mathops.h 5.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/* Copyright (C) 2002-2008 Jean-Marc Valin */
/**
   @file mathops.h
   @brief Various math functions
*/
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:
   
   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
   
   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.
   
   - Neither the name of the Xiph.org Foundation nor the names of its
   contributors may be used to endorse or promote products derived from
   this software without specific prior written permission.
   
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifndef MATHOPS_H
#define MATHOPS_H

#include "arch.h"

#ifndef FIXED_POINT

#define celt_sqrt sqrt
#define celt_acos acos
#define celt_exp exp
#define celt_cos_norm(x) (cos((.5f*M_PI)*(x)))
#define celt_atan atan
47
#define celt_rcp(x) (1.f/(x))
48
#define celt_div(a,b) ((a)/(b))
49
50
51
52
53
54
55
56

#endif



#ifdef FIXED_POINT

#include "entcode.h"
Jean-Marc Valin's avatar
Jean-Marc Valin committed
57
#include "os_support.h"
58

59
#ifndef OVERRIDE_CELT_ILOG2
60
/** Integer log in base2. Undefined for zero and negative numbers */
61
static inline celt_int16_t celt_ilog2(celt_word32_t x)
Jean-Marc Valin's avatar
Jean-Marc Valin committed
62
63
64
65
{
   celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
   return EC_ILOG(x)-1;
}
66
67
#endif

68
69
70
71
72
73
74
75
76
77
#ifndef OVERRIDE_CELT_MAXABS16
static inline celt_word16_t celt_maxabs16(celt_word16_t *x, int len)
{
   int i;
   celt_word16_t maxval = 0;
   for (i=0;i<len;i++)
      maxval = MAX16(maxval, ABS16(x[i]));
   return maxval;
}
#endif
Jean-Marc Valin's avatar
Jean-Marc Valin committed
78
79
80

/** Integer log in base2. Defined for zero, but not for negative numbers */
static inline celt_int16_t celt_zlog2(celt_word32_t x)
81
82
83
84
{
   return EC_ILOG(x)-1;
}

85
/** Sqrt approximation (QX input, QX/2 output) */
86
87
88
static inline celt_word32_t celt_sqrt(celt_word32_t x)
{
   int k;
89
   celt_word16_t n;
90
   celt_word32_t rt;
91
92
93
94
   const celt_word16_t C[5] = {23174, 11584, -3011, 1570, -557};
   if (x==0)
      return 0;
   k = (celt_ilog2(x)>>1)-7;
95
   x = VSHR32(x, (k<<1));
96
97
98
   n = x-32768;
   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], 
              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
   rt = VSHR32(rt,7-k);
   return rt;
}


#define L1 32767
#define L2 -7651
#define L3 8277
#define L4 -626

static inline celt_word16_t _celt_cos_pi_2(celt_word16_t x)
{
   celt_word16_t x2;
   
   x2 = MULT16_16_P15(x,x);
   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
                                                                                ))))))));
}

#undef L1
#undef L2
#undef L3
#undef L4

static inline celt_word16_t celt_cos_norm(celt_word32_t x)
{
   x = x&0x0001ffff;
   if (x>SHL32(EXTEND32(1), 16))
      x = SUB32(SHL32(EXTEND32(1), 17),x);
   if (x&0x00007fff)
   {
      if (x<SHL32(EXTEND32(1), 15))
      {
         return _celt_cos_pi_2(EXTRACT16(x));
      } else {
         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
      }
   } else {
      if (x&0x0000ffff)
         return 0;
      else if (x&0x0001ffff)
         return -32767;
      else
         return 32767;
   }
}

146
147
148
static inline celt_word16_t celt_log2(celt_word32_t x)
{
   int i;
149
   celt_word16_t n, frac;
150
151
152
153
154
   /*-0.41446   0.96093  -0.33981   0.15600 */
   const celt_word16_t C[4] = {-6791, 7872, -1392, 319};
   if (x==0)
      return -32767;
   i = celt_ilog2(x);
155
156
   n = VSHR32(x,i-15)-32768-16384;
   frac = ADD16(C[0], MULT16_16_Q14(n, ADD16(C[1], MULT16_16_Q14(n, ADD16(C[2], MULT16_16_Q14(n, (C[3])))))));
157
   /*printf ("%d %d %d %d\n", x, n, ret, SHL16(i-13,8)+SHR16(ret,14-8));*/
158
   return SHL16(i-13,8)+SHR16(frac,14-8);
159
}
160

161
162
163
164
165
166
167
168
169
170
/*
 K0 = 1
 K1 = log(2)
 K2 = 3-4*log(2)
 K3 = 3*log(2) - 2
*/
#define D0 16384
#define D1 11356
#define D2 3726
#define D3 1301
171
/** Base-2 exponential approximation (2^x). (Q11 input, Q16 output) */
172
173
174
175
176
177
178
179
180
181
182
183
184
185
static inline celt_word32_t celt_exp2(celt_word16_t x)
{
   int integer;
   celt_word16_t frac;
   integer = SHR16(x,11);
   if (integer>14)
      return 0x7fffffff;
   else if (integer < -15)
      return 0;
   frac = SHL16(x-SHL16(integer,11),3);
   frac = ADD16(D0, MULT16_16_Q14(frac, ADD16(D1, MULT16_16_Q14(frac, ADD16(D2 , MULT16_16_Q14(D3,frac))))));
   return VSHR32(EXTEND32(frac), -integer-2);
}

186
/** Reciprocal approximation (Q15 input, Q16 output) */
187
static inline celt_word32_t celt_rcp(celt_word32_t x)
188
189
190
{
   int i, neg=0;
   celt_word16_t n, frac;
191
   const celt_word16_t C[5] = {21848, -7251, 2403, -934, 327};
192
193
194
195
196
197
   if (x<0)
   {
      neg = 1;
      x = NEG16(x);
   }
   i = celt_ilog2(x);
198
199
200
201
202
   n = VSHR32(x,i-16)-SHL32(EXTEND32(3),15);
   frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], 
                MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
   if (neg)
      frac = -frac;
203
   return VSHR32(EXTEND32(frac),i-16);
204
}
205

206
207
#define celt_div(a,b) MULT32_32_Q31(a,celt_rcp(b))

208
#endif /* FIXED_POINT */
209
210


211
#endif /* MATHOPS_H */