rdopt.c 421 KB
Newer Older
Jingning Han's avatar
Jingning Han committed
1
/*
Yaowu Xu's avatar
Yaowu Xu committed
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
Jingning Han's avatar
Jingning Han committed
3
 *
Yaowu Xu's avatar
Yaowu Xu committed
4
5
6
7
8
9
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
Jingning Han's avatar
Jingning Han committed
10
11
12
13
14
 */

#include <assert.h>
#include <math.h>

Yaowu Xu's avatar
Yaowu Xu committed
15
#include "./aom_dsp_rtcd.h"
Jingning Han's avatar
Jingning Han committed
16
#include "./av1_rtcd.h"
Jingning Han's avatar
Jingning Han committed
17

Yaowu Xu's avatar
Yaowu Xu committed
18
#include "aom_dsp/aom_dsp_common.h"
19
#include "aom_dsp/blend.h"
Yaowu Xu's avatar
Yaowu Xu committed
20
#include "aom_mem/aom_mem.h"
Angie Chiang's avatar
Angie Chiang committed
21
#include "aom_ports/aom_timer.h"
22
23
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
Jingning Han's avatar
Jingning Han committed
24

25
26
27
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
28
29
30
31
32
33
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
34
#include "av1/common/obmc.h"
35
36
37
38
39
40
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
41
42
43
#if CONFIG_LV_MAP
#include "av1/common/txb_common.h"
#endif
Yue Chen's avatar
Yue Chen committed
44
#include "av1/common/warped_motion.h"
Jingning Han's avatar
Jingning Han committed
45

Jingning Han's avatar
Jingning Han committed
46
#include "av1/encoder/aq_variance.h"
47
#include "av1/encoder/av1_quantize.h"
48
49
50
51
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
52
53
54
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
55
56
57
58
59
60
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
61
#include "av1/encoder/tokenize.h"
62
#include "av1/encoder/tx_prune_model_weights.h"
Yushin Cho's avatar
Yushin Cho committed
63

64
#if CONFIG_DUAL_FILTER
Angie Chiang's avatar
Angie Chiang committed
65
#define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS)
66
67
68
69
static const int filter_sets[DUAL_FILTER_SET_SIZE][2] = {
  { 0, 0 }, { 0, 1 }, { 0, 2 }, { 1, 0 }, { 1, 1 },
  { 1, 2 }, { 2, 0 }, { 2, 1 }, { 2, 2 },
};
Angie Chiang's avatar
Angie Chiang committed
70
#endif  // CONFIG_DUAL_FILTER
71

Zoe Liu's avatar
Zoe Liu committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#define LAST_FRAME_MODE_MASK                                          \
  ((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) |     \
   (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define LAST2_FRAME_MODE_MASK                                         \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) |      \
   (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define LAST3_FRAME_MODE_MASK                                         \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |      \
   (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define GOLDEN_FRAME_MODE_MASK                                       \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |     \
   (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define BWDREF_FRAME_MODE_MASK                                       \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |     \
   (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define ALTREF2_FRAME_MODE_MASK                                     \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |    \
   (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | \
   (1 << ALTREF_FRAME))
#define ALTREF_FRAME_MODE_MASK                                      \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |    \
   (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | \
   (1 << ALTREF2_FRAME))

Zoe Liu's avatar
Zoe Liu committed
101
#if CONFIG_EXT_COMP_REFS
102
103
104
#define SECOND_REF_FRAME_MASK                                         \
  ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | \
   (1 << GOLDEN_FRAME) | (1 << LAST2_FRAME) | 0x01)
105
#else  // !CONFIG_EXT_COMP_REFS
Zoe Liu's avatar
Zoe Liu committed
106
107
#define SECOND_REF_FRAME_MASK \
  ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | 0x01)
Zoe Liu's avatar
Zoe Liu committed
108
#endif  // CONFIG_EXT_COMP_REFS
Jingning Han's avatar
Jingning Han committed
109

110
#define NEW_MV_DISCOUNT_FACTOR 8
Jingning Han's avatar
Jingning Han committed
111

112
113
#define ANGLE_SKIP_THRESH 10

114
115
116
117
118
119
static const double ADST_FLIP_SVM[8] = {
  /* vertical */
  -6.6623, -2.8062, -3.2531, 3.1671,
  /* horizontal */
  -7.7051, -3.2234, -3.6193, 3.4533
};
120

Jingning Han's avatar
Jingning Han committed
121
122
123
124
125
typedef struct {
  PREDICTION_MODE mode;
  MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;

126
typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION;
Jingning Han's avatar
Jingning Han committed
127
128

struct rdcost_block_args {
Yaowu Xu's avatar
Yaowu Xu committed
129
  const AV1_COMP *cpi;
Jingning Han's avatar
Jingning Han committed
130
  MACROBLOCK *x;
131
132
  ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE];
  ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE];
133
  RD_STATS rd_stats;
Jingning Han's avatar
Jingning Han committed
134
135
136
137
138
139
140
  int64_t this_rd;
  int64_t best_rd;
  int exit_early;
  int use_fast_coef_costing;
};

#define LAST_NEW_MV_INDEX 6
Yaowu Xu's avatar
Yaowu Xu committed
141
static const MODE_DEFINITION av1_mode_order[MAX_MODES] = {
Emil Keyder's avatar
Emil Keyder committed
142
143
144
145
  { NEARESTMV, { LAST_FRAME, NONE_FRAME } },
  { NEARESTMV, { LAST2_FRAME, NONE_FRAME } },
  { NEARESTMV, { LAST3_FRAME, NONE_FRAME } },
  { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
146
  { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } },
Emil Keyder's avatar
Emil Keyder committed
147
148
  { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
149

Emil Keyder's avatar
Emil Keyder committed
150
  { DC_PRED, { INTRA_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
151

Emil Keyder's avatar
Emil Keyder committed
152
153
154
155
  { NEWMV, { LAST_FRAME, NONE_FRAME } },
  { NEWMV, { LAST2_FRAME, NONE_FRAME } },
  { NEWMV, { LAST3_FRAME, NONE_FRAME } },
  { NEWMV, { BWDREF_FRAME, NONE_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
156
  { NEWMV, { ALTREF2_FRAME, NONE_FRAME } },
Emil Keyder's avatar
Emil Keyder committed
157
158
  { NEWMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEWMV, { GOLDEN_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
159

Emil Keyder's avatar
Emil Keyder committed
160
161
162
163
  { NEARMV, { LAST_FRAME, NONE_FRAME } },
  { NEARMV, { LAST2_FRAME, NONE_FRAME } },
  { NEARMV, { LAST3_FRAME, NONE_FRAME } },
  { NEARMV, { BWDREF_FRAME, NONE_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
164
  { NEARMV, { ALTREF2_FRAME, NONE_FRAME } },
Emil Keyder's avatar
Emil Keyder committed
165
166
  { NEARMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEARMV, { GOLDEN_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
167

Sarah Parker's avatar
Sarah Parker committed
168
169
170
171
172
173
174
  { GLOBALMV, { LAST_FRAME, NONE_FRAME } },
  { GLOBALMV, { LAST2_FRAME, NONE_FRAME } },
  { GLOBALMV, { LAST3_FRAME, NONE_FRAME } },
  { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } },
  { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } },
  { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } },
  { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
175

176
  // TODO(zoeliu): May need to reconsider the order on the modes to check
177

178
179
180
181
182
183
184
185
  { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
186
187
188
189
  { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
190
191
192

#if CONFIG_EXT_COMP_REFS
  { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
193
  { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
194
195
196
  { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },
#endif  // CONFIG_EXT_COMP_REFS
197

Urvang Joshi's avatar
Urvang Joshi committed
198
  { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
199

Emil Keyder's avatar
Emil Keyder committed
200
  { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } },
Urvang Joshi's avatar
Urvang Joshi committed
201
202
  { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } },
  { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } },
203

204
205
206
207
208
209
  { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
210
  { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } },
211

212
213
214
215
216
217
  { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
218
  { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } },
219
220
221
222
223
224
225

  { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
226
  { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } },
227

228
229
230
231
232
233
  { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
234
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } },
235

236
237
238
239
240
241
  { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
242
  { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } },
243
244
245
246
247
248
249

  { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
250
  { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } },
251
252
253
254
255
256
257

  { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
258
  { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } },
259
260
261
262
263
264
265

  { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
266
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
267

Zoe Liu's avatar
Zoe Liu committed
268
269
270
271
272
273
  { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
274
  { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
275
276
277
278
279
280
281

  { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
282
  { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
283
284
285
286
287
288
289

  { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
290
  { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
291
292
293
294
295
296
297

  { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
298
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
299

Emil Keyder's avatar
Emil Keyder committed
300
301
302
303
304
305
306
307
  { H_PRED, { INTRA_FRAME, NONE_FRAME } },
  { V_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D135_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D207_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D153_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D63_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D117_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D45_PRED, { INTRA_FRAME, NONE_FRAME } },
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#if CONFIG_EXT_COMP_REFS
  { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } },

  { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } },
#endif  // CONFIG_EXT_COMP_REFS
Jingning Han's avatar
Jingning Han committed
342
343
};

hui su's avatar
hui su committed
344
static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = {
Urvang Joshi's avatar
Urvang Joshi committed
345
  DC_PRED,       H_PRED,        V_PRED,    SMOOTH_PRED, PAETH_PRED,
346
347
  SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D207_PRED,   D153_PRED,
  D63_PRED,      D117_PRED,     D45_PRED,
hui su's avatar
hui su committed
348
349
};

Luc Trudeau's avatar
Luc Trudeau committed
350
351
#if CONFIG_CFL
static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = {
352
353
354
355
  UV_DC_PRED,     UV_CFL_PRED,   UV_H_PRED,        UV_V_PRED,
  UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED,
  UV_D135_PRED,   UV_D207_PRED,  UV_D153_PRED,     UV_D63_PRED,
  UV_D117_PRED,   UV_D45_PRED,
Luc Trudeau's avatar
Luc Trudeau committed
356
357
358
359
360
};
#else
#define uv_rd_search_mode_order intra_rd_search_mode_order
#endif  // CONFIG_CFL

hui su's avatar
hui su committed
361
static INLINE int write_uniform_cost(int n, int v) {
362
363
  const int l = get_unsigned_bits(n);
  const int m = (1 << l) - n;
364
  if (l == 0) return 0;
hui su's avatar
hui su committed
365
  if (v < m)
Hui Su's avatar
Hui Su committed
366
    return av1_cost_literal(l - 1);
hui su's avatar
hui su committed
367
  else
Hui Su's avatar
Hui Su committed
368
    return av1_cost_literal(l);
hui su's avatar
hui su committed
369
370
}

371
372
373
// constants for prune 1 and prune 2 decision boundaries
#define FAST_EXT_TX_CORR_MID 0.0
#define FAST_EXT_TX_EDST_MID 0.1
374
375
376
#define FAST_EXT_TX_CORR_MARGIN 0.5
#define FAST_EXT_TX_EDST_MARGIN 0.3

377
378
379
380
381
int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats,
                    BLOCK_SIZE bsize, int64_t ref_best_rd, int fast);
int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats,
                     BLOCK_SIZE bsize, int64_t ref_best_rd, int fast);

382
383
384
385
386
387
388
static unsigned pixel_dist_visible_only(
    const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
    const int src_stride, const uint8_t *dst, const int dst_stride,
    const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
    int visible_cols) {
  unsigned sse;

389
  if (txb_rows == visible_rows && txb_cols == visible_cols) {
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
    return sse;
  }
  const MACROBLOCKD *xd = &x->e_mbd;

  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
                                             visible_cols, visible_rows);
    return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
  }
  sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
                         visible_rows);
  return sse;
}

405
#if CONFIG_DIST_8X8
Yushin Cho's avatar
Yushin Cho committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src,
                                    int sstride, int coeff_shift) {
  uint64_t svar = 0;
  uint64_t dvar = 0;
  uint64_t sum_s = 0;
  uint64_t sum_d = 0;
  uint64_t sum_s2 = 0;
  uint64_t sum_d2 = 0;
  uint64_t sum_sd = 0;
  uint64_t dist = 0;

  int i, j;
  for (i = 0; i < 8; i++) {
    for (j = 0; j < 8; j++) {
      sum_s += src[i * sstride + j];
      sum_d += dst[i * dstride + j];
      sum_s2 += src[i * sstride + j] * src[i * sstride + j];
      sum_d2 += dst[i * dstride + j] * dst[i * dstride + j];
      sum_sd += src[i * sstride + j] * dst[i * dstride + j];
    }
  }
  /* Compute the variance -- the calculation cannot go negative. */
  svar = sum_s2 - ((sum_s * sum_s + 32) >> 6);
  dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6);

  // Tuning of jm's original dering distortion metric used in CDEF tool,
  // suggested by jm
  const uint64_t a = 4;
  const uint64_t b = 2;
  const uint64_t c1 = (400 * a << 2 * coeff_shift);
  const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift);

  dist =
      (uint64_t)floor(.5 +
                      (sum_d2 + sum_s2 - 2 * sum_sd) * .5 * (svar + dvar + c1) /
                          (sqrt(svar * (double)dvar + c2)));

  // Calibrate dist to have similar rate for the same QP with MSE only
  // distortion (as in master branch)
  dist = (uint64_t)((float)dist * 0.75);

  return dist;
}

Yushin Cho's avatar
Yushin Cho committed
450
static int od_compute_var_4x4(uint16_t *x, int stride) {
Yushin Cho's avatar
Yushin Cho committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
  int sum;
  int s2;
  int i;
  sum = 0;
  s2 = 0;
  for (i = 0; i < 4; i++) {
    int j;
    for (j = 0; j < 4; j++) {
      int t;

      t = x[i * stride + j];
      sum += t;
      s2 += t * t;
    }
  }
Yushin Cho's avatar
Yushin Cho committed
466

Yushin Cho's avatar
Yushin Cho committed
467
468
469
  return (s2 - (sum * sum >> 4)) >> 4;
}

470
471
472
473
474
475
476
/* OD_DIST_LP_MID controls the frequency weighting filter used for computing
   the distortion. For a value X, the filter is [1 X 1]/(X + 2) and
   is applied both horizontally and vertically. For X=5, the filter is
   a good approximation for the OD_QM8_Q4_HVS quantization matrix. */
#define OD_DIST_LP_MID (5)
#define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2)

Yushin Cho's avatar
Yushin Cho committed
477
478
static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x,
                                  uint16_t *y, od_coeff *e_lp, int stride) {
Yushin Cho's avatar
Yushin Cho committed
479
480
481
482
483
484
485
486
487
488
489
  double sum;
  int min_var;
  double mean_var;
  double var_stat;
  double activity;
  double calibration;
  int i;
  int j;
  double vardist;

  vardist = 0;
Yushin Cho's avatar
Yushin Cho committed
490

Yushin Cho's avatar
Yushin Cho committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
#if 1
  min_var = INT_MAX;
  mean_var = 0;
  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      int varx;
      int vary;
      varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride);
      vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride);
      min_var = OD_MINI(min_var, varx);
      mean_var += 1. / (1 + varx);
      /* The cast to (double) is to avoid an overflow before the sqrt.*/
      vardist += varx - 2 * sqrt(varx * (double)vary) + vary;
    }
  }
  /* We use a different variance statistic depending on whether activity
James Zern's avatar
James Zern committed
507
     masking is used, since the harmonic mean appeared slightly worse with
Yushin Cho's avatar
Yushin Cho committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
     masking off. The calibration constant just ensures that we preserve the
     rate compared to activity=1. */
  if (use_activity_masking) {
    calibration = 1.95;
    var_stat = 9. / mean_var;
  } else {
    calibration = 1.62;
    var_stat = min_var;
  }
  /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the
     activity masking constant. */
  activity = calibration * pow(.25 + var_stat, -1. / 6);
#else
  activity = 1;
522
#endif  // 1
Yushin Cho's avatar
Yushin Cho committed
523
524
525
  sum = 0;
  for (i = 0; i < 8; i++) {
    for (j = 0; j < 8; j++)
526
      sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j];
Yushin Cho's avatar
Yushin Cho committed
527
  }
528
529
530
  /* Normalize the filter to unit DC response. */
  sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM *
               OD_DIST_LP_NORM);
Yushin Cho's avatar
Yushin Cho committed
531
532
533
534
  return activity * activity * (sum + vardist);
}

// Note : Inputs x and y are in a pixel domain
Yushin Cho's avatar
Yushin Cho committed
535
536
static double od_compute_dist_common(int activity_masking, uint16_t *x,
                                     uint16_t *y, int bsize_w, int bsize_h,
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
                                     int qindex, od_coeff *tmp,
                                     od_coeff *e_lp) {
  int i, j;
  double sum = 0;
  const int mid = OD_DIST_LP_MID;

  for (j = 0; j < bsize_w; j++) {
    e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j];
    e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] +
                                        2 * tmp[(bsize_h - 2) * bsize_w + j];
  }
  for (i = 1; i < bsize_h - 1; i++) {
    for (j = 0; j < bsize_w; j++) {
      e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] +
                              tmp[(i - 1) * bsize_w + j] +
                              tmp[(i + 1) * bsize_w + j];
    }
  }
  for (i = 0; i < bsize_h; i += 8) {
    for (j = 0; j < bsize_w; j += 8) {
Yushin Cho's avatar
Yushin Cho committed
557
      sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j],
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
                                 &y[i * bsize_w + j], &e_lp[i * bsize_w + j],
                                 bsize_w);
    }
  }
  /* Scale according to linear regression against SSE, for 8x8 blocks. */
  if (activity_masking) {
    sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) +
           (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0);
  } else {
    sum *= qindex >= 128
               ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128)
               : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43)
                              : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43);
  }

  return sum;
}

Yushin Cho's avatar
Yushin Cho committed
576
577
static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w,
                              int bsize_h, int qindex) {
Yushin Cho's avatar
Yushin Cho committed
578
  assert(bsize_w >= 8 && bsize_h >= 8);
Yushin Cho's avatar
Yushin Cho committed
579

Yushin Cho's avatar
Yushin Cho committed
580
  int activity_masking = 0;
Yushin Cho's avatar
Yushin Cho committed
581

Luc Trudeau's avatar
Luc Trudeau committed
582
583
584
585
586
587
588
  int i, j;
  DECLARE_ALIGNED(16, od_coeff, e[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, tmp[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_TX_SQUARE]);
  for (i = 0; i < bsize_h; i++) {
    for (j = 0; j < bsize_w; j++) {
      e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j];
589
    }
Luc Trudeau's avatar
Luc Trudeau committed
590
591
592
593
594
595
596
597
598
  }
  int mid = OD_DIST_LP_MID;
  for (i = 0; i < bsize_h; i++) {
    tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
    tmp[i * bsize_w + bsize_w - 1] =
        mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
    for (j = 1; j < bsize_w - 1; j++) {
      tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
                             e[i * bsize_w + j + 1];
599
    }
600
  }
Luc Trudeau's avatar
Luc Trudeau committed
601
602
  return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
                                qindex, tmp, e_lp);
603
604
}

Yushin Cho's avatar
Yushin Cho committed
605
606
static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w,
                                   int bsize_h, int qindex) {
607
  assert(bsize_w >= 8 && bsize_h >= 8);
Yushin Cho's avatar
Yushin Cho committed
608

Yushin Cho's avatar
Yushin Cho committed
609
  int activity_masking = 0;
Yushin Cho's avatar
Yushin Cho committed
610

Luc Trudeau's avatar
Luc Trudeau committed
611
612
613
614
615
616
617
  DECLARE_ALIGNED(16, uint16_t, y[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, tmp[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_TX_SQUARE]);
  int i, j;
  for (i = 0; i < bsize_h; i++) {
    for (j = 0; j < bsize_w; j++) {
      y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j];
618
    }
Luc Trudeau's avatar
Luc Trudeau committed
619
620
621
622
623
624
625
626
627
  }
  int mid = OD_DIST_LP_MID;
  for (i = 0; i < bsize_h; i++) {
    tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
    tmp[i * bsize_w + bsize_w - 1] =
        mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
    for (j = 1; j < bsize_w - 1; j++) {
      tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
                             e[i * bsize_w + j + 1];
Yushin Cho's avatar
Yushin Cho committed
628
629
    }
  }
Luc Trudeau's avatar
Luc Trudeau committed
630
631
  return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
                                qindex, tmp, e_lp);
Yushin Cho's avatar
Yushin Cho committed
632
633
}

634
int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x,
Yushin Cho's avatar
Yushin Cho committed
635
636
637
638
                     const uint8_t *src, int src_stride, const uint8_t *dst,
                     int dst_stride, const BLOCK_SIZE tx_bsize, int bsw,
                     int bsh, int visible_w, int visible_h, int qindex) {
  int64_t d = 0;
Yushin Cho's avatar
Yushin Cho committed
639
  int i, j;
640
  const MACROBLOCKD *xd = &x->e_mbd;
Yushin Cho's avatar
Yushin Cho committed
641
642
643
644

  DECLARE_ALIGNED(16, uint16_t, orig[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, uint16_t, rec[MAX_TX_SQUARE]);

Yushin Cho's avatar
Yushin Cho committed
645
646
647
648
649
  assert(bsw >= 8);
  assert(bsh >= 8);
  assert((bsw & 0x07) == 0);
  assert((bsh & 0x07) == 0);

650
651
652
  if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
      x->tune_metric == AOM_TUNE_DAALA_DIST) {
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
653
      for (j = 0; j < bsh; j++)
654
        for (i = 0; i < bsw; i++)
655
          orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
656

657
      if ((bsw == visible_w) && (bsh == visible_h)) {
658
659
        for (j = 0; j < bsh; j++)
          for (i = 0; i < bsw; i++)
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
            rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];
      } else {
        for (j = 0; j < visible_h; j++)
          for (i = 0; i < visible_w; i++)
            rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];

        if (visible_w < bsw) {
          for (j = 0; j < bsh; j++)
            for (i = visible_w; i < bsw; i++)
              rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
        }

        if (visible_h < bsh) {
          for (j = visible_h; j < bsh; j++)
            for (i = 0; i < bsw; i++)
              rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
        }
677
      }
678
    } else {
679
      for (j = 0; j < bsh; j++)
680
        for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];
681

682
      if ((bsw == visible_w) && (bsh == visible_h)) {
683
        for (j = 0; j < bsh; j++)
684
685
686
687
688
689
690
691
692
693
694
          for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i];
      } else {
        for (j = 0; j < visible_h; j++)
          for (i = 0; i < visible_w; i++)
            rec[j * bsw + i] = dst[j * dst_stride + i];

        if (visible_w < bsw) {
          for (j = 0; j < bsh; j++)
            for (i = visible_w; i < bsw; i++)
              rec[j * bsw + i] = src[j * src_stride + i];
        }
695

696
697
698
699
700
        if (visible_h < bsh) {
          for (j = visible_h; j < bsh; j++)
            for (i = 0; i < bsw; i++)
              rec[j * bsw + i] = src[j * src_stride + i];
        }
701
      }
702
703
    }
  }
Yushin Cho's avatar
Yushin Cho committed
704

705
706
707
  if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
    d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex);
  } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
Yushin Cho's avatar
Yushin Cho committed
708
709
710
711
712
713
714
715
716
717
    int coeff_shift = AOMMAX(xd->bd - 8, 0);

    for (i = 0; i < bsh; i += 8) {
      for (j = 0; j < bsw; j += 8) {
        d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j],
                                 bsw, coeff_shift);
      }
    }
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
      d = ((uint64_t)d) >> 2 * coeff_shift;
718
719
  } else {
    // Otherwise, MSE by default
720
721
    d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride,
                                tx_bsize, bsh, bsw, visible_h, visible_w);
Yushin Cho's avatar
Yushin Cho committed
722
  }
723

Yushin Cho's avatar
Yushin Cho committed
724
725
  return d;
}
726

Cheng Chen's avatar
Cheng Chen committed
727
728
729
730
static int64_t dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src,
                             int src_stride, const int16_t *diff,
                             int diff_stride, int bsw, int bsh, int visible_w,
                             int visible_h, int qindex) {
Yushin Cho's avatar
Yushin Cho committed
731
  int64_t d = 0;
732
  int i, j;
733
  const MACROBLOCKD *xd = &x->e_mbd;
Yushin Cho's avatar
Yushin Cho committed
734
735
736
737

  DECLARE_ALIGNED(16, uint16_t, orig[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, int16_t, diff16[MAX_TX_SQUARE]);

Yushin Cho's avatar
Yushin Cho committed
738
739
740
741
742
  assert(bsw >= 8);
  assert(bsh >= 8);
  assert((bsw & 0x07) == 0);
  assert((bsh & 0x07) == 0);

743
744
745
746
747
748
749
750
751
752
  if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
      x->tune_metric == AOM_TUNE_DAALA_DIST) {
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++)
          orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
    } else {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];
    }
753

754
    if ((bsw == visible_w) && (bsh == visible_h)) {
755
      for (j = 0; j < bsh; j++)
756
757
758
759
760
761
762
763
764
765
766
        for (i = 0; i < bsw; i++)
          diff16[j * bsw + i] = diff[j * diff_stride + i];
    } else {
      for (j = 0; j < visible_h; j++)
        for (i = 0; i < visible_w; i++)
          diff16[j * bsw + i] = diff[j * diff_stride + i];

      if (visible_w < bsw) {
        for (j = 0; j < bsh; j++)
          for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0;
      }
767

768
769
770
771
      if (visible_h < bsh) {
        for (j = visible_h; j < bsh; j++)
          for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0;
      }
772
773
    }
  }
774

775
776
777
  if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
    d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex);
  } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
Yushin Cho's avatar
Yushin Cho committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    int coeff_shift = AOMMAX(xd->bd - 8, 0);
    DECLARE_ALIGNED(16, uint16_t, dst16[MAX_TX_SQUARE]);

    for (i = 0; i < bsh; i++) {
      for (j = 0; j < bsw; j++) {
        dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j];
      }
    }

    for (i = 0; i < bsh; i += 8) {
      for (j = 0; j < bsw; j += 8) {
        d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j],
                                 bsw, coeff_shift);
      }
    }
    // Don't scale 'd' for HBD since it will be done by caller side for diff
    // input
795
796
  } else {
    // Otherwise, MSE by default
797
    d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h);
Yushin Cho's avatar
Yushin Cho committed
798
  }
799
800
801

  return d;
}
Yushin Cho's avatar
Yushin Cho committed
802
#endif  // CONFIG_DIST_8X8
Yushin Cho's avatar
Yushin Cho committed
803

Yaowu Xu's avatar
Yaowu Xu committed
804
static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize,
805
806
                                         const uint8_t *src, int src_stride,
                                         const uint8_t *dst, int dst_stride,
807
                                         double *hordist, double *verdist) {
808
809
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
810
  unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
811

812
  const int f_index = bsize - BLOCK_16X16;
813
  if (f_index < 0) {
814
815
    const int w_shift = bw == 8 ? 1 : 2;
    const int h_shift = bh == 8 ? 1 : 2;
816
    if (cpi->common.use_highbitdepth) {
817
818
819
820
821
      const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
      const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
      for (int i = 0; i < bh; ++i)
        for (int j = 0; j < bw; ++j) {
          const int index = (j >> w_shift) + ((i >> h_shift) << 2);
822
823
824
          esq[index] +=
              (src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
              (src16[j + i * src_stride] - dst16[j + i * dst_stride]);
825
826
        }
    } else {
827
828
829
      for (int i = 0; i < bh; ++i)
        for (int j = 0; j < bw; ++j) {
          const int index = (j >> w_shift) + ((i >> h_shift) << 2);
830
831
832
833
          esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
                        (src[j + i * src_stride] - dst[j + i * dst_stride]);
        }
    }
834
  } else {
835
836
837
838
839
840
841
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[0]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[1]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[2]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[3]);
842
843
844
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

845
846
847
848
849
850
851
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[4]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[5]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[6]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[7]);
852
853
854
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

855
856
857
858
859
860
861
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[8]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[9]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[10]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[11]);
862
863
864
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

865
866
867
868
869
870
871
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[12]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[13]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[14]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[15]);
872
873
  }

874
875
876
  double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
                 esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
                 esq[12] + esq[13] + esq[14] + esq[15];
877
878
  if (total > 0) {
    const double e_recip = 1.0 / total;
879
880
881
882
883
884
    hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
    hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
    hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
    verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
    verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
    verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
885
886
887
888
889
890
891
  } else {
    hordist[0] = verdist[0] = 0.25;
    hordist[1] = verdist[1] = 0.25;
    hordist[2] = verdist[2] = 0.25;
  }
}

Urvang Joshi's avatar
Urvang Joshi committed
892
893
894
static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize,
                            const uint8_t *src, int src_stride,
                            const uint8_t *dst, int dst_stride) {
895
896
  int prune_bitmask = 0;
  double svm_proj_h = 0, svm_proj_v = 0;
Alex Converse's avatar
Alex Converse committed
897
  double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
898
899
  get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride,
                               hdist, vdist);
900

901
  svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] +
902
               vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3];
903
  svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] +
904
905
906
907
908
909
910
911
912
913
914
915
916
917
               hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7];
  if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << FLIPADST_1D;
  else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << ADST_1D;

  if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << (FLIPADST_1D + 8);
  else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << (ADST_1D + 8);

  return prune_bitmask;
}

Alex Converse's avatar
Alex Converse committed
918
919
static void get_horver_correlation(const int16_t *diff, int stride, int w,
                                   int h, double *hcorr, double *vcorr) {
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
  // Returns hor/ver correlation coefficient
  const int num = (h - 1) * (w - 1);
  double num_r;
  int i, j;
  int64_t xy_sum = 0, xz_sum = 0;
  int64_t x_sum = 0, y_sum = 0, z_sum = 0;
  int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0;
  double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n;
  *hcorr = *vcorr = 1;

  assert(num > 0);
  num_r = 1.0 / num;
  for (i = 1; i < h; ++i) {
    for (j = 1; j < w; ++j) {
      const int16_t x = diff[i * stride + j];
      const int16_t y = diff[i * stride + j - 1];
      const int16_t z = diff[(i - 1) * stride + j];
      xy_sum += x * y;
      xz_sum += x * z;
      x_sum += x;
      y_sum += y;
      z_sum += z;
      x2_sum += x * x;
      y2_sum += y * y;
      z2_sum += z * z;
    }
  }
947
948
949
  x_var_n = x2_sum - (x_sum * x_sum) * num_r;
  y_var_n = y2_sum - (y_sum * y_sum) * num_r;
  z_var_n = z2_sum - (z_sum * z_sum) * num_r;
950
951
952
953
954
955
956
957
958
959
960
961
  xy_var_n = xy_sum - (x_sum * y_sum) * num_r;
  xz_var_n = xz_sum - (x_sum * z_sum) * num_r;
  if (x_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrt(x_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  }
  if (x_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrt(x_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  }
}

Cheng Chen's avatar
Cheng Chen committed
962
static int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) {
Alex Converse's avatar
Alex Converse committed
963
  double hcorr, vcorr;
964
  int prune_bitmask = 0;
Alex Converse's avatar
Alex Converse committed
965
  get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr);
966

Alex Converse's avatar
Alex Converse committed
967
  if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
968
    prune_bitmask |= 1 << IDTX_1D;
Alex Converse's avatar
Alex Converse committed
969
  else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
970
971
    prune_bitmask |= 1 << DCT_1D;

Alex Converse's avatar
Alex Converse committed
972
  if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
973
    prune_bitmask |= 1 << (IDTX_1D + 8);
Alex Converse's avatar
Alex Converse committed
974
  else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
975
976
977
978
979
    prune_bitmask |= 1 << (DCT_1D + 8);
  return prune_bitmask;
}

// Performance drop: 0.5%, Speed improvement: 24%
Yaowu Xu's avatar
Yaowu Xu committed
980
static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
Alex Converse's avatar
Alex Converse committed
981
982
                             MACROBLOCK *x, const MACROBLOCKD *xd,
                             int adst_flipadst, int dct_idtx) {
983
  int prune = 0;
984

Alex Converse's avatar
Alex Converse committed
985
986
987
  if (adst_flipadst) {
    const struct macroblock_plane *const p = &x->plane[0];
    const struct macroblockd_plane *const pd = &xd->plane[0];
988
    prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride,
Alex Converse's avatar
Alex Converse committed
989
990
991
992
993
994
995
996
997
                              pd->dst.buf, pd->dst.stride);
  }
  if (dct_idtx) {
    av1_subtract_plane(x, bsize, 0);
    const struct macroblock_plane *const p = &x->plane[0];
    const int bw = 4 << (b_width_log2_lookup[bsize]);
    const int bh = 4 << (b_height_log2_lookup[bsize]);
    prune |= dct_vs_idtx(p->src_diff, bw, bw, bh);
  }
998
999
1000

  return prune;
}
1001

1002
// Performance drop: 0.3%, Speed improvement: 5%
Yaowu Xu's avatar
Yaowu Xu committed
1003
static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
Alex Converse's avatar
Alex Converse committed
1004
1005
1006
                             const MACROBLOCK *x, const MACROBLOCKD *xd) {
  const struct macroblock_plane *const p = &x->plane[0];
  const struct macroblockd_plane *const pd = &xd->plane[0];
1007
  return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf,
Alex Converse's avatar
Alex Converse committed
1008
                          pd->dst.stride);
1009
1010
}

Hui Su's avatar
Hui Su committed
1011
1012
1013
1014
1015
// 1D Transforms used in inter set, this needs to be changed if
// ext_tx_used_inter is changed
static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = {
  { 1, 0, 0, 0 }, { 1, 1, 1, 1 }, { 1, 1, 1, 1 }, { 1, 0, 0, 1 },
};
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

static void get_energy_distribution_finer(const int16_t *diff, int stride,
                                          int bw, int bh, float *hordist,
                                          float *verdist) {
  // First compute downscaled block energy values (esq); downscale factors
  // are defined by w_shift and h_shift.
  unsigned int esq[256];
  const int w_shift = bw <= 8 ? 0 : 1;
  const int h_shift = bh <= 8 ? 0 : 1;
  const int esq_w = bw <= 8 ? bw : bw / 2;
  const int esq_h = bh <= 8 ? bh : bh / 2;
  const int esq_sz = esq_w * esq_h;
  int i, j;
  memset(esq, 0, esq_sz * sizeof(esq[0]));
  for (i = 0; i < bh; i++) {
    unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
    const int16_t *cur_diff_row = diff + i * stride;
    for (j = 0; j < bw; j++) {
      cur_esq_row[j >> w_shift] += cur_diff_row[j] * cur_diff_row[j];
    }
  }

  uint64_t total = 0;
  for (i = 0; i < esq_sz; i++) total += esq[i];

  // Output hordist and verdist arrays are normalized 1D projections of esq
  if (total == 0) {
    float hor_val = 1.0f / esq_w;
    for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
    float ver_val = 1.0f / esq_h;
    for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
    return;
  }

  const float e_recip = 1.0f / (float)total;
  memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
  memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
  const unsigned int *cur_esq_row;
  for (i = 0; i < esq_h - 1; i++) {
    cur_esq_row = esq + i * esq_w;
    for (j = 0; j < esq_w - 1; j++) {
      hordist[j] += (float)cur_esq_row[j];
      verdist[i] += (float)cur_esq_row[j];
    }
    verdist[i] += (float)cur_esq_row[j];
  }
  cur_esq_row = esq + i * esq_w;
  for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];

  for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
  for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
}

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
// Instead of 1D projections of the block energy distribution computed by
// get_energy_distribution_finer() this function computes a full
// two-dimensional energy distribution of the input block.
static void get_2D_energy_distribution(const int16_t *diff, int stride, int bw,
                                       int bh, float *edist) {
  unsigned int esq[256] = { 0 };
  const int esq_w = bw >> 2;
  const int esq_h = bh >> 2;
  const int esq_sz = esq_w * esq_h;
  uint64_t total = 0;
  for (int i = 0; i < bh; i += 4) {
    for (int j = 0; j < bw; j += 4) {
      unsigned int cur_sum_energy = 0;
      for (int k = 0; k < 4; k++) {
        const int16_t *cur_diff = diff + (i + k) * stride + j;
        cur_sum_energy += cur_diff[0] * cur_diff[0] +
                          cur_diff[1] * cur_diff[1] +
                          cur_diff[2] * cur_diff[2] + cur_diff[3] * cur_diff[3];
      }
      esq[(i >> 2) * esq_w + (j >> 2)] = cur_sum_energy;
      total += cur_sum_energy;
    }
  }

  const float e_recip = 1.0f / (float)total;
  for (int i = 0; i < esq_sz - 1; i++) edist[i] = esq[i] * e_recip;
}

1097
1098
1099
1100
// Similar to get_horver_correlation, but also takes into account first
// row/column, when computing horizontal/vertical correlation.
static void get_horver_correlation_full(const int16_t *diff, int stride, int w,
                                        int h, float *hcorr, float *vcorr) {
1101
1102
  const float num_hor = (float)(h * (w - 1));
  const float num_ver = (float)((h - 1) * w);
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
  int i, j;

  // The following notation is used:
  // x - current pixel
  // y - left neighbor pixel
  // z - top neighbor pixel
  int64_t xy_sum = 0, xz_sum = 0;
  int64_t xhor_sum = 0, xver_sum = 0, y_sum = 0, z_sum = 0;
  int64_t x2hor_sum = 0, x2ver_sum = 0, y2_sum = 0, z2_sum = 0;

  int16_t x, y, z;
  for (j = 1; j < w; ++j) {
    x = diff[j];
    y = diff[j - 1];
    xy_sum += x * y;
    xhor_sum += x;
    y_sum += y;
    x2hor_sum += x * x;
    y2_sum += y * y;
  }
  for (i = 1; i < h; ++i) {
    x = diff[i * stride];
    z = diff[(i - 1) * stride];
    xz_sum += x * z;
    xver_sum += x;
    z_sum += z;
    x2ver_sum += x * x;
    z2_sum += z * z;
    for (j = 1; j < w; ++j) {
      x = diff[i * stride + j];
      y = diff[i * stride + j - 1];
      z = diff[(i - 1) * stride + j];
      xy_sum += x * y;
      xz_sum += x * z;
      xhor_sum += x;
      xver_sum += x;
      y_sum += y;
      z_sum += z;
      x2hor_sum += x * x;
      x2ver_sum += x * x;
      y2_sum += y * y;
      z2_sum += z * z;
    }
  }
  const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
  const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
  const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
  const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
  const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
  const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;

  *hcorr = *vcorr = 1;
  if (xhor_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  }
  if (xver_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  }
}

// Performs a forward pass through a neural network with 2 fully-connected
// layers, assuming ReLU as activation function. Number of output neurons
// is always equal to 4.
// fc1, fc2 - weight matrices of the respective layers.
// b1, b2 - bias vectors of the respective layers.
static void compute_1D_scores(float *features, int num_features,
                              const float *fc1, const float *b1,
                              const float *fc2, const float *b2,
                              int num_hidden_units, float *dst_scores) {
  assert(num_hidden_units <= 32);
  float hidden_layer[32];
  for (int i = 0; i < num_hidden_units; i++) {
    const float *cur_coef = fc1 + i * num_features;
    hidden_layer[i] = 0.0f;
    for (int j = 0; j < num_features; j++)
      hidden_layer[i] += cur_coef[j] * features[j];
    hidden_layer[i] = AOMMAX(hidden_layer[i] + b1[i], 0.0f);
  }
  for (int i = 0; i < 4; i++) {
    const float *cur_coef = fc2 + i * num_hidden_units;
    dst_scores[i] = 0.0f;
    for (int j = 0; j < num_hidden_units; j++)
      dst_scores[i] += cur_coef[j] * hidden_layer[j];
    dst_scores[i] += b2[i];
  }
}

// Transforms raw scores into a probability distribution across 16 TX types
static void score_2D_transform_pow8(float *scores_2D, float shift) {
  float sum = 0.0f;
  int i;

  for (i = 0; i < 16; i++) {
    float v, v2, v4;
    v = AOMMAX(scores_2D[i] + shift, 0.0f);
    v2 = v * v;
    v4 = v2 * v2;
    scores_2D[i] = v4 * v4;
    sum += scores_2D[i];
  }
  for (i = 0; i < 16; i++) scores_2D[i] /= sum;
}

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
// Similarly to compute_1D_scores() performs a forward pass through a
// neural network with two fully-connected layers. The only difference
// is that it assumes 1 output neuron, as required by the classifier used
// for TX size pruning.
static float compute_tx_split_prune_score(float *features, int num_features,
                                          const float *fc1, const float *b1,
                                          const float *fc2, float b2,
                                          int num_hidden_units) {
  assert(num_hidden_units <= 64);
  float hidden_layer[64];
  for (int i = 0; i < num_hidden_units; i++) {
    const float *cur_coef = fc1 + i * num_features;
    hidden_layer[i] = 0.0f;
    for (int j = 0; j < num_features; j++)
      hidden_layer[i] += cur_coef[j] * features[j];
    hidden_layer[i] = AOMMAX(hidden_layer[i] + b1[i], 0.0f);
  }
  float dst_score = 0.0f;
  for (int j = 0; j < num_hidden_units; j++)
    dst_score += fc2[j] * hidden_layer[j];
  dst_score += b2;
  return dst_score;
}

static int prune_tx_split(BLOCK_SIZE bsize, const int16_t *diff, float hcorr,
                          float vcorr) {
  if (bsize <= BLOCK_4X4 || bsize > BLOCK_16X16) return 0;

  float features[17];
  const int bw = block_size_wide[bsize], bh = block_size_high[bsize];
  const int feature_num = (bw / 4) * (bh / 4) + 1;
  assert(feature_num <= 17);

  get_2D_energy_distribution(diff, bw, bw, bh, features);
  features[feature_num - 2] = hcorr;
  features[feature_num - 1] = vcorr;

  const int bidx = bsize - BLOCK_4X4 - 1;
  const float *fc1 = av1_prune_tx_split_learned_weights[bidx];
  const float *b1 =
      fc1 + av1_prune_tx_split_num_hidden_units[bidx] * feature_num;
  const float *fc2 = b1 + av1_prune_tx_split_num_hidden_units[bidx];
  float b2 = *(fc2 + av1_prune_tx_split_num_hidden_units[bidx]);
  float score =
      compute_tx_split_prune_score(features, feature_num, fc1, b1, fc2, b2,
                                   av1_prune_tx_split_num_hidden_units[bidx]);

  return (score > av1_prune_tx_split_thresholds[bidx]);
}

static int prune_tx_2D(BLOCK_SIZE bsize, const MACROBLOCK *x, int tx_set_type,
                       int tx_type_pruning_aggressiveness,
                       int use_tx_split_prune) {
1261
  if (bsize >= BLOCK_32X32) return 0;
1262
  aom_clear_system_state();
1263
1264
1265
  const struct macroblock_plane *const p = &x->plane[0];
  const int bidx = AOMMAX(bsize - BLOCK_4X4, 0);
  const float score_thresh =
1266
1267
      av1_prune_2D_adaptive_thresholds[bidx]
                                      [tx_type_pruning_aggressiveness - 1];
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
  float hfeatures[16], vfeatures[16];
  float hscores[4], vscores[4];
  float scores_2D[16];
  int tx_type_table_2D[16] = {
    DCT_DCT,      DCT_ADST,      DCT_FLIPADST,      V_DCT,
    ADST_DCT,     ADST_ADST,     ADST_FLIPADST,     V_ADST,
    FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
    H_DCT,        H_ADST,        H_FLIPADST,        IDTX
  };
  const int bw = block_size_wide[bsize], bh = block_size_high[bsize];
  const int hfeatures_num = bw <= 8 ? bw : bw / 2;
  const int vfeatures_num = bh <= 8 ? bh : bh / 2;
  assert(hfeatures_num <= 16);
  assert(vfeatures_num <= 16);

  get_energy_distribution_finer(p->src_diff, bw, bw, bh, hfeatures, vfeatures);
  get_horver_correlation_full(p->src_diff, bw, bw, bh,
                              &hfeatures[hfeatures_num - 1],
                              &vfeatures[vfeatures_num - 1]);

  const float *fc1_hor = av1_prune_2D_learned_weights_hor[bidx];
  const float *b1_hor =
      fc1_hor + av1_prune_2D_num_hidden_units_hor[bidx] * hfeatures_num;
  const float *fc2_hor = b1_hor + av1_prune_2D_num_hidden_units_hor[bidx];
  const float *b2_hor = fc2_hor + av1_prune_2D_num_hidden_units_hor[bidx] * 4;
  compute_1D_scores(hfeatures, hfeatures_num, fc1_hor, b1_hor, fc2_hor, b2_hor,
                    av1_prune_2D_num_hidden_units_hor[bidx], hscores);

  const float *fc1_ver = av1_prune_2D_learned_weights_ver[bidx];
  const float *b1_ver =
      fc1_ver + av1_prune_2D_num_hidden_units_ver[bidx] * vfeatures_num;
  const float *fc2_ver = b1_ver + av1_prune_2D_num_hidden_units_ver[bidx];
  const float *b2_ver = fc2_ver + av1_prune_2D_num_hidden_units_ver[bidx] * 4;
  compute_1D_scores(vfeatures, vfeatures_num, fc1_ver, b1_ver, fc2_ver, b2_ver,
                    av1_prune_2D_num_hidden_units_ver[bidx], vscores);

  float score_2D_average = 0.0f;
  for (int i = 0; i < 4; i++) {
    float *cur_scores_2D = scores_2D + i * 4;
    cur_scores_2D[0] = vscores[i] * hscores[0];
    cur_scores_2D[1] = vscores[i] * hscores[1];
    cur_scores_2D[2] = vscores[i] * hscores[2];
    cur_scores_2D[3] = vscores[i] * hscores[3];
    score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] +
                        cur_scores_2D[3];
  }
  score_2D_average /= 16;
  score_2D_transform_pow8(scores_2D, (20 - score_2D_average));

  // Always keep the TX type with the highest score, prune all others with
  // score below score_thresh.
  int max_score_i = 0;
  float max_score = 0.0f;
  for (int i = 0; i < 16; i++) {
    if (scores_2D[i] > max_score &&
        av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) {
      max_score = scores_2D[i];
      max_score_i = i;
    }
  }

  int prune_bitmask = 0;
  for (int i = 0; i < 16; i++) {
    if (scores_2D[i] < score_thresh && i != max_score_i)
      prune_bitmask |= (1 << tx_type_table_2D[i]);
  }

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
  // Also apply TX size pruning if it's turned on. The value
  // of prune_tx_split_flag indicates whether we should do
  // full TX size search (flag=0) or use the largest available
  // TX size without performing any further search (flag=1).
  int prune_tx_split_flag = 0;
  if (use_tx_split_prune) {
    prune_tx_split_flag =
        prune_tx_split(bsize, p->src_diff, hfeatures[hfeatures_num - 1],
                       vfeatures[vfeatures_num - 1]);
  }
  prune_bitmask |= (prune_tx_split_flag << TX_TYPES);
1346
1347
  return prune_bitmask;
}
Hui Su's avatar
Hui Su committed
1348

1349
1350
1351
static int prune_tx(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
                    const MACROBLOCKD *const xd, int tx_set_type,
                    int use_tx_split_prune) {
1352
1353
1354
  int tx_set = ext_tx_set_index[1][tx_set_type];
  assert(tx_set >= 0);
  const int *tx_set_1D = ext_tx_used_inter_1D[tx_set];
1355

1356
  switch (cpi->sf.tx_type_search.prune_mode) {
1357
1358
    case NO_PRUNE: return 0; break;
    case PRUNE_ONE:
1359
      if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return 0;
1360
1361
      return prune_one_for_sby(cpi, bsize, x, xd);
      break;
1362
    case PRUNE_TWO:
1363
      if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) {
1364
        if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return 0;
1365
1366
        return prune_two_for_sby(cpi, bsize, x, xd, 0, 1);
      }
1367
      if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D]))
1368
1369
        return prune_two_for_sby(cpi, bsize, x, xd, 1, 0);
      return prune_two_for_sby(cpi, bsize, x, xd, 1, 1);
1370
      break;
1371
1372
    case PRUNE_2D_ACCURATE:
      if (tx_set_type == EXT_TX_SET_ALL16)
1373
        return prune_tx_2D(bsize, x, tx_set_type, 6, use_tx_split_prune);
1374
      else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
1375
        return prune_tx_2D(bsize, x, tx_set_type, 4, use_tx_split_prune);
1376
1377
1378
1379
1380
      else
        return 0;
      break;
    case PRUNE_2D_FAST:
      if (tx_set_type == EXT_TX_SET_ALL16)
1381
        return prune_tx_2D(bsize, x, tx_set_type, 10, use_tx_split_prune);
1382
      else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
1383
        return prune_tx_2D(bsize, x, tx_set_type, 7, use_tx_split_prune);
1384
1385
1386
      else
        return 0;
      break;
1387
1388
1389
1390
1391
  }
  assert(0);
  return 0;
}

1392
1393
static int do_tx_type_search(TX_TYPE tx_type, int prune,
                             TX_TYPE_PRUNE_MODE mode) {
1394
  // TODO(sarahparker) implement for non ext tx
1395
1396
1397
1398
1399
1400
  if (mode >= PRUNE_2D_ACCURATE) {
    return !((prune >> tx_type) & 1);
  } else {
    return !(((prune >> vtx_tab[tx_type]) & 1) |
             ((prune >> (htx_tab[tx_type] + 8)) & 1));
  }
1401
1402
}

Yaowu Xu's avatar
Yaowu Xu committed
1403
static void model_rd_from_sse(const AV1_COMP *const cpi,
1404
1405
                              const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
                              int plane, int64_t sse, int *rate,
Geza Lore's avatar
Geza Lore committed
1406
1407
1408
                              int64_t *dist) {
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int dequant_shift =
1409
      (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
Geza Lore's avatar
Geza Lore committed
1410
1411
1412
1413

  // Fast approximate the modelling function.
  if (cpi->sf.simple_model_rd_from_var) {
    const int64_t square_error = sse;
1414
    int quantizer = (pd->dequant_Q3[1] >> dequant_shift);
Geza Lore's avatar
Geza Lore committed
1415
1416

    if (quantizer < 120)
Yaowu Xu's avatar
Yaowu Xu committed
1417
      *rate = (int)((square_error * (280 - quantizer)) >>
Yaowu Xu's avatar
Yaowu Xu committed
1418
                    (16 - AV1_PROB_COST_SHIFT));
Geza Lore's avatar
Geza Lore committed
1419
1420
1421
1422
    else
      *rate = 0;
    *dist = (square_error * quantizer) >> 8;
  } else {
Yaowu Xu's avatar
Yaowu Xu committed
1423
    av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize],
1424
1425
                                 pd->dequant_Q3[1] >> dequant_shift, rate,
                                 dist);
Geza Lore's avatar
Geza Lore committed
1426
1427
1428
1429
1430
  }

  *dist <<= 4;
}

Yaowu Xu's avatar
Yaowu Xu committed
1431
static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
1432
1433
1434
1435
                            MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
                            int plane_to, int *out_rate_sum,
                            int64_t *out_dist_sum, int *skip_txfm_sb,
                            int64_t *skip_sse_sb) {
Jingning Han's avatar
Jingning Han committed
1436
1437
1438
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
Geza Lore's avatar
Geza Lore committed
1439
1440
1441
  int plane;
  const int ref = xd->mi[0]->mbmi.ref_frame[0];

Jingning Han's avatar
Jingning Han committed
1442
1443
1444
1445
1446
1447
  int64_t rate_sum = 0;
  int64_t dist_sum = 0;
  int64_t total_sse = 0;

  x->pred_sse[ref] = 0;

Geza Lore's avatar
Geza Lore committed
1448
1449
1450
  for (plane = plane_from; plane <= plane_to; ++plane) {
    struct macroblock_plane *const p = &x->plane[plane];
    struct macroblockd_plane *const pd = &xd->plane[plane];
1451
    const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
Geza Lore's avatar
Geza Lore committed
1452
1453
1454
    unsigned int sse;
    int rate;
    int64_t dist;
Jingning Han's avatar
Jingning Han committed
1455

1456
1457
    if (x->skip_chroma_rd && plane) continue;

Geza Lore's avatar
Geza Lore committed
1458
1459
    // TODO(geza): Write direct sse functions that do not compute
    // variance as well.
1460
1461
    cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
                       &sse);
Jingning Han's avatar
Jingning Han committed
1462

1463
    if (plane == 0) x->pred_sse[ref] = sse;
Jingning Han's avatar
Jingning Han committed
1464

Geza Lore's avatar
Geza Lore committed
1465
    total_sse += sse;
Jingning Han's avatar
Jingning Han committed
1466

Geza Lore's avatar
Geza Lore committed
1467
    model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist);
Geza Lore's avatar
Geza Lore committed
1468
1469
1470

    rate_sum += rate;
    dist_sum += dist;
Jingning Han's avatar
Jingning Han committed
1471
1472
  }

Geza Lore's avatar
Geza Lore committed
1473
  *skip_txfm_sb = total_sse == 0;
Jingning Han's avatar
Jingning Han committed
1474
1475
  *skip_sse_sb = total_sse << 4;
  *out_rate_sum = (int)rate_sum;
Geza Lore's avatar
Geza Lore committed
1476
  *out_dist_sum = dist_sum;
Jingning Han's avatar
Jingning Han committed
1477
1478
}

Yaowu Xu's avatar
Yaowu Xu committed
1479
1480
int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
                          intptr_t block_size, int64_t *ssz) {
Jingning Han's avatar
Jingning Han committed
1481
1482
1483
1484
1485
  int i;
  int64_t error = 0, sqcoeff = 0;

  for (i = 0; i < block_size; i++) {
    const int diff = coeff[i] - dqcoeff[i];
1486
    error += diff * diff;
Jingning Han's avatar
Jingning Han committed
1487
1488
1489
1490
1491
1492
1493
    sqcoeff += coeff[i] * coeff[i];
  }

  *ssz = sqcoeff;
  return error;
}

Yaowu Xu's avatar
Yaowu Xu committed
1494
1495
int64_t av1_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
                             int block_size) {
Jingning Han's avatar
Jingning Han committed
1496
1497
1498
1499
1500
  int i;
  int64_t error = 0;

  for (i = 0; i < block_size; i++) {
    const int diff = coeff[i] - dqcoeff[i];
1501
    error += diff * diff;
Jingning Han's avatar
Jingning Han committed
1502
1503
1504
1505
1506
  }

  return error;
}

Yaowu Xu's avatar
Yaowu Xu committed
1507
1508
1509
int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
                                 const tran_low_t *dqcoeff, intptr_t block_size,
                                 int64_t *ssz, int bd) {
Jingning Han's avatar
Jingning Han committed
1510
1511
1512
1513
1514
1515
1516
  int i;
  int64_t error = 0, sqcoeff = 0;
  int shift = 2 * (bd - 8);
  int rounding = shift > 0 ? 1 << (shift - 1) : 0;

  for (i = 0; i < block_size; i++) {
    const int64_t diff = coeff[i] - dqcoeff[i];
1517
    error += diff * diff;
Jingning Han's avatar
Jingning Han committed
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
    sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
  }
  assert(error >= 0 && sqcoeff >= 0);
  error = (error + rounding) >> shift;
  sqcoeff = (sqcoeff + rounding) >> shift;

  *ssz = sqcoeff;
  return error;
}

Alex Converse's avatar
Alex Converse committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
// Get transform block visible dimensions cropped to the MI units.
static void get_txb_dimensions(const MACROBLOCKD *xd, int plane,
                               BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
                               BLOCK_SIZE tx_bsize, int *width, int *height,
                               int *visible_width, int *visible_height) {
  assert(tx_bsize <= plane_bsize);
  int txb_height = block_size_high[tx_bsize];
  int txb_width = block_size_wide[tx_bsize];
  const int block_height = block_size_high[plane_bsize];
  const int block_width = block_size_wide[plane_bsize];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  // TODO(aconverse@google.com): Investigate using crop_width/height here rather
  // than the MI size
  const int block_rows =
      (xd->mb_to_bottom_edge >= 0)
          ? block_height
          : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height;
  const int block_cols =
      (xd->mb_to_right_edge >= 0)
          ? block_width
          : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width;
  const int tx_unit_size = tx_size_wide_log2[0];
  if (width) *width = txb_width;
  if (height) *height = txb_height;
  *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width);
  *visible_height =
      clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height);
}

1557
1558
// Compute the pixel domain distortion from src and dst on all visible 4x4s in
// the
Alex Converse's avatar
Alex Converse committed
1559
// transform block.
1560
1561
1562
1563
1564
1565
static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x,
                           int plane, const uint8_t *src, const int src_stride,
                           const uint8_t *dst, const int dst_stride,
                           int blk_row, int blk_col,
                           const BLOCK_SIZE plane_bsize,
                           const BLOCK_SIZE tx_bsize) {
Alex Converse's avatar
Alex Converse committed
1566
  int txb_rows, txb_cols, visible_rows, visible_cols;
1567
  const MACROBLOCKD *xd = &x->e_mbd;
Yushin Cho's avatar
Yushin Cho committed
1568

Alex Converse's avatar
Alex Converse committed
1569
1570
1571
1572
  get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize,
                     &txb_cols, &txb_rows, &visible_cols, &visible_rows);
  assert(visible_rows > 0);
  assert(visible_cols > 0);
1573

Yushin Cho's avatar
Yushin Cho committed
1574
#if CONFIG_DIST_8X8
1575
  if (x->using_dist_8x8 && plane == 0 && txb_cols >= 8 && txb_rows >= 8)
1576
1577
1578
    return (unsigned)av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride,
                                  tx_bsize, txb_cols, txb_rows, visible_cols,
                                  visible_rows, x->qindex);
Yushin Cho's avatar
Yushin Cho committed
1579
#endif  // CONFIG_DIST_8X8
1580

1581
1582
1583
1584
  unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst,
                                         dst_stride, tx_bsize, txb_rows,
                                         txb_cols, visible_rows, visible_cols);

Alex Converse's avatar
Alex Converse committed
1585
1586
1587
  return sse;
}

1588
1589
1590
1591
1592
1593
1594
// Compute the pixel domain distortion from diff on all visible 4x4s in the
// transform block.
static int64_t pixel_diff_dist(const MACROBLOCK *x, int plane,
                               const int16_t *diff, const int diff_stride,
                               int blk_row, int blk_col,
                               const BLOCK_SIZE plane_bsize,
                               const BLOCK_SIZE tx_bsize) {
Alex Converse's avatar
Alex Converse committed
1595
  int visible_rows, visible_cols;
1596
  const MACROBLOCKD *xd = &x->e_mbd;
Yushin Cho's avatar
Yushin Cho committed
1597
#if CONFIG_DIST_8X8
1598
1599
1600
1601
1602
1603