip);
            encode_block_b(fi, fs, cw, if cdef_coded {w_post_cdef} else {w_pre_cdef},
                          mode_luma, mode_chroma, bsize, bo, skip, seq.bit_depth);
        }
    }

    subsize = get_subsize(bsize, partition);

    if bsize >= BlockSize::BLOCK_8X8 &&
        (bsize == BlockSize::BLOCK_8X8 || partition != PartitionType::PARTITION_SPLIT) {
        cw.bc.update_partition_context(bo, subsize, bsize);
    }

    rd_cost
}

fn encode_partition_topdown(seq: &Sequence, fi: &FrameInvariants, fs: &mut FrameState,
            cw: &mut ContextWriter, w_pre_cdef: &mut dyn Writer, w_post_cdef: &mut dyn Writer,
            bsize: BlockSize, bo: &BlockOffset, block_output: &Option<RDOOutput>) {

    if bo.x >= cw.bc.cols || bo.y >= cw.bc.rows {
        return;
    }

    let bs = bsize.width_mi();

    // Always split if the current partition is too large
    let must_split = bo.x + bs as usize > fi.w_in_b ||
        bo.y + bs as usize > fi.h_in_b ||
        bsize >= BlockSize::BLOCK_64X64;

    let mut rdo_output = block_output.clone().unwrap_or(RDOOutput {
        part_type: PartitionType::PARTITION_INVALID,
        rd_cost: std::f64::MAX,
        part_modes: Vec::new()
    });
    let partition: PartitionType;

    if must_split {
        // Oversized blocks are split automatically
        partition = PartitionType::PARTITION_SPLIT;
    } else if bsize > fi.min_partition_size {
        // Blocks of sizes within the supported range are subjected to a partitioning decision
        rdo_output = rdo_partition_decision(seq, fi, fs, cw, bsize, bo, &rdo_output);
        partition = rdo_output.part_type;
    } else {
        // Blocks of sizes below the supported range are encoded directly
        partition = PartitionType::PARTITION_NONE;
    }

    assert!(bsize.width_mi() == bsize.height_mi());
    assert!(PartitionType::PARTITION_NONE <= partition &&
            partition < PartitionType::PARTITION_INVALID);

    let hbs = bs >> 1; // Half the block size in blocks
    let subsize = get_subsize(bsize, partition);

    if bsize >= BlockSize::BLOCK_8X8 {
        let w: &mut dyn Writer = if cw.bc.cdef_coded {w_post_cdef} else {w_pre_cdef};
        cw.write_partition(w, bo, partition, bsize);
    }

    match partition {
        PartitionType::PARTITION_NONE => {
            let part_decision = if !rdo_output.part_modes.is_empty() {
                    // The optimal prediction mode is known from a previous iteration
                    rdo_output.part_modes[0].clone()
                } else {
                    // Make a prediction mode decision for blocks encoded with no rdo_partition_decision call (e.g. edges)
                    rdo_mode_decision(seq, fi, fs, cw, bsize, bo).part_modes[0].clone()
                };

            let (mode_luma, mode_chroma) = (part_decision.pred_mode_luma, part_decision.pred_mode_chroma);
            let skip = part_decision.skip;
            let mut cdef_coded = cw.bc.cdef_coded;

            // FIXME: every final block that has gone through the RDO decision process is encoded twice
            cdef_coded = encode_block_a(seq, cw, if cdef_coded  {w_post_cdef} else {w_pre_cdef},
                         bsize, bo, skip);
            encode_block_b(fi, fs, cw, if cdef_coded  {w_post_cdef} else {w_pre_cdef},
                          mode_luma, mode_chroma, bsize, bo, skip, seq.bit_depth);
        },
        PartitionType::PARTITION_SPLIT => {
            if rdo_output.part_modes.len() >= 4 {
                // The optimal prediction modes for each split block is known from an rdo_partition_decision() call
                assert!(subsize != BlockSize::BLOCK_INVALID);

                for mode in rdo_output.part_modes {
                    let offset = mode.bo.clone();

                    // Each block is subjected to a new splitting decision
                    encode_partition_topdown(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize, &offset,
                        &Some(RDOOutput {
                            rd_cost: mode.rd_cost,
                            part_type: PartitionType::PARTITION_NONE,
                            part_modes: vec![mode] }));
                }
            }
            else {
                encode_partition_topdown(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                         bo, &None);
                encode_partition_topdown(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                         &BlockOffset{x: bo.x + hbs as usize, y: bo.y}, &None);
                encode_partition_topdown(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                         &BlockOffset{x: bo.x, y: bo.y + hbs as usize}, &None);
                encode_partition_topdown(seq, fi, fs, cw, w_pre_cdef, w_post_cdef, subsize,
                                         &BlockOffset{x: bo.x + hbs as usize, y: bo.y + hbs as usize}, &None);
            }
        },
        _ => { assert!(false); },
    }

    if bsize >= BlockSize::BLOCK_8X8 &&
        (bsize == BlockSize::BLOCK_8X8 || partition != PartitionType::PARTITION_SPLIT) {
            cw.bc.update_partition_context(bo, subsize, bsize);
    }
}

fn encode_tile(sequence: &mut Sequence, fi: &FrameInvariants, fs: &mut FrameState, bit_depth: usize) -> Vec<u8> {
    let mut w = WriterEncoder::new();
    let fc = CDFContext::new(fi.config.quantizer as u8);
    let bc = BlockContext::new(fi.w_in_b, fi.h_in_b);
    let mut cw = ContextWriter::new(fc,  bc);

    for sby in 0..fi.sb_height {
        cw.bc.reset_left_contexts();

        for sbx in 0..fi.sb_width {
            let mut w_post_cdef = WriterRecorder::new();
            let sbo = SuperBlockOffset { x: sbx, y: sby };
            let bo = sbo.block_offset(0, 0);
            cw.bc.cdef_coded = false;

            // Encode SuperBlock
            if fi.config.speed == 0 {
                encode_partition_bottomup(sequence, fi, fs, &mut cw,
                                          &mut w, &mut w_post_cdef,
                                          BlockSize::BLOCK_64X64, &bo);
            }
            else {
                encode_partition_topdown(sequence, fi, fs, &mut cw,
                                         &mut w, &mut w_post_cdef,
                                         BlockSize::BLOCK_64X64, &bo, &None);
            }

            if cw.bc.cdef_coded {
                let cdef_index = rdo_cdef_decision(&sbo, fi, fs, &mut cw, bit_depth);
                // CDEF index must be written in the middle, we can code it now
                cw.write_cdef(&mut w, cdef_index, fi.cdef_bits);
                cw.bc.set_cdef(&sbo, cdef_index);
                // ...and then finally code what comes after the CDEF index
                w_post_cdef.replay(&mut w);
            }
        }
    }
    /* TODO: Don't apply if lossless */
    if sequence.enable_cdef {
        cdef_filter_frame(fi, &mut fs.rec, &mut cw.bc, bit_depth);
    }

    let mut h = w.done();
    h.push(0); // superframe anti emulation
    h
}

#[allow(unused)]
fn write_tile_group_header(tile_start_and_end_present_flag: bool) ->
    Vec<u8> {
    let mut buf = Vec::new();
    {
        let mut bw = BitWriter::<BE>::new(&mut buf);
        bw.write_bit(tile_start_and_end_present_flag).unwrap();
        bw.byte_align().unwrap();
    }
    buf.clone()
}

pub fn encode_frame(sequence: &mut Sequence, fi: &mut FrameInvariants, fs: &mut FrameState) -> Vec<u8> {
    let mut packet = Vec::new();
    //write_uncompressed_header(&mut packet, sequence, fi).unwrap();
    write_obus(&mut packet, sequence, fi).unwrap();
    if fi.show_existing_frame {
        match fi.rec_buffer.frames[0] {
            Some(ref rec) => for p in 0..3 {
                fs.rec.planes[p].data.copy_from_slice(rec.planes[p].data.as_slice());
            },
            None => (),
        }
    } else {
        let bit_depth = sequence.bit_depth;
        let tile = encode_tile(sequence, fi, fs, bit_depth); // actually tile group

        let mut buf1 = Vec::new();
        {
            let mut bw1 = BitWriter::<BE>::new(&mut buf1);
            bw1.write_obu_header(OBU_Type::OBU_TILE_GROUP, 0).unwrap();
        }
        packet.write(&buf1).unwrap();
        buf1.clear();

        let obu_payload_size = tile.len() as u64;
        {
            let mut bw1 = BitWriter::<BE>::new(&mut buf1);
            // uleb128()
            let mut coded_payload_length = [0 as u8; 8];
            let leb_size = aom_uleb_encode(obu_payload_size, &mut coded_payload_length);
            for i in 0..leb_size {
                bw1.write(8, coded_payload_length[i]).unwrap();
            }
        }
        packet.write(&buf1).unwrap();
        buf1.clear();

      packet.write(&tile).unwrap();
    }
    packet
}

pub fn update_rec_buffer(fi: &mut FrameInvariants, fs: FrameState) {
  let rfs = Rc::new(fs.rec);
  for i in 0..(REF_FRAMES as usize) {
    if (fi.refresh_frame_flags & (1 << i)) != 0 {
      fi.rec_buffer.frames[i] = Some(Rc::clone(&rfs));
1738
      fi.rec_buffer.loop_filter[i] = fi.loop_filter.clone();
1739 1740 1741 1742
    }
  }
}