Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Mark Harris
Opus
Commits
63396f39
Commit
63396f39
authored
Jun 30, 2009
by
Jean-Marc Valin
Browse files
ietf doc: misc
parent
84966954
Changes
1
Hide whitespace changes
Inline
Side-by-side
doc/ietf/draft-valin-celt-codec.xml
View file @
63396f39
...
...
@@ -243,9 +243,15 @@ bands is computed in compute_pbands() (<xref target="modes.c">modes.c</xref>).
<section
anchor=
"CELT Encoder"
title=
"CELT Encoder"
>
<!--Insert encoder overview-->
<t>
The basic block diagram of the CELT encoder is illustrated in
<xref
target=
"encoder-diagram"
></xref>
.
The encoder contains most of the building blocks of the decoder and can,
with very little extra computation, compute the signal that would be decoded by the decoder.
The top-level function for encoding a CELT frame in the reference implementation is
celt_encode() (
<xref
target=
"celt.c"
>
celt.c
</xref>
).
</t>
<figure>
<figure
anchor=
"encoder-diagram"
>
<artwork>
<![CDATA[
+-----------+ +--+
...
...
@@ -274,13 +280,9 @@ bands is computed in compute_pbands() (<xref target="modes.c">modes.c</xref>).
+--------------------------------------+--------------------+
]]>
</artwork>
<postamble>
Overview
of the CELT encoder
</postamble>
<postamble>
Block diagram
of the CELT encoder
</postamble>
</figure>
<t>
The top-level function for encoding a CELT frame in the reference implementation is
celt_encode() (
<xref
target=
"celt.c"
>
celt.c
</xref>
).
</t>
<!--
<texttable anchor="bitstream">
<ttcol align='center'>Parameter(s)</ttcol>
...
...
@@ -322,7 +324,7 @@ on the non-pre-emphasised signal. The inverse of the pre-emphasis is applied at
</section>
<!-- pre-emphasis -->
<section
anchor=
"range-coder"
title=
"Range Coder"
>
<section
anchor=
"range-
en
coder"
title=
"Range Coder"
>
<t>
CELT uses an entropy coder based upon
<xref
target=
"range-coding"
></xref>
,
which is itself a rediscovery of the FIFO arithmetic code introduced by
<xref
target=
"coding-thesis"
></xref>
.
...
...
@@ -335,7 +337,7 @@ larger bases (i.e.: a byte).
The range coder also acts as the bit-packer for CELT. It is
used in three different ways to encode:
<list
style=
"symbols"
>
<t>
symbols with a probability model using ec_encode() (
<xref
target=
"rangedec.c"
>
rangeenc.c
</xref>
)
</t>
<t>
entropy-coded
symbols with a
fixed
probability model using ec_encode() (
<xref
target=
"rangedec.c"
>
rangeenc.c
</xref>
)
</t>
<t>
integers from 0 to 2^M-1 using ec_enc_uint() or ec_enc_bits() (
<xref
target=
"entenc.c"
>
encenc.c
</xref>
)
</t>
<t>
integers from 0 to N-1 (where N is not a power of two) using ec_enc_uint() (
<xref
target=
"entenc.c"
>
encenc.c
</xref>
)
</t>
</list>
...
...
@@ -650,10 +652,11 @@ Each CELT frame can be encoded in a different number of octets, making it possib
<section
anchor=
"CELT-decoder"
title=
"CELT Decoder"
>
<t>
Like for most audio codecs, the CELT decoder is less complex than the encoder.
Like for most audio codecs, the CELT decoder is less complex than the encoder, as can be
observed in the decoder block diagram in
<xref
target=
"decoder-diagram"
></xref>
.
</t>
<figure>
<figure
anchor=
"decoder-diagram"
>
<artwork>
<![CDATA[
+--+
...
...
@@ -679,7 +682,7 @@ Like for most audio codecs, the CELT decoder is less complex than the encoder.
+--------------------+
]]>
</artwork>
<postamble>
Overview
of the CELT decoder
</postamble>
<postamble>
Block diagram
of the CELT decoder
</postamble>
</figure>
<t>
...
...
@@ -692,7 +695,8 @@ to the application that a problem has occured.
<section
anchor=
"range-decoder"
title=
"Range Decoder"
>
<t>
derf?
The range decoder extracts the symbols and integers encoded using the range encoder
<xref
target=
"range-encoder"
></xref>
.
</t>
</section>
...
...
@@ -706,17 +710,19 @@ derf?
<t>
The spherical codebook is decoded by alg_unquant() (
<xref
target=
"vq.c"
>
vq.c
</xref>
).
The index of the PVQ entry is obtained from the range coder and converted to
a pulse vector by decode_pulses() (
<xref
target=
"cwrs.c"
>
cwrs.c
</xref>
).
Derf??
a pulse vector by decode_pulses() (
<xref
target=
"cwrs.c"
>
cwrs.c
</xref>
).
</t>
<t>
The decoded normalised vector for each band is equal to
</t>
<t>
X' = P + g_f * y,
</t>
<t>
where g_f = ( sqrt( (y^T*P)^2 + ||y||^2*(1-||P||^2) ) - y^T*P ) / ||y||^2.
</t>
<t>
mix_pitch_and_residual() (
<xref
target=
"vq.c"
>
vq.c
</xref>
).
This operation is implemented in mix_pitch_and_residual() (
<xref
target=
"vq.c"
>
vq.c
</xref>
),
which is the same function as used in the encoder.
</t>
</section>
<section
anchor=
"index-decoding"
title=
"Index Decoding"
>
</section>
<section
anchor=
"denormalization"
title=
"Denormalization"
>
<t>
Just like each band was normalised in the encoder, the last step of the decoder before
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment