mathops.h 6.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/* Copyright (C) 2002-2008 Jean-Marc Valin */
/**
   @file mathops.h
   @brief Various math functions
*/
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:
   
   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
   
   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.
   
   - Neither the name of the Xiph.org Foundation nor the names of its
   contributors may be used to endorse or promote products derived from
   this software without specific prior written permission.
   
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifndef MATHOPS_H
#define MATHOPS_H

#include "arch.h"

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#ifndef OVERRIDE_FIND_MAX16
static inline int find_max16(celt_word16_t *x, int len)
{
   celt_word16_t max_corr=-VERY_LARGE16;
   int i, id = 0;
   for (i=0;i<len;i++)
   {
      if (x[i] > max_corr)
      {
         id = i;
         max_corr = x[i];
      }
   }
   return id;
}
#endif


58
59
60
61
62
63
64
#ifndef FIXED_POINT

#define celt_sqrt sqrt
#define celt_acos acos
#define celt_exp exp
#define celt_cos_norm(x) (cos((.5f*M_PI)*(x)))
#define celt_atan atan
65
#define celt_rcp(x) (1.f/(x))
66
#define celt_div(a,b) ((a)/(b))
67
68
69
70
71
72
73
74

#endif



#ifdef FIXED_POINT

#include "entcode.h"
Jean-Marc Valin's avatar
Jean-Marc Valin committed
75
#include "os_support.h"
76

77
#ifndef OVERRIDE_CELT_ILOG2
78
/** Integer log in base2. Undefined for zero and negative numbers */
79
static inline celt_int16_t celt_ilog2(celt_word32_t x)
Jean-Marc Valin's avatar
Jean-Marc Valin committed
80
81
82
83
{
   celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
   return EC_ILOG(x)-1;
}
84
85
#endif

86
87
88
89
90
91
92
93
94
95
#ifndef OVERRIDE_CELT_MAXABS16
static inline celt_word16_t celt_maxabs16(celt_word16_t *x, int len)
{
   int i;
   celt_word16_t maxval = 0;
   for (i=0;i<len;i++)
      maxval = MAX16(maxval, ABS16(x[i]));
   return maxval;
}
#endif
Jean-Marc Valin's avatar
Jean-Marc Valin committed
96
97
98

/** Integer log in base2. Defined for zero, but not for negative numbers */
static inline celt_int16_t celt_zlog2(celt_word32_t x)
99
100
101
102
{
   return EC_ILOG(x)-1;
}

103
/** Sqrt approximation (QX input, QX/2 output) */
104
105
106
static inline celt_word32_t celt_sqrt(celt_word32_t x)
{
   int k;
107
   celt_word16_t n;
108
   celt_word32_t rt;
109
110
111
112
   const celt_word16_t C[5] = {23174, 11584, -3011, 1570, -557};
   if (x==0)
      return 0;
   k = (celt_ilog2(x)>>1)-7;
113
   x = VSHR32(x, (k<<1));
114
115
116
   n = x-32768;
   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], 
              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
   rt = VSHR32(rt,7-k);
   return rt;
}


#define L1 32767
#define L2 -7651
#define L3 8277
#define L4 -626

static inline celt_word16_t _celt_cos_pi_2(celt_word16_t x)
{
   celt_word16_t x2;
   
   x2 = MULT16_16_P15(x,x);
   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
                                                                                ))))))));
}

#undef L1
#undef L2
#undef L3
#undef L4

static inline celt_word16_t celt_cos_norm(celt_word32_t x)
{
   x = x&0x0001ffff;
   if (x>SHL32(EXTEND32(1), 16))
      x = SUB32(SHL32(EXTEND32(1), 17),x);
   if (x&0x00007fff)
   {
      if (x<SHL32(EXTEND32(1), 15))
      {
         return _celt_cos_pi_2(EXTRACT16(x));
      } else {
         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
      }
   } else {
      if (x&0x0000ffff)
         return 0;
      else if (x&0x0001ffff)
         return -32767;
      else
         return 32767;
   }
}

164
165
166
static inline celt_word16_t celt_log2(celt_word32_t x)
{
   int i;
167
   celt_word16_t n, frac;
168
169
170
171
172
   /*-0.41446   0.96093  -0.33981   0.15600 */
   const celt_word16_t C[4] = {-6791, 7872, -1392, 319};
   if (x==0)
      return -32767;
   i = celt_ilog2(x);
173
174
   n = VSHR32(x,i-15)-32768-16384;
   frac = ADD16(C[0], MULT16_16_Q14(n, ADD16(C[1], MULT16_16_Q14(n, ADD16(C[2], MULT16_16_Q14(n, (C[3])))))));
175
   /*printf ("%d %d %d %d\n", x, n, ret, SHL16(i-13,8)+SHR16(ret,14-8));*/
176
   return SHL16(i-13,8)+SHR16(frac,14-8);
177
}
178

179
180
181
182
183
184
185
186
187
188
/*
 K0 = 1
 K1 = log(2)
 K2 = 3-4*log(2)
 K3 = 3*log(2) - 2
*/
#define D0 16384
#define D1 11356
#define D2 3726
#define D3 1301
189
/** Base-2 exponential approximation (2^x). (Q11 input, Q16 output) */
190
191
192
193
194
195
196
197
198
199
200
201
202
203
static inline celt_word32_t celt_exp2(celt_word16_t x)
{
   int integer;
   celt_word16_t frac;
   integer = SHR16(x,11);
   if (integer>14)
      return 0x7fffffff;
   else if (integer < -15)
      return 0;
   frac = SHL16(x-SHL16(integer,11),3);
   frac = ADD16(D0, MULT16_16_Q14(frac, ADD16(D1, MULT16_16_Q14(frac, ADD16(D2 , MULT16_16_Q14(D3,frac))))));
   return VSHR32(EXTEND32(frac), -integer-2);
}

204
/** Reciprocal approximation (Q15 input, Q16 output) */
205
static inline celt_word32_t celt_rcp(celt_word32_t x)
206
{
207
   int i;
208
   celt_word16_t n, frac;
209
   const celt_word16_t C[5] = {21848, -7251, 2403, -934, 327};
210
   celt_assert2(x>0, "celt_rcp() only defined for positive values");
211
   i = celt_ilog2(x);
212
213
214
   n = VSHR32(x,i-16)-SHL32(EXTEND32(3),15);
   frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], 
                MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
215
   return VSHR32(EXTEND32(frac),i-16);
216
}
217

218
#define celt_div(a,b) MULT32_32_Q31((celt_word32_t)(a),celt_rcp(b))
219

220
#endif /* FIXED_POINT */
221
222


223
#endif /* MATHOPS_H */