pickrst.c 22.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>
12
#include <float.h>
13
14
15
16
17
#include <limits.h>
#include <math.h>

#include "./vpx_scale_rtcd.h"

18
#include "vpx_dsp/psnr.h"
19
20
21
22
23
24
25
26
27
28
29
30
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"

#include "vp10/common/onyxc_int.h"
#include "vp10/common/quant_common.h"

#include "vp10/encoder/encoder.h"
#include "vp10/encoder/quantize.h"
#include "vp10/encoder/picklpf.h"
#include "vp10/encoder/pickrst.h"

31
static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *sd,
32
                                     VP10_COMP *const cpi, RestorationInfo *rsi,
33
                                     int partial_frame) {
34
  VP10_COMMON *const cm = &cpi->common;
35
  int64_t filt_err;
36
  vp10_loop_restoration_frame(cm->frame_to_show, cm, rsi, 1, partial_frame);
37
38
#if CONFIG_VP9_HIGHBITDEPTH
  if (cm->use_highbitdepth) {
39
    filt_err = vpx_highbd_get_y_sse(sd, cm->frame_to_show);
40
  } else {
41
    filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
42
43
  }
#else
44
  filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
45
46
47
48
49
50
51
#endif  // CONFIG_VP9_HIGHBITDEPTH

  // Re-instate the unfiltered frame
  vpx_yv12_copy_y(&cpi->last_frame_db, cm->frame_to_show);
  return filt_err;
}

52
static int search_bilateral_level(const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi,
53
54
55
                                  int filter_level, int partial_frame,
                                  double *best_cost_ret) {
  VP10_COMMON *const cm = &cpi->common;
56
57
  int i, restoration_best;
  int64_t err;
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  double best_cost;
  double cost;
  const int restoration_level_bits = vp10_restoration_level_bits(&cpi->common);
  const int restoration_levels = 1 << restoration_level_bits;
  MACROBLOCK *x = &cpi->td.mb;
  int bits;
  RestorationInfo rsi;

  //  Make a copy of the unfiltered / processed recon buffer
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
  vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
                         1, partial_frame);
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);

  restoration_best = -1;
  rsi.restoration_type = RESTORE_NONE;
  err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
  bits = 0;
76
77
  best_cost = RDCOST_DBL(x->rdmult, x->rddiv,
                         (bits << (VP10_PROB_COST_SHIFT - 4)), err);
78
79
80
81
82
83
84
85
  for (i = 0; i < restoration_levels; ++i) {
    rsi.restoration_type = RESTORE_BILATERAL;
    rsi.restoration_level = i;
    err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
    // Normally the rate is rate in bits * 256 and dist is sum sq err * 64
    // when RDCOST is used.  However below we just scale both in the correct
    // ratios appropriately but not exactly by these values.
    bits = restoration_level_bits;
86
    cost = RDCOST_DBL(x->rdmult, x->rddiv, (bits << (VP10_PROB_COST_SHIFT - 4)),
87
                      err);
88
89
90
91
92
93
94
95
96
97
98
    if (cost < best_cost) {
      restoration_best = i;
      best_cost = cost;
    }
  }
  if (best_cost_ret) *best_cost_ret = best_cost;
  vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
  return restoration_best;
}

static int search_filter_bilateral_level(const YV12_BUFFER_CONFIG *sd,
99
                                         VP10_COMP *cpi, int partial_frame,
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
                                         int *restoration_level,
                                         double *best_cost_ret) {
  const VP10_COMMON *const cm = &cpi->common;
  const struct loopfilter *const lf = &cm->lf;
  const int min_filter_level = 0;
  const int max_filter_level = vp10_get_max_filter_level(cpi);
  int filt_direction = 0;
  int filt_best, restoration_best;
  double best_err;
  int i;
  int bilateral_lev;

  // Start the search at the previous frame filter level unless it is now out of
  // range.
  int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
  int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
  double ss_err[MAX_LOOP_FILTER + 1];

  // Set each entry to -1
119
  for (i = 0; i <= MAX_LOOP_FILTER; ++i) ss_err[i] = -1.0;
120

121
122
  bilateral_lev =
      search_bilateral_level(sd, cpi, filt_mid, partial_frame, &best_err);
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  filt_best = filt_mid;
  restoration_best = bilateral_lev;
  ss_err[filt_mid] = best_err;

  while (filter_step > 0) {
    const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level);
    const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level);

    // Bias against raising loop filter in favor of lowering it.
    double bias = (best_err / (1 << (15 - (filt_mid / 8)))) * filter_step;

    if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
      bias = (bias * cpi->twopass.section_intra_rating) / 20;

    // yx, bias less for large block size
138
    if (cm->tx_mode != ONLY_4X4) bias /= 2;
139
140
141
142

    if (filt_direction <= 0 && filt_low != filt_mid) {
      // Get Low filter error score
      if (ss_err[filt_low] < 0) {
143
144
        bilateral_lev = search_bilateral_level(sd, cpi, filt_low, partial_frame,
                                               &ss_err[filt_low]);
145
146
147
      }
      // If value is close to the best so far then bias towards a lower loop
      // filter value.
148
      if (ss_err[filt_low] < (best_err + bias)) {
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        // Was it actually better than the previous best?
        if (ss_err[filt_low] < best_err) {
          best_err = ss_err[filt_low];
        }
        filt_best = filt_low;
        restoration_best = bilateral_lev;
      }
    }

    // Now look at filt_high
    if (filt_direction >= 0 && filt_high != filt_mid) {
      if (ss_err[filt_high] < 0) {
        bilateral_lev = search_bilateral_level(
            sd, cpi, filt_high, partial_frame, &ss_err[filt_high]);
      }
164
165
      // If value is significantly better than previous best, bias added against
      // raising filter value
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
      if (ss_err[filt_high] < (best_err - bias)) {
        best_err = ss_err[filt_high];
        filt_best = filt_high;
        restoration_best = bilateral_lev;
      }
    }

    // Half the step distance if the best filter value was the same as last time
    if (filt_best == filt_mid) {
      filter_step /= 2;
      filt_direction = 0;
    } else {
      filt_direction = (filt_best < filt_mid) ? -1 : 1;
      filt_mid = filt_best;
    }
  }
182
183
184
185

  // Update best error
  best_err = ss_err[filt_best];

186
187
188
189
190
191
192
193
194
195
  *restoration_level = restoration_best;
  if (best_cost_ret) *best_cost_ret = best_err;
  return filt_best;
}

static double find_average(uint8_t *src, int width, int height, int stride) {
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
  for (i = 0; i < height; i++)
196
    for (j = 0; j < width; j++) sum += src[i * stride + j];
197
198
199
200
201
  avg = (double)sum / (height * width);
  return avg;
}

static void compute_stats(uint8_t *dgd, uint8_t *src, int width, int height,
202
203
                          int dgd_stride, int src_stride, double *M,
                          double *H) {
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  int i, j, k, l;
  double Y[RESTORATION_WIN2];
  const double avg = find_average(dgd, width, height, dgd_stride);

  memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
  memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
  for (i = RESTORATION_HALFWIN; i < height - RESTORATION_HALFWIN; i++) {
    for (j = RESTORATION_HALFWIN; j < width - RESTORATION_HALFWIN; j++) {
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
        for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      for (k = 0; k < RESTORATION_WIN2; ++k) {
        M[k] += Y[k] * X;
        H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
        for (l = k + 1; l < RESTORATION_WIN2; ++l) {
          double value = Y[k] * Y[l];
          H[k * RESTORATION_WIN2 + l] += value;
          H[l * RESTORATION_WIN2 + k] += value;
        }
      }
    }
  }
}

#if CONFIG_VP9_HIGHBITDEPTH
234
235
static double find_average_highbd(uint16_t *src, int width, int height,
                                  int stride) {
236
237
238
239
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
  for (i = 0; i < height; i++)
240
    for (j = 0; j < width; j++) sum += src[i * stride + j];
241
242
243
244
  avg = (double)sum / (height * width);
  return avg;
}

245
246
247
static void compute_stats_highbd(uint8_t *dgd8, uint8_t *src8, int width,
                                 int height, int dgd_stride, int src_stride,
                                 double *M, double *H) {
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
  int i, j, k, l;
  double Y[RESTORATION_WIN2];
  uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
  const double avg = find_average_highbd(dgd, width, height, dgd_stride);

  memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
  memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
  for (i = RESTORATION_HALFWIN; i < height - RESTORATION_HALFWIN; i++) {
    for (j = RESTORATION_HALFWIN; j < width - RESTORATION_HALFWIN; j++) {
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
        for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      for (k = 0; k < RESTORATION_WIN2; ++k) {
        M[k] += Y[k] * X;
        H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
        for (l = k + 1; l < RESTORATION_WIN2; ++l) {
          double value = Y[k] * Y[l];
          H[k * RESTORATION_WIN2 + l] += value;
          H[l * RESTORATION_WIN2 + k] += value;
        }
      }
    }
  }
}
#endif  // CONFIG_VP9_HIGHBITDEPTH

// Solves Ax = b, where x and b are column vectors
static int linsolve(int n, double *A, int stride, double *b, double *x) {
  int i, j, k;
  double c;
  // Partial pivoting
  for (i = n - 1; i > 0; i--) {
    if (A[(i - 1) * stride] < A[i * stride]) {
      for (j = 0; j < n; j++) {
        c = A[i * stride + j];
        A[i * stride + j] = A[(i - 1) * stride + j];
        A[(i - 1) * stride + j] = c;
      }
      c = b[i];
      b[i] = b[i - 1];
      b[i - 1] = c;
    }
  }
  // Forward elimination
  for (k = 0; k < n - 1; k++) {
    for (i = k; i < n - 1; i++) {
      c = A[(i + 1) * stride + k] / A[k * stride + k];
301
      for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j];
302
303
304
305
306
      b[i + 1] -= c * b[k];
    }
  }
  // Backward substitution
  for (i = n - 1; i >= 0; i--) {
307
    if (fabs(A[i * stride + i]) < 1e-10) return 0;
308
    c = 0;
309
    for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j];
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    x[i] = (b[i] - c) / A[i * stride + i];
  }
  return 1;
}

static INLINE int wrap_index(int i) {
  return (i >= RESTORATION_HALFWIN1 ? RESTORATION_WIN - 1 - i : i);
}

// Fix vector b, update vector a
static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) {
  int i, j;
  double S[RESTORATION_WIN];
  double A[RESTORATION_WIN], B[RESTORATION_WIN2];
Aamir Anis's avatar
Aamir Anis committed
324
  int w, w2;
325
326
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
327
  for (i = 0; i < RESTORATION_WIN; i++) {
328
329
330
331
332
333
    int j;
    for (j = 0; j < RESTORATION_WIN; ++j) {
      const int jj = wrap_index(j);
      A[jj] += Mc[i][j] * b[i];
    }
  }
334
335
  for (i = 0; i < RESTORATION_WIN; i++) {
    for (j = 0; j < RESTORATION_WIN; j++) {
336
337
338
339
340
341
      int k, l;
      for (k = 0; k < RESTORATION_WIN; ++k)
        for (l = 0; l < RESTORATION_WIN; ++l) {
          const int kk = wrap_index(k);
          const int ll = wrap_index(l);
          B[ll * RESTORATION_HALFWIN1 + kk] +=
342
343
              Hc[j * RESTORATION_WIN + i][k * RESTORATION_WIN2 + l] * b[i] *
              b[j];
344
345
346
        }
    }
  }
Aamir Anis's avatar
Aamir Anis committed
347
348
349
350
  // Normalization enforcement in the system of equations itself
  w = RESTORATION_WIN;
  w2 = (w >> 1) + 1;
  for (i = 0; i < w2 - 1; ++i)
351
352
    A[i] -=
        A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
Aamir Anis's avatar
Aamir Anis committed
353
354
355
356
357
358
359
360
361
  for (i = 0; i < w2 - 1; ++i)
    for (j = 0; j < w2 - 1; ++j)
      B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
                            2 * B[(w2 - 1) * w2 + (w2 - 1)]);
  if (linsolve(w2 - 1, B, w2, A, S)) {
    S[w2 - 1] = 1.0;
    for (i = w2; i < w; ++i) {
      S[i] = S[w - 1 - i];
      S[w2 - 1] -= 2 * S[i];
362
    }
Aamir Anis's avatar
Aamir Anis committed
363
    memcpy(a, S, w * sizeof(*a));
364
365
366
367
368
369
370
371
  }
}

// Fix vector a, update vector b
static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) {
  int i, j;
  double S[RESTORATION_WIN];
  double A[RESTORATION_WIN], B[RESTORATION_WIN2];
Aamir Anis's avatar
Aamir Anis committed
372
  int w, w2;
373
374
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
375
  for (i = 0; i < RESTORATION_WIN; i++) {
376
377
    int j;
    const int ii = wrap_index(i);
378
    for (j = 0; j < RESTORATION_WIN; j++) A[ii] += Mc[i][j] * a[j];
379
380
381
382
383
384
385
386
387
388
  }

  for (i = 0; i < RESTORATION_WIN; i++) {
    for (j = 0; j < RESTORATION_WIN; j++) {
      const int ii = wrap_index(i);
      const int jj = wrap_index(j);
      int k, l;
      for (k = 0; k < RESTORATION_WIN; ++k)
        for (l = 0; l < RESTORATION_WIN; ++l)
          B[jj * RESTORATION_HALFWIN1 + ii] +=
389
390
              Hc[i * RESTORATION_WIN + j][k * RESTORATION_WIN2 + l] * a[k] *
              a[l];
391
392
    }
  }
Aamir Anis's avatar
Aamir Anis committed
393
394
395
396
  // Normalization enforcement in the system of equations itself
  w = RESTORATION_WIN;
  w2 = RESTORATION_HALFWIN1;
  for (i = 0; i < w2 - 1; ++i)
397
398
    A[i] -=
        A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
Aamir Anis's avatar
Aamir Anis committed
399
400
401
402
403
404
405
406
407
  for (i = 0; i < w2 - 1; ++i)
    for (j = 0; j < w2 - 1; ++j)
      B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
                            2 * B[(w2 - 1) * w2 + (w2 - 1)]);
  if (linsolve(w2 - 1, B, w2, A, S)) {
    S[w2 - 1] = 1.0;
    for (i = w2; i < w; ++i) {
      S[i] = S[w - 1 - i];
      S[w2 - 1] -= 2 * S[i];
408
    }
Aamir Anis's avatar
Aamir Anis committed
409
    memcpy(b, S, w * sizeof(*b));
410
411
412
  }
}

413
414
static int wiener_decompose_sep_sym(double *M, double *H, double *a,
                                    double *b) {
415
  static const double init_filt[RESTORATION_WIN] = {
416
    0.035623, -0.127154, 0.211436, 0.760190, 0.211436, -0.127154, 0.035623,
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
  };
  int i, j, iter;
  double *Hc[RESTORATION_WIN2];
  double *Mc[RESTORATION_WIN];
  for (i = 0; i < RESTORATION_WIN; i++) {
    Mc[i] = M + i * RESTORATION_WIN;
    for (j = 0; j < RESTORATION_WIN; j++) {
      Hc[i * RESTORATION_WIN + j] =
          H + i * RESTORATION_WIN * RESTORATION_WIN2 + j * RESTORATION_WIN;
    }
  }
  memcpy(a, init_filt, sizeof(*a) * RESTORATION_WIN);
  memcpy(b, init_filt, sizeof(*b) * RESTORATION_WIN);

  iter = 1;
  while (iter < 10) {
    update_a_sep_sym(Mc, Hc, a, b);
    update_b_sep_sym(Mc, Hc, a, b);
    iter++;
  }
437
  return 1;
438
439
}

Aamir Anis's avatar
Aamir Anis committed
440
441
442
// Computes the function x'*A*x - x'*b for the learned filters, and compares
// against identity filters; Final score is defined as the difference between
// the function values
443
static double compute_score(double *M, double *H, int *vfilt, int *hfilt) {
Aamir Anis's avatar
Aamir Anis committed
444
445
446
447
448
449
450
451
452
453
  double ab[RESTORATION_WIN * RESTORATION_WIN];
  int i, k, l;
  double P = 0, Q = 0;
  double iP = 0, iQ = 0;
  double Score, iScore;
  int w;
  double a[RESTORATION_WIN], b[RESTORATION_WIN];
  w = RESTORATION_WIN;
  a[RESTORATION_HALFWIN] = b[RESTORATION_HALFWIN] = 1.0;
  for (i = 0; i < RESTORATION_HALFWIN; ++i) {
454
455
456
457
    a[i] = a[RESTORATION_WIN - i - 1] =
        (double)vfilt[i] / RESTORATION_FILT_STEP;
    b[i] = b[RESTORATION_WIN - i - 1] =
        (double)hfilt[i] / RESTORATION_FILT_STEP;
Aamir Anis's avatar
Aamir Anis committed
458
459
460
461
462
463
464
465
466
467
    a[RESTORATION_HALFWIN] -= 2 * a[i];
    b[RESTORATION_HALFWIN] -= 2 * b[i];
  }
  for (k = 0; k < w; ++k) {
    for (l = 0; l < w; ++l) {
      ab[k * w + l] = a[l] * b[k];
    }
  }
  for (k = 0; k < w * w; ++k) {
    P += ab[k] * M[k];
468
    for (l = 0; l < w * w; ++l) Q += ab[k] * H[k * w * w + l] * ab[l];
Aamir Anis's avatar
Aamir Anis committed
469
470
471
472
473
474
475
476
477
478
  }
  Score = Q - 2 * P;

  iP = M[(w * w) >> 1];
  iQ = H[((w * w) >> 1) * w * w + ((w * w) >> 1)];
  iScore = iQ - 2 * iP;

  return Score - iScore;
}

479
#define CLIP(x, lo, hi) ((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x))
480
#define RINT(x) ((x) < 0 ? (int)((x)-0.5) : (int)((x) + 0.5))
481
482
483
484
485
486
487
488
489
490
491
492

static void quantize_sym_filter(double *f, int *fi) {
  int i;
  for (i = 0; i < RESTORATION_HALFWIN; ++i) {
    fi[i] = RINT(f[i] * RESTORATION_FILT_STEP);
  }
  // Specialize for 7-tap filter
  fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
  fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
  fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
}

493
494
static int search_wiener_filter(const YV12_BUFFER_CONFIG *src, VP10_COMP *cpi,
                                int filter_level, int partial_frame,
495
496
497
498
                                int *vfilter, int *hfilter,
                                double *best_cost_ret) {
  VP10_COMMON *const cm = &cpi->common;
  RestorationInfo rsi;
499
500
  int64_t err;
  int bits;
501
502
503
504
505
506
507
508
509
510
  double cost_wiener, cost_norestore;
  MACROBLOCK *x = &cpi->td.mb;
  double M[RESTORATION_WIN2];
  double H[RESTORATION_WIN2 * RESTORATION_WIN2];
  double vfilterd[RESTORATION_WIN], hfilterd[RESTORATION_WIN];
  const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
  const int width = cm->width;
  const int height = cm->height;
  const int src_stride = src->y_stride;
  const int dgd_stride = dgd->y_stride;
Aamir Anis's avatar
Aamir Anis committed
511
  double score;
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

  assert(width == dgd->y_crop_width);
  assert(height == dgd->y_crop_height);
  assert(width == src->y_crop_width);
  assert(height == src->y_crop_height);

  //  Make a copy of the unfiltered / processed recon buffer
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
  vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
                         1, partial_frame);
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);

  rsi.restoration_type = RESTORE_NONE;
  err = try_restoration_frame(src, cpi, &rsi, partial_frame);
  bits = 0;
527
528
  cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv,
                              (bits << (VP10_PROB_COST_SHIFT - 4)), err);
529
530
531
532
533
534
535

#if CONFIG_VP9_HIGHBITDEPTH
  if (cm->use_highbitdepth)
    compute_stats_highbd(dgd->y_buffer, src->y_buffer, width, height,
                         dgd_stride, src_stride, M, H);
  else
#endif  // CONFIG_VP9_HIGHBITDEPTH
536
537
    compute_stats(dgd->y_buffer, src->y_buffer, width, height, dgd_stride,
                  src_stride, M, H);
538

539
540
541
542
  if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) {
    *best_cost_ret = DBL_MAX;
    return 0;
  }
543
544
545
  quantize_sym_filter(vfilterd, vfilter);
  quantize_sym_filter(hfilterd, hfilter);

Aamir Anis's avatar
Aamir Anis committed
546
547
548
549
550
551
  // Filter score computes the value of the function x'*A*x - x'*b for the
  // learned filter and compares it against identity filer. If there is no
  // reduction in the function, the filter is reverted back to identity
  score = compute_score(M, H, vfilter, hfilter);
  if (score > 0.0) {
    int i;
552
    for (i = 0; i < RESTORATION_HALFWIN; ++i) vfilter[i] = hfilter[i] = 0;
Aamir Anis's avatar
Aamir Anis committed
553
554
555
556
557
558
    rsi.restoration_type = RESTORE_NONE;
    if (best_cost_ret) *best_cost_ret = cost_norestore;
    vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
    return 0;
  }

559
560
561
562
  rsi.restoration_type = RESTORE_WIENER;
  memcpy(rsi.vfilter, vfilter, sizeof(rsi.vfilter));
  memcpy(rsi.hfilter, hfilter, sizeof(rsi.hfilter));
  err = try_restoration_frame(src, cpi, &rsi, partial_frame);
563
  bits = WIENER_FILT_BITS;
564
565
  cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv,
                           (bits << (VP10_PROB_COST_SHIFT - 4)), err);
566
567
568
569
570
571
572
573
574
575
576
577

  vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);

  if (cost_wiener < cost_norestore) {
    if (best_cost_ret) *best_cost_ret = cost_wiener;
    return 1;
  } else {
    if (best_cost_ret) *best_cost_ret = cost_norestore;
    return 0;
  }
}

578
579
void vp10_pick_filter_restoration(const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi,
                                  LPF_PICK_METHOD method) {
580
581
  VP10_COMMON *const cm = &cpi->common;
  struct loopfilter *const lf = &cm->lf;
582
583
584
585
  int wiener_success = 0;
  double cost_bilateral = DBL_MAX;
  double cost_wiener = DBL_MAX;
  double cost_norestore = DBL_MAX;
586

587
  lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;
588
589

  if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
590
591
    lf->filter_level = 0;
    cm->rst_info.restoration_type = RESTORE_NONE;
592
593
594
595
  } else if (method >= LPF_PICK_FROM_Q) {
    const int min_filter_level = 0;
    const int max_filter_level = vp10_get_max_filter_level(cpi);
    const int q = vp10_ac_quant(cm->base_qindex, 0, cm->bit_depth);
596
597
// These values were determined by linear fitting the result of the
// searched level, filt_guess = q * 0.316206 + 3.87252
598
599
600
601
602
603
604
605
606
607
608
609
610
#if CONFIG_VP9_HIGHBITDEPTH
    int filt_guess;
    switch (cm->bit_depth) {
      case VPX_BITS_8:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
        break;
      case VPX_BITS_10:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
        break;
      case VPX_BITS_12:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
        break;
      default:
611
612
613
        assert(0 &&
               "bit_depth should be VPX_BITS_8, VPX_BITS_10 "
               "or VPX_BITS_12");
614
615
616
617
618
        return;
    }
#else
    int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
#endif  // CONFIG_VP9_HIGHBITDEPTH
619
    if (cm->frame_type == KEY_FRAME) filt_guess -= 4;
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
    cm->rst_info.restoration_level = search_bilateral_level(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
        &cost_bilateral);
    wiener_success = search_wiener_filter(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
        cm->rst_info.vfilter, cm->rst_info.hfilter, &cost_wiener);
    if (cost_bilateral < cost_wiener) {
      if (cm->rst_info.restoration_level != -1)
        cm->rst_info.restoration_type = RESTORE_BILATERAL;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    } else {
      if (wiener_success)
        cm->rst_info.restoration_type = RESTORE_WIENER;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    }
  } else {
    int blf_filter_level = -1;
    blf_filter_level = search_filter_bilateral_level(
        sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
        &cm->rst_info.restoration_level, &cost_bilateral);
    lf->filter_level = vp10_search_filter_level(
        sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, &cost_norestore);
    wiener_success = search_wiener_filter(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
        cm->rst_info.vfilter, cm->rst_info.hfilter, &cost_wiener);
    if (cost_bilateral < cost_wiener) {
      lf->filter_level = blf_filter_level;
      if (cm->rst_info.restoration_level != -1)
        cm->rst_info.restoration_type = RESTORE_BILATERAL;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    } else {
      if (wiener_success)
        cm->rst_info.restoration_type = RESTORE_WIENER;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    }
660
    // printf("[%d] Costs %g %g (%d) %g (%d)\n", cm->rst_info.restoration_type,
Aamir Anis's avatar
Aamir Anis committed
661
662
    //         cost_norestore, cost_bilateral, lf->filter_level, cost_wiener,
    //         wiener_success);
663
664
  }
}