vp9_entropy.c 43.7 KB
Newer Older
1
/*
2
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
John Koleszar's avatar
John Koleszar committed
3
 *
4
 *  Use of this source code is governed by a BSD-style license
5
6
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
7
 *  in the file PATENTS.  All contributing project authors may
8
 *  be found in the AUTHORS file in the root of the source tree.
John Koleszar's avatar
John Koleszar committed
9
10
 */

11
12
13
14
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_entropymode.h"
15
#include "vpx_mem/vpx_mem.h"
16
#include "vpx/vpx_integer.h"
17
#include "vp9/common/vp9_coefupdateprobs.h"
John Koleszar's avatar
John Koleszar committed
18

19
DECLARE_ALIGNED(16, const uint8_t, vp9_norm[256]) = {
John Koleszar's avatar
John Koleszar committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
36
37
};

38
// Unified coefficient band structure used by all block sizes
39
40
41
42
43
44
45
DECLARE_ALIGNED(16, const int, vp9_coef_bands8x8[64]) = {
  0, 1, 2, 3, 4, 4, 5, 5,
  1, 2, 3, 4, 4, 5, 5, 5,
  2, 3, 4, 4, 5, 5, 5, 5,
  3, 4, 4, 5, 5, 5, 5, 5,
  4, 4, 5, 5, 5, 5, 5, 5,
  4, 5, 5, 5, 5, 5, 5, 5,
46
47
48
  5, 5, 5, 5, 5, 5, 5, 5,
  5, 5, 5, 5, 5, 5, 5, 5
};
Paul Wilkins's avatar
Paul Wilkins committed
49
50
51
52
53
54
55

DECLARE_ALIGNED(16, const uint8_t,
                vp9_coefband_trans_8x8plus[MAXBAND_INDEX + 1]) = {
  0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
  4, 4, 4, 4, 4, 5
};

56
DECLARE_ALIGNED(16, const int, vp9_coef_bands4x4[16]) = {
57
58
59
60
  0, 1, 2, 3,
  1, 2, 3, 4,
  2, 3, 4, 5,
  3, 4, 5, 5
Deb Mukherjee's avatar
Deb Mukherjee committed
61
};
62

Paul Wilkins's avatar
Paul Wilkins committed
63
64
65
66
67
68
DECLARE_ALIGNED(16, const uint8_t,
                vp9_coefband_trans_4x4[MAXBAND_INDEX + 1]) = {
  0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
  4, 4, 4, 4, 4, 5
};

69
70
DECLARE_ALIGNED(16, const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]) = {
  0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
Deb Mukherjee's avatar
Deb Mukherjee committed
71
};
72

Ronald S. Bultje's avatar
Ronald S. Bultje committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#if CONFIG_SCATTERSCAN
DECLARE_ALIGNED(16, const int, vp9_default_zig_zag1d_4x4[16]) = {
  0,  4,  1,  5,
  8,  2, 12,  9,
  3,  6, 13, 10,
  7, 14, 11, 15,
};

DECLARE_ALIGNED(16, const int, vp9_col_scan_4x4[16]) = {
  0,  4,  8,  1,
  12,  5,  9,  2,
  13,  6, 10,  3,
  7, 14, 11, 15,
};

DECLARE_ALIGNED(16, const int, vp9_row_scan_4x4[16]) = {
  0,  1,  4,  2,
  5,  3,  6,  8,
  9,  7, 12, 10,
  13, 11, 14, 15,
};

DECLARE_ALIGNED(64, const int, vp9_default_zig_zag1d_8x8[64]) = {
  0,  8,  1, 16,  9,  2, 17, 24,
  10,  3, 18, 25, 32, 11,  4, 26,
  33, 19, 40, 12, 34, 27,  5, 41,
  20, 48, 13, 35, 42, 28, 21,  6,
  49, 56, 36, 43, 29,  7, 14, 50,
  57, 44, 22, 37, 15, 51, 58, 30,
  45, 23, 52, 59, 38, 31, 60, 53,
  46, 39, 61, 54, 47, 62, 55, 63,
};

DECLARE_ALIGNED(16, const int, vp9_col_scan_8x8[64]) = {
  0,  8, 16,  1, 24,  9, 32, 17,
  2, 40, 25, 10, 33, 18, 48,  3,
  26, 41, 11, 56, 19, 34,  4, 49,
  27, 42, 12, 35, 20, 57, 50, 28,
  5, 43, 13, 36, 58, 51, 21, 44,
  6, 29, 59, 37, 14, 52, 22,  7,
  45, 60, 30, 15, 38, 53, 23, 46,
  31, 61, 39, 54, 47, 62, 55, 63,
};

DECLARE_ALIGNED(16, const int, vp9_row_scan_8x8[64]) = {
  0,  1,  2,  8,  9,  3, 16, 10,
  4, 17, 11, 24,  5, 18, 25, 12,
  19, 26, 32,  6, 13, 20, 33, 27,
  7, 34, 40, 21, 28, 41, 14, 35,
  48, 42, 29, 36, 49, 22, 43, 15,
  56, 37, 50, 44, 30, 57, 23, 51,
  58, 45, 38, 52, 31, 59, 53, 46,
  60, 39, 61, 47, 54, 55, 62, 63,
};

DECLARE_ALIGNED(16, const int, vp9_default_zig_zag1d_16x16[256]) = {
  0,  16,   1,  32,  17,   2,  48,  33,  18,   3,  64,  34,  49,  19,  65,  80,
  50,   4,  35,  66,  20,  81,  96,  51,   5,  36,  82,  97,  67, 112,  21,  52,
  98,  37,  83, 113,   6,  68, 128,  53,  22,  99, 114,  84,   7, 129,  38,  69,
  100, 115, 144, 130,  85,  54,  23,   8, 145,  39,  70, 116, 101, 131, 160, 146,
  55,  86,  24,  71, 132, 117, 161,  40,   9, 102, 147, 176, 162,  87,  56,  25,
  133, 118, 177, 148,  72, 103,  41, 163,  10, 192, 178,  88,  57, 134, 149, 119,
  26, 164,  73, 104, 193,  42, 179, 208,  11, 135,  89, 165, 120, 150,  58, 194,
  180,  27,  74, 209, 105, 151, 136,  43,  90, 224, 166, 195, 181, 121, 210,  59,
  12, 152, 106, 167, 196,  75, 137, 225, 211, 240, 182, 122,  91,  28, 197,  13,
  226, 168, 183, 153,  44, 212, 138, 107, 241,  60,  29, 123, 198, 184, 227, 169,
  242,  76, 213, 154,  45,  92,  14, 199, 139,  61, 228, 214, 170, 185, 243, 108,
  77, 155,  30,  15, 200, 229, 124, 215, 244,  93,  46, 186, 171, 201, 109, 140,
  230,  62, 216, 245,  31, 125,  78, 156, 231,  47, 187, 202, 217,  94, 246, 141,
  63, 232, 172, 110, 247, 157,  79, 218, 203, 126, 233, 188, 248,  95, 173, 142,
  219, 111, 249, 234, 158, 127, 189, 204, 250, 235, 143, 174, 220, 205, 159, 251,
  190, 221, 175, 236, 237, 191, 206, 252, 222, 253, 207, 238, 223, 254, 239, 255,
};

DECLARE_ALIGNED(16, const int, vp9_col_scan_16x16[256]) = {
  0,  16,  32,  48,   1,  64,  17,  80,  33,  96,  49,   2,  65, 112,  18,  81,
  34, 128,  50,  97,   3,  66, 144,  19, 113,  35,  82, 160,  98,  51, 129,   4,
  67, 176,  20, 114, 145,  83,  36,  99, 130,  52, 192,   5, 161,  68, 115,  21,
  146,  84, 208, 177,  37, 131, 100,  53, 162, 224,  69,   6, 116, 193, 147,  85,
  22, 240, 132,  38, 178, 101, 163,  54, 209, 117,  70,   7, 148, 194,  86, 179,
  225,  23, 133,  39, 164,   8, 102, 210, 241,  55, 195, 118, 149,  71, 180,  24,
  87, 226, 134, 165, 211,  40, 103,  56,  72, 150, 196, 242, 119,   9, 181, 227,
  88, 166,  25, 135,  41, 104, 212,  57, 151, 197, 120,  73, 243, 182, 136, 167,
  213,  89,  10, 228, 105, 152, 198,  26,  42, 121, 183, 244, 168,  58, 137, 229,
  74, 214,  90, 153, 199, 184,  11, 106, 245,  27, 122, 230, 169,  43, 215,  59,
  200, 138, 185, 246,  75,  12,  91, 154, 216, 231, 107,  28,  44, 201, 123, 170,
  60, 247, 232,  76, 139,  13,  92, 217, 186, 248, 155, 108,  29, 124,  45, 202,
  233, 171,  61,  14,  77, 140,  15, 249,  93,  30, 187, 156, 218,  46, 109, 125,
  62, 172,  78, 203,  31, 141, 234,  94,  47, 188,  63, 157, 110, 250, 219,  79,
  126, 204, 173, 142,  95, 189, 111, 235, 158, 220, 251, 127, 174, 143, 205, 236,
  159, 190, 221, 252, 175, 206, 237, 191, 253, 222, 238, 207, 254, 223, 239, 255,
};

DECLARE_ALIGNED(16, const int, vp9_row_scan_16x16[256]) = {
  0,   1,   2,  16,   3,  17,   4,  18,  32,   5,  33,  19,   6,  34,  48,  20,
  49,   7,  35,  21,  50,  64,   8,  36,  65,  22,  51,  37,  80,   9,  66,  52,
  23,  38,  81,  67,  10,  53,  24,  82,  68,  96,  39,  11,  54,  83,  97,  69,
  25,  98,  84,  40, 112,  55,  12,  70,  99, 113,  85,  26,  41,  56, 114, 100,
  13,  71, 128,  86,  27, 115, 101, 129,  42,  57,  72, 116,  14,  87, 130, 102,
  144,  73, 131, 117,  28,  58,  15,  88,  43, 145, 103, 132, 146, 118,  74, 160,
  89, 133, 104,  29,  59, 147, 119,  44, 161, 148,  90, 105, 134, 162, 120, 176,
  75, 135, 149,  30,  60, 163, 177,  45, 121,  91, 106, 164, 178, 150, 192, 136,
  165, 179,  31, 151, 193,  76, 122,  61, 137, 194, 107, 152, 180, 208,  46, 166,
  167, 195,  92, 181, 138, 209, 123, 153, 224, 196,  77, 168, 210, 182, 240, 108,
  197,  62, 154, 225, 183, 169, 211,  47, 139,  93, 184, 226, 212, 241, 198, 170,
  124, 155, 199,  78, 213, 185, 109, 227, 200,  63, 228, 242, 140, 214, 171, 186,
  156, 229, 243, 125,  94, 201, 244, 215, 216, 230, 141, 187, 202,  79, 172, 110,
  157, 245, 217, 231,  95, 246, 232, 126, 203, 247, 233, 173, 218, 142, 111, 158,
  188, 248, 127, 234, 219, 249, 189, 204, 143, 174, 159, 250, 235, 205, 220, 175,
  190, 251, 221, 191, 206, 236, 207, 237, 252, 222, 253, 223, 238, 239, 254, 255,
};

DECLARE_ALIGNED(16, const int, vp9_default_zig_zag1d_32x32[1024]) = {
  0,   32,    1,   64,   33,    2,   96,   65,   34,  128,    3,   97,   66,  160,  129,   35,   98,    4,   67,  130,  161,  192,   36,   99,  224,    5,  162,  193,   68,  131,   37,  100,
  225,  194,  256,  163,   69,  132,    6,  226,  257,  288,  195,  101,  164,   38,  258,    7,  227,  289,  133,  320,   70,  196,  165,  290,  259,  228,   39,  321,  102,  352,    8,  197,
  71,  134,  322,  291,  260,  353,  384,  229,  166,  103,   40,  354,  323,  292,  135,  385,  198,  261,   72,    9,  416,  167,  386,  355,  230,  324,  104,  293,   41,  417,  199,  136,
  262,  387,  448,  325,  356,   10,   73,  418,  231,  168,  449,  294,  388,  105,  419,  263,   42,  200,  357,  450,  137,  480,   74,  326,  232,   11,  389,  169,  295,  420,  106,  451,
  481,  358,  264,  327,  201,   43,  138,  512,  482,  390,  296,  233,  170,  421,   75,  452,  359,   12,  513,  265,  483,  328,  107,  202,  514,  544,  422,  391,  453,  139,   44,  234,
  484,  297,  360,  171,   76,  515,  545,  266,  329,  454,   13,  423,  392,  203,  108,  546,  485,  576,  298,  235,  140,  361,  516,  330,  172,  547,   45,  424,  455,  267,  393,  577,
  486,   77,  204,  517,  362,  548,  608,   14,  456,  299,  578,  109,  236,  425,  394,  487,  609,  331,  141,  579,  518,   46,  268,   15,  173,  549,  610,  640,  363,   78,  519,  488,
  300,  205,   16,  457,  580,  426,  550,  395,  110,  237,  611,  641,  332,  672,  142,  642,  269,  458,   47,  581,  427,  489,  174,  364,  520,  612,  551,  673,   79,  206,  301,  643,
  704,   17,  111,  490,  674,  238,  582,   48,  521,  613,  333,  396,  459,  143,  270,  552,  644,  705,  736,  365,   80,  675,  583,  175,  428,  706,  112,  302,  207,  614,  553,   49,
  645,  522,  737,  397,  768,  144,  334,   18,  676,  491,  239,  615,  707,  584,   81,  460,  176,  271,  738,  429,  113,  800,  366,  208,  523,  708,  646,  554,  677,  769,   19,  145,
  585,  739,  240,  303,   50,  461,  616,  398,  647,  335,  492,  177,   82,  770,  832,  555,  272,  430,  678,  209,  709,  114,  740,  801,  617,   51,  304,  679,  524,  367,  586,  241,
  20,  146,  771,  864,   83,  802,  648,  493,  399,  273,  336,  710,  178,  462,  833,  587,  741,  115,  305,  711,  368,  525,  618,  803,  210,  896,  680,  834,  772,   52,  649,  147,
  431,  494,  556,  242,  400,  865,  337,   21,  928,  179,  742,   84,  463,  274,  369,  804,  650,  557,  743,  960,  835,  619,  773,  306,  211,  526,  432,  992,  588,  712,  116,  243,
  866,  495,  681,  558,  805,  589,  401,  897,   53,  338,  148,  682,  867,  464,  275,   22,  370,  433,  307,  620,  527,  836,  774,  651,  713,  744,   85,  180,  621,  465,  929,  775,
  496,  898,  212,  339,  244,  402,  590,  117,  559,  714,  434,   23,  868,  930,  806,  683,  528,  652,  371,  961,  149,  837,   54,  899,  745,  276,  993,  497,  403,  622,  181,  776,
  746,  529,  560,  435,   86,  684,  466,  308,  591,  653,  715,  807,  340,  869,  213,  962,  245,  838,  561,  931,  808,  592,  118,  498,  372,  623,  685,  994,  467,  654,  747,  900,
  716,  277,  150,   55,   24,  404,  530,  839,  777,  655,  182,  963,  840,  686,  778,  309,  870,  341,   87,  499,  809,  624,  593,  436,  717,  932,  214,  246,  995,  718,  625,  373,
  562,   25,  119,  901,  531,  468,  964,  748,  810,  278,  779,  500,  563,  656,  405,  687,  871,  872,  594,  151,  933,  749,  841,  310,  657,  626,  595,  437,  688,  183,  996,  965,
  902,  811,  342,  750,  689,  719,  532,   56,  215,  469,  934,  374,  247,  720,  780,  564,  781,  842,  406,   26,  751,  903,  873,   57,  279,  627,  501,  658,  843,  997,  812,  904,
  88,  813,  438,  752,  935,  936,  311,  596,  533,  690,  343,  966,  874,   89,  120,  470,  721,  875,  659,  782,  565,  998,  375,  844,  845,   27,  628,  967,  121,  905,  968,  152,
  937,  814,  753,  502,  691,  783,  184,  153,  722,  407,   58,  815,  999,  660,  597,  723,  534,  906,  216,  439,  907,  248,  185,  876,  846,  692,  784,  629,   90,  969,  280,  754,
  938,  939,  217,  847,  566,  471,  785,  816,  877, 1000,  249,  878,  661,  503,  312,  970,  755,  122,  817,  281,  344,  786,  598,  724,   28,   59,   29,  154,  535,  630,  376, 1001,
  313,  908,  186,   91,  848,  849,  345,  909,  940,  879,  408,  818,  693, 1002,  971,  941,  567,  377,  218,  756,  910,  787,  440,  123,  880,  725,  662,  250,  819, 1003,  282,  972,
  850,  599,  472,  409,  155,  441,  942,  757,  788,  694,  911,  881,  314,  631,  973,  504,  187, 1004,  346,  473,  851,  943,  820,  726,   60,  505,  219,  378,  912,  974,   30,   31,
  536,  882, 1005,   92,  251,  663,  944,  913,  283,  695,  883,  568, 1006,  975,  410,  442,  945,  789,  852,  537, 1007,  124,  315,   61,  758,  821,  600,  914,  976,  569,  474,  347,
  156, 1008,  915,   93,  977,  506,  946,  727,  379,  884,  188,  632,  601, 1009,  790,  853,  978,  947,  220,  411,  125,  633,  664,  759,  252,  443,  916,  538,  157,  822,   62,  570,
  979,  284, 1010,  885,  948,  189,  475,   94,  316,  665,  696, 1011,  854,  791,  980,  221,  348,   63,  917,  602,  380,  507,  253,  126,  697,  823,  634,  285,  728,  949,  886,   95,
  158,  539, 1012,  317,  412,  444,  760,  571,  190,  981,  729,  918,  127,  666,  349,  381,  476,  855,  761, 1013,  603,  222,  159,  698,  950,  508,  254,  792,  286,  635,  887,  793,
  413,  191,  982,  445,  540,  318,  730,  667,  223,  824,  919, 1014,  350,  477,  572,  255,  825,  951,  762,  509,  604,  856,  382,  699,  287,  319,  636,  983,  794,  414,  541,  731,
  857,  888,  351,  446,  573, 1015,  668,  889,  478,  826,  383,  763,  605,  920,  510,  637,  415,  700,  921,  858,  447,  952,  542,  795,  479,  953,  732,  890,  669,  574,  511,  984,
  827,  985,  922, 1016,  764,  606,  543,  701,  859,  638, 1017,  575,  796,  954,  733,  891,  670,  607,  828,  986,  765,  923,  639, 1018,  702,  860,  955,  671,  892,  734,  797,  703,
  987,  829, 1019,  766,  924,  735,  861,  956,  988,  893,  767,  798,  830, 1020,  925,  957,  799,  862,  831,  989,  894, 1021,  863,  926,  895,  958,  990, 1022,  927,  959,  991, 1023,
};
#else  // CONFIG_SCATTERSCAN
220
DECLARE_ALIGNED(16, const int, vp9_default_zig_zag1d_4x4[16]) = {
John Koleszar's avatar
John Koleszar committed
221
222
223
224
  0,  1,  4,  8,
  5,  2,  3,  6,
  9, 12, 13, 10,
  7, 11, 14, 15,
John Koleszar's avatar
John Koleszar committed
225
};
Jingning Han's avatar
Jingning Han committed
226

227
DECLARE_ALIGNED(16, const int, vp9_col_scan_4x4[16]) = {
Jingning Han's avatar
Jingning Han committed
228
229
230
231
232
  0, 4,  8, 12,
  1, 5,  9, 13,
  2, 6, 10, 14,
  3, 7, 11, 15
};
233

234
DECLARE_ALIGNED(16, const int, vp9_row_scan_4x4[16]) = {
Jingning Han's avatar
Jingning Han committed
235
236
237
238
239
240
  0,   1,  2,  3,
  4,   5,  6,  7,
  8,   9, 10, 11,
  12, 13, 14, 15
};

241
DECLARE_ALIGNED(64, const int, vp9_default_zig_zag1d_8x8[64]) = {
John Koleszar's avatar
John Koleszar committed
242
243
244
245
  0,  1,  8, 16,  9,  2,  3, 10, 17, 24, 32, 25, 18, 11,  4,  5,
  12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13,  6,  7, 14, 21, 28,
  35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
  58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63,
246
};
John Koleszar's avatar
John Koleszar committed
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
DECLARE_ALIGNED(16, const int, vp9_col_scan_8x8[64]) = {
   0,  8, 16, 24, 32, 40, 48, 56,
   1,  9, 17, 25, 33, 41, 49, 57,
   2, 10, 18, 26, 34, 42, 50, 58,
   3, 11, 19, 27, 35, 43, 51, 59,
   4, 12, 20, 28, 36, 44, 52, 60,
   5, 13, 21, 29, 37, 45, 53, 61,
   6, 14, 22, 30, 38, 46, 54, 62,
   7, 15, 23, 31, 39, 47, 55, 63,
};

DECLARE_ALIGNED(16, const int, vp9_row_scan_8x8[64]) = {
   0,  1,  2,  3,  4,  5,  6,  7,
   8,  9, 10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23,
  24, 25, 26, 27, 28, 29, 30, 31,
  32, 33, 34, 35, 36, 37, 38, 39,
  40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55,
  56, 57, 58, 59, 60, 61, 62, 63,
};

270
DECLARE_ALIGNED(16, const int, vp9_default_zig_zag1d_16x16[256]) = {
271
272
273
274
275
276
277
278
279
280
281
  0,   1,  16,  32,  17,   2,   3,  18,
  33,  48,  64,  49,  34,  19,   4,   5,
  20,  35,  50,  65,  80,  96,  81,  66,
  51,  36,  21,   6,   7,  22,  37,  52,
  67,  82,  97, 112, 128, 113,  98,  83,
  68,  53,  38,  23,   8,   9,  24,  39,
  54,  69,  84,  99, 114, 129, 144, 160,
  145, 130, 115, 100,  85,  70,  55,  40,
  25,  10,  11,  26,  41,  56,  71,  86,
  101, 116, 131, 146, 161, 176, 192, 177,
  162, 147, 132, 117, 102,  87,  72,  57,
282
  42,  27,  12,  13,  28,  43,  58, 73,
283
284
285
  88, 103, 118, 133, 148, 163, 178, 193,
  208, 224, 209, 194, 179, 164, 149, 134,
  119, 104,  89,  74,  59,  44,  29,  14,
286
  15,  30, 45,  60,  75,  90, 105, 120,
287
288
289
  135, 150, 165, 180, 195, 210, 225, 240,
  241, 226, 211, 196, 181, 166, 151, 136,
  121, 106,  91,  76,  61,  46,  31,  47,
290
  62,  77, 92, 107, 122, 137, 152, 167,
291
  182, 197, 212, 227, 242, 243, 228, 213,
292
  198, 183, 168, 153, 138, 123, 108, 93,
293
294
295
296
297
298
299
300
301
302
  78,  63,  79,  94, 109, 124, 139, 154,
  169, 184, 199, 214, 229, 244, 245, 230,
  215, 200, 185, 170, 155, 140, 125, 110,
  95, 111, 126, 141, 156, 171, 186, 201,
  216, 231, 246, 247, 232, 217, 202, 187,
  172, 157, 142, 127, 143, 158, 173, 188,
  203, 218, 233, 248, 249, 234, 219, 204,
  189, 174, 159, 175, 190, 205, 220, 235,
  250, 251, 236, 221, 206, 191, 207, 222,
  237, 252, 253, 238, 223, 239, 254, 255,
Daniel Kang's avatar
Daniel Kang committed
303
};
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
DECLARE_ALIGNED(16, const int, vp9_col_scan_16x16[256]) = {
    0,  16,  32,  48,  64,  80,  96, 112, 128, 144, 160, 176, 192, 208, 224, 240,
    1,  17,  33,  49,  65,  81,  97, 113, 129, 145, 161, 177, 193, 209, 225, 241,
    2,  18,  34,  50,  66,  82,  98, 114, 130, 146, 162, 178, 194, 210, 226, 242,
    3,  19,  35,  51,  67,  83,  99, 115, 131, 147, 163, 179, 195, 211, 227, 243,
    4,  20,  36,  52,  68,  84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244,
    5,  21,  37,  53,  69,  85, 101, 117, 133, 149, 165, 181, 197, 213, 229, 245,
    6,  22,  38,  54,  70,  86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246,
    7,  23,  39,  55,  71,  87, 103, 119, 135, 151, 167, 183, 199, 215, 231, 247,
    8,  24,  40,  56,  72,  88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248,
    9,  25,  41,  57,  73,  89, 105, 121, 137, 153, 169, 185, 201, 217, 233, 249,
   10,  26,  42,  58,  74,  90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250,
   11,  27,  43,  59,  75,  91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 251,
   12,  28,  44,  60,  76,  92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252,
   13,  29,  45,  61,  77,  93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253,
   14,  30,  46,  62,  78,  94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254,
   15,  31,  47,  63,  79,  95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255,
};

DECLARE_ALIGNED(16, const int, vp9_row_scan_16x16[256]) = {
    0,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
   16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,
   32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,  43,  44,  45,  46,  47,
   48,  49,  50,  51,  52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,
   64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,  79,
   80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,
   96,  97,  98,  99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
  112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
  128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
  144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
  160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
  176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
  192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
  208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
  224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
  240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
};

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
DECLARE_ALIGNED(16, const int, vp9_default_zig_zag1d_32x32[1024]) = {
    0,    1,   32,   64,   33,    2,    3,   34,   65,   96,  128,   97,   66,   35,    4,    5,   36,   67,   98,  129,  160,  192,  161,  130,   99,   68,   37,    6,    7,   38,   69,  100,
  131,  162,  193,  224,  256,  225,  194,  163,  132,  101,   70,   39,    8,    9,   40,   71,  102,  133,  164,  195,  226,  257,  288,  320,  289,  258,  227,  196,  165,  134,  103,   72,
   41,   10,   11,   42,   73,  104,  135,  166,  197,  228,  259,  290,  321,  352,  384,  353,  322,  291,  260,  229,  198,  167,  136,  105,   74,   43,   12,   13,   44,   75,  106,  137,
  168,  199,  230,  261,  292,  323,  354,  385,  416,  448,  417,  386,  355,  324,  293,  262,  231,  200,  169,  138,  107,   76,   45,   14,   15,   46,   77,  108,  139,  170,  201,  232,
  263,  294,  325,  356,  387,  418,  449,  480,  512,  481,  450,  419,  388,  357,  326,  295,  264,  233,  202,  171,  140,  109,   78,   47,   16,   17,   48,   79,  110,  141,  172,  203,
  234,  265,  296,  327,  358,  389,  420,  451,  482,  513,  544,  576,  545,  514,  483,  452,  421,  390,  359,  328,  297,  266,  235,  204,  173,  142,  111,   80,   49,   18,   19,   50,
   81,  112,  143,  174,  205,  236,  267,  298,  329,  360,  391,  422,  453,  484,  515,  546,  577,  608,  640,  609,  578,  547,  516,  485,  454,  423,  392,  361,  330,  299,  268,  237,
  206,  175,  144,  113,   82,   51,   20,   21,   52,   83,  114,  145,  176,  207,  238,  269,  300,  331,  362,  393,  424,  455,  486,  517,  548,  579,  610,  641,  672,  704,  673,  642,
  611,  580,  549,  518,  487,  456,  425,  394,  363,  332,  301,  270,  239,  208,  177,  146,  115,   84,   53,   22,   23,   54,   85,  116,  147,  178,  209,  240,  271,  302,  333,  364,
  395,  426,  457,  488,  519,  550,  581,  612,  643,  674,  705,  736,  768,  737,  706,  675,  644,  613,  582,  551,  520,  489,  458,  427,  396,  365,  334,  303,  272,  241,  210,  179,
  148,  117,   86,   55,   24,   25,   56,   87,  118,  149,  180,  211,  242,  273,  304,  335,  366,  397,  428,  459,  490,  521,  552,  583,  614,  645,  676,  707,  738,  769,  800,  832,
  801,  770,  739,  708,  677,  646,  615,  584,  553,  522,  491,  460,  429,  398,  367,  336,  305,  274,  243,  212,  181,  150,  119,   88,   57,   26,   27,   58,   89,  120,  151,  182,
  213,  244,  275,  306,  337,  368,  399,  430,  461,  492,  523,  554,  585,  616,  647,  678,  709,  740,  771,  802,  833,  864,  896,  865,  834,  803,  772,  741,  710,  679,  648,  617,
  586,  555,  524,  493,  462,  431,  400,  369,  338,  307,  276,  245,  214,  183,  152,  121,   90,   59,   28,   29,   60,   91,  122,  153,  184,  215,  246,  277,  308,  339,  370,  401,
  432,  463,  494,  525,  556,  587,  618,  649,  680,  711,  742,  773,  804,  835,  866,  897,  928,  960,  929,  898,  867,  836,  805,  774,  743,  712,  681,  650,  619,  588,  557,  526,
  495,  464,  433,  402,  371,  340,  309,  278,  247,  216,  185,  154,  123,   92,   61,   30,   31,   62,   93,  124,  155,  186,  217,  248,  279,  310,  341,  372,  403,  434,  465,  496,
  527,  558,  589,  620,  651,  682,  713,  744,  775,  806,  837,  868,  899,  930,  961,  992,  993,  962,  931,  900,  869,  838,  807,  776,  745,  714,  683,  652,  621,  590,  559,  528,
  497,  466,  435,  404,  373,  342,  311,  280,  249,  218,  187,  156,  125,   94,   63,   95,  126,  157,  188,  219,  250,  281,  312,  343,  374,  405,  436,  467,  498,  529,  560,  591,
  622,  653,  684,  715,  746,  777,  808,  839,  870,  901,  932,  963,  994,  995,  964,  933,  902,  871,  840,  809,  778,  747,  716,  685,  654,  623,  592,  561,  530,  499,  468,  437,
  406,  375,  344,  313,  282,  251,  220,  189,  158,  127,  159,  190,  221,  252,  283,  314,  345,  376,  407,  438,  469,  500,  531,  562,  593,  624,  655,  686,  717,  748,  779,  810,
  841,  872,  903,  934,  965,  996,  997,  966,  935,  904,  873,  842,  811,  780,  749,  718,  687,  656,  625,  594,  563,  532,  501,  470,  439,  408,  377,  346,  315,  284,  253,  222,
  191,  223,  254,  285,  316,  347,  378,  409,  440,  471,  502,  533,  564,  595,  626,  657,  688,  719,  750,  781,  812,  843,  874,  905,  936,  967,  998,  999,  968,  937,  906,  875,
  844,  813,  782,  751,  720,  689,  658,  627,  596,  565,  534,  503,  472,  441,  410,  379,  348,  317,  286,  255,  287,  318,  349,  380,  411,  442,  473,  504,  535,  566,  597,  628,
  659,  690,  721,  752,  783,  814,  845,  876,  907,  938,  969, 1000, 1001,  970,  939,  908,  877,  846,  815,  784,  753,  722,  691,  660,  629,  598,  567,  536,  505,  474,  443,  412,
  381,  350,  319,  351,  382,  413,  444,  475,  506,  537,  568,  599,  630,  661,  692,  723,  754,  785,  816,  847,  878,  909,  940,  971, 1002, 1003,  972,  941,  910,  879,  848,  817,
  786,  755,  724,  693,  662,  631,  600,  569,  538,  507,  476,  445,  414,  383,  415,  446,  477,  508,  539,  570,  601,  632,  663,  694,  725,  756,  787,  818,  849,  880,  911,  942,
  973, 1004, 1005,  974,  943,  912,  881,  850,  819,  788,  757,  726,  695,  664,  633,  602,  571,  540,  509,  478,  447,  479,  510,  541,  572,  603,  634,  665,  696,  727,  758,  789,
  820,  851,  882,  913,  944,  975, 1006, 1007,  976,  945,  914,  883,  852,  821,  790,  759,  728,  697,  666,  635,  604,  573,  542,  511,  543,  574,  605,  636,  667,  698,  729,  760,
  791,  822,  853,  884,  915,  946,  977, 1008, 1009,  978,  947,  916,  885,  854,  823,  792,  761,  730,  699,  668,  637,  606,  575,  607,  638,  669,  700,  731,  762,  793,  824,  855,
  886,  917,  948,  979, 1010, 1011,  980,  949,  918,  887,  856,  825,  794,  763,  732,  701,  670,  639,  671,  702,  733,  764,  795,  826,  857,  888,  919,  950,  981, 1012, 1013,  982,
  951,  920,  889,  858,  827,  796,  765,  734,  703,  735,  766,  797,  828,  859,  890,  921,  952,  983, 1014, 1015,  984,  953,  922,  891,  860,  829,  798,  767,  799,  830,  861,  892,
  923,  954,  985, 1016, 1017,  986,  955,  924,  893,  862,  831,  863,  894,  925,  956,  987, 1018, 1019,  988,  957,  926,  895,  927,  958,  989, 1020, 1021,  990,  959,  991, 1022, 1023,
};
Ronald S. Bultje's avatar
Ronald S. Bultje committed
377
#endif  // CONFIG_SCATTERSCAN
John Koleszar's avatar
John Koleszar committed
378
379
380

/* Array indices are identical to previously-existing CONTEXT_NODE indices */

381
const vp9_tree_index vp9_coef_tree[ 22] =     /* corresponding _CONTEXT_NODEs */
John Koleszar's avatar
John Koleszar committed
382
{
383
384
385
386
387
  -DCT_EOB_TOKEN, 2,                        /* 0 = EOB */
  -ZERO_TOKEN, 4,                           /* 1 = ZERO */
  -ONE_TOKEN, 6,                            /* 2 = ONE */
  8, 12,                                    /* 3 = LOW_VAL */
  -TWO_TOKEN, 10,                           /* 4 = TWO */
John Koleszar's avatar
John Koleszar committed
388
  -THREE_TOKEN, -FOUR_TOKEN,                /* 5 = THREE */
389
  14, 16,                                   /* 6 = HIGH_LOW */
John Koleszar's avatar
John Koleszar committed
390
391
  -DCT_VAL_CATEGORY1, -DCT_VAL_CATEGORY2,   /* 7 = CAT_ONE */
  18, 20,                                   /* 8 = CAT_THREEFOUR */
392
393
  -DCT_VAL_CATEGORY3, -DCT_VAL_CATEGORY4,   /* 9 = CAT_THREE */
  -DCT_VAL_CATEGORY5, -DCT_VAL_CATEGORY6    /* 10 = CAT_FIVE */
John Koleszar's avatar
John Koleszar committed
394
395
};

396
struct vp9_token vp9_coef_encodings[MAX_ENTROPY_TOKENS];
John Koleszar's avatar
John Koleszar committed
397
398
399
400

/* Trees for extra bits.  Probabilities are constant and
   do not depend on previously encoded bits */

401
402
403
404
405
406
static const vp9_prob Pcat1[] = { 159};
static const vp9_prob Pcat2[] = { 165, 145};
static const vp9_prob Pcat3[] = { 173, 148, 140};
static const vp9_prob Pcat4[] = { 176, 155, 140, 135};
static const vp9_prob Pcat5[] = { 180, 157, 141, 134, 130};
static const vp9_prob Pcat6[] = {
407
408
  254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
};
John Koleszar's avatar
John Koleszar committed
409

410
#if CONFIG_MODELCOEFPROB
411
412
413
414
const vp9_tree_index vp9_coefmodel_tree[6] = {
  -DCT_EOB_MODEL_TOKEN, 2,                      /* 0 = EOB */
  -ZERO_TOKEN, 4,                               /* 1 = ZERO */
  -ONE_TOKEN, -TWO_TOKEN,                       /* 2 = ONE */
415
416
};

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
const vp9_prob vp9_modelcoefprobs_pareto8[COEFPROB_MODELS][MODEL_NODES] = {
  {   3,  86, 128,   6,  86,  23,  88,  29},
  {   9,  86, 129,  17,  88,  61,  94,  76},
  {  20,  88, 130,  38,  91, 118, 106, 136},
  {  31,  90, 131,  58,  94, 156, 117, 171},
  {  42,  91, 132,  75,  97, 183, 127, 194},
  {  52,  93, 133,  90, 100, 201, 137, 208},
  {  62,  94, 135, 105, 103, 214, 146, 218},
  {  71,  96, 136, 117, 106, 224, 155, 225},
  {  80,  98, 137, 129, 109, 231, 162, 231},
  {  89,  99, 138, 140, 112, 236, 170, 235},
  {  97, 101, 140, 149, 115, 240, 176, 238},
  { 105, 103, 141, 158, 118, 243, 182, 240},
  { 113, 104, 142, 166, 120, 245, 187, 242},
  { 120, 106, 143, 173, 123, 247, 192, 244},
  { 127, 108, 145, 180, 126, 249, 197, 245},
  { 134, 110, 146, 186, 129, 250, 201, 246},
  { 140, 112, 147, 192, 132, 251, 205, 247},
  { 146, 114, 149, 197, 135, 252, 208, 248},
  { 152, 115, 150, 201, 138, 252, 211, 248},
  { 158, 117, 151, 206, 140, 253, 214, 249},
  { 163, 119, 153, 210, 143, 253, 217, 249},
  { 168, 121, 154, 213, 146, 254, 220, 250},
  { 173, 123, 155, 217, 148, 254, 222, 250},
  { 178, 125, 157, 220, 151, 254, 224, 251},
  { 183, 127, 158, 222, 153, 254, 226, 251},
  { 187, 129, 160, 225, 156, 255, 228, 251},
  { 191, 132, 161, 227, 159, 255, 229, 251},
  { 195, 134, 163, 230, 161, 255, 231, 252},
  { 199, 136, 164, 232, 163, 255, 232, 252},
  { 202, 138, 166, 233, 166, 255, 233, 252},
  { 206, 140, 167, 235, 168, 255, 235, 252},
  { 212, 145, 170, 238, 173, 255, 237, 252},
  { 218, 149, 173, 241, 177, 255, 239, 253},
  { 223, 154, 177, 243, 182, 255, 240, 253},
  { 228, 159, 180, 245, 186, 255, 242, 253},
  { 232, 164, 184, 247, 190, 255, 243, 253},
  { 236, 169, 187, 248, 194, 255, 244, 253},
  { 239, 174, 191, 249, 198, 255, 245, 254},
  { 242, 179, 195, 250, 202, 255, 246, 254},
  { 244, 185, 199, 251, 206, 255, 247, 254},
  { 247, 191, 203, 252, 209, 255, 248, 254},
  { 249, 197, 207, 253, 213, 255, 249, 254},
  { 250, 203, 212, 253, 216, 255, 249, 254},
  { 252, 209, 217, 254, 220, 255, 250, 254},
  { 253, 216, 222, 254, 224, 255, 251, 254},
  { 254, 224, 228, 255, 227, 255, 251, 254},
  { 255, 232, 235, 255, 232, 255, 252, 254},
  { 255, 246, 247, 255, 239, 255, 253, 255}
473
474
475
476
};

void vp9_get_model_distribution(vp9_prob p, vp9_prob *tree_probs,
                                int b, int r) {
477
  const vp9_prob (*model)[MODEL_NODES];
478
479
  model = vp9_modelcoefprobs_pareto8;
  if (p == 1) {
480
    vpx_memcpy(tree_probs + UNCONSTRAINED_NODES,
481
482
               model[2], MODEL_NODES * sizeof(vp9_prob));
  } else if (p == 2) {
483
484
485
    // interpolate
    int i;
    for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i)
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
      tree_probs[i] = (model[0][i - UNCONSTRAINED_NODES] +
                       model[1][i - UNCONSTRAINED_NODES]) >> 1;
  } else if (p < 119) {
    // interpolate
    int i, k, l;
    k = (p - 3) & 3;
    l = ((p - 3) >> 2) + 1;
    if (k) {
      for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i)
        tree_probs[i] = (model[l][i - UNCONSTRAINED_NODES] * (4 - k) +
                         model[l + 1][i - UNCONSTRAINED_NODES] * k + 1) >> 2;
    } else {
      vpx_memcpy(tree_probs + UNCONSTRAINED_NODES,
                 model[l], MODEL_NODES * sizeof(vp9_prob));
    }
  } else {
    // interpolate
    int i, k, l;
    k = (p - 119) & 7;
    l = ((p - 119) >> 3) + 30;
    if (k) {
      for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i)
        tree_probs[i] = (model[l][i - UNCONSTRAINED_NODES] * (8 - k) +
                         model[l + 1][i - UNCONSTRAINED_NODES] * k + 3) >> 3;
    } else {
      vpx_memcpy(tree_probs + UNCONSTRAINED_NODES,
                 model[l], MODEL_NODES * sizeof(vp9_prob));
    }
514
  }
515
}
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

void vp9_model_to_full_probs(const vp9_prob *model, int b, int r, vp9_prob *full) {
  vpx_memcpy(full, model, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
  vp9_get_model_distribution(model[PIVOT_NODE], full, b, r);
}

void vp9_model_to_full_probs_sb(
    vp9_prob model[COEF_BANDS][PREV_COEF_CONTEXTS][UNCONSTRAINED_NODES],
    int b, int r,
    vp9_prob full[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) {
  int c, p;
  for (c = 0; c < COEF_BANDS; ++c)
    for (p = 0; p < PREV_COEF_CONTEXTS; ++p) {
      vp9_model_to_full_probs(model[c][p], b, r, full[c][p]);
    }
}
532
533
#endif

534
static vp9_tree_index cat1[2], cat2[4], cat3[6], cat4[8], cat5[10], cat6[28];
John Koleszar's avatar
John Koleszar committed
535

536
static void init_bit_tree(vp9_tree_index *p, int n) {
John Koleszar's avatar
John Koleszar committed
537
  int i = 0;
John Koleszar's avatar
John Koleszar committed
538

John Koleszar's avatar
John Koleszar committed
539
540
541
542
  while (++i < n) {
    p[0] = p[1] = i << 1;
    p += 2;
  }
John Koleszar's avatar
John Koleszar committed
543

John Koleszar's avatar
John Koleszar committed
544
  p[0] = p[1] = 0;
John Koleszar's avatar
John Koleszar committed
545
546
}

John Koleszar's avatar
John Koleszar committed
547
548
549
550
551
552
static void init_bit_trees() {
  init_bit_tree(cat1, 1);
  init_bit_tree(cat2, 2);
  init_bit_tree(cat3, 3);
  init_bit_tree(cat4, 4);
  init_bit_tree(cat5, 5);
553
  init_bit_tree(cat6, 14);
John Koleszar's avatar
John Koleszar committed
554
555
}

556
vp9_extra_bit vp9_extra_bits[12] = {
John Koleszar's avatar
John Koleszar committed
557
558
559
560
561
562
563
564
565
566
  { 0, 0, 0, 0},
  { 0, 0, 0, 1},
  { 0, 0, 0, 2},
  { 0, 0, 0, 3},
  { 0, 0, 0, 4},
  { cat1, Pcat1, 1, 5},
  { cat2, Pcat2, 2, 7},
  { cat3, Pcat3, 3, 11},
  { cat4, Pcat4, 4, 19},
  { cat5, Pcat5, 5, 35},
567
  { cat6, Pcat6, 14, 67},
John Koleszar's avatar
John Koleszar committed
568
  { 0, 0, 0, 0}
John Koleszar's avatar
John Koleszar committed
569
};
570

571
#include "vp9/common/vp9_default_coef_probs.h"
John Koleszar's avatar
John Koleszar committed
572

573
574
575
576
577
578
// This function updates and then returns n AC coefficient context
// This is currently a placeholder function to allow experimentation
// using various context models based on the energy earlier tokens
// within the current block.
//
// For now it just returns the previously used context.
579
580
581
582
583
#define MAX_NEIGHBORS 2
int vp9_get_coef_context(const int *scan, const int *neighbors,
                         int nb_pad, uint8_t *token_cache, int c, int l) {
  int eob = l;
  assert(nb_pad == MAX_NEIGHBORS);
584
  if (c == eob) {
585
586
587
588
589
    return 0;
  } else {
    int ctx;
    assert(neighbors[MAX_NEIGHBORS * c + 0] >= 0);
    if (neighbors[MAX_NEIGHBORS * c + 1] >= 0) {
590
591
      ctx = (1 + token_cache[scan[neighbors[MAX_NEIGHBORS * c + 0]]] +
             token_cache[scan[neighbors[MAX_NEIGHBORS * c + 1]]]) >> 1;
592
    } else {
593
      ctx = token_cache[scan[neighbors[MAX_NEIGHBORS * c + 0]]];
594
    }
595
    return vp9_pt_energy_class[ctx];
596
597
598
  }
};

599
void vp9_default_coef_probs(VP9_COMMON *pc) {
600
601
602
603
604
605
606
607
  vpx_memcpy(pc->fc.coef_probs_4x4, default_coef_probs_4x4,
             sizeof(pc->fc.coef_probs_4x4));
  vpx_memcpy(pc->fc.coef_probs_8x8, default_coef_probs_8x8,
             sizeof(pc->fc.coef_probs_8x8));
  vpx_memcpy(pc->fc.coef_probs_16x16, default_coef_probs_16x16,
             sizeof(pc->fc.coef_probs_16x16));
  vpx_memcpy(pc->fc.coef_probs_32x32, default_coef_probs_32x32,
             sizeof(pc->fc.coef_probs_32x32));
608
}
John Koleszar's avatar
John Koleszar committed
609

610
611
612
613
614
615
616
617
618
619
// Neighborhood 5-tuples for various scans and blocksizes,
// in {top, left, topleft, topright, bottomleft} order
// for each position in raster scan order.
// -1 indicates the neighbor does not exist.
DECLARE_ALIGNED(16, int,
                vp9_default_zig_zag1d_4x4_neighbors[16 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
                vp9_col_scan_4x4_neighbors[16 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
                vp9_row_scan_4x4_neighbors[16 * MAX_NEIGHBORS]);
620
621
622
623
DECLARE_ALIGNED(16, int,
                vp9_col_scan_8x8_neighbors[64 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
                vp9_row_scan_8x8_neighbors[64 * MAX_NEIGHBORS]);
624
625
DECLARE_ALIGNED(16, int,
                vp9_default_zig_zag1d_8x8_neighbors[64 * MAX_NEIGHBORS]);
626
627
628
629
DECLARE_ALIGNED(16, int,
                vp9_col_scan_16x16_neighbors[256 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
                vp9_row_scan_16x16_neighbors[256 * MAX_NEIGHBORS]);
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
DECLARE_ALIGNED(16, int,
                vp9_default_zig_zag1d_16x16_neighbors[256 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
                vp9_default_zig_zag1d_32x32_neighbors[1024 * MAX_NEIGHBORS]);

static int find_in_scan(const int *scan, int l, int idx) {
  int n, l2 = l * l;
  for (n = 0; n < l2; n++) {
    int rc = scan[n];
    if (rc == idx)
      return  n;
  }
  assert(0);
  return -1;
}
static void init_scan_neighbors(const int *scan, int l, int *neighbors,
                                int max_neighbors) {
  int l2 = l * l;
  int n, i, j;

  for (n = 0; n < l2; n++) {
    int rc = scan[n];
    assert(max_neighbors == MAX_NEIGHBORS);
    i = rc / l;
    j = rc % l;
    if (i > 0 && j > 0) {
      // col/row scan is used for adst/dct, and generally means that
      // energy decreases to zero much faster in the dimension in
      // which ADST is used compared to the direction in which DCT
      // is used. Likewise, we find much higher correlation between
      // coefficients within the direction in which DCT is used.
      // Therefore, if we use ADST/DCT, prefer the DCT neighbor coeff
      // as a context. If ADST or DCT is used in both directions, we
      // use the combination of the two as a context.
      int a = find_in_scan(scan, l, (i - 1) * l + j);
      int b = find_in_scan(scan, l,  i      * l + j - 1);
666
667
668
669
670
671
672
      if (scan == vp9_col_scan_4x4 || scan == vp9_col_scan_8x8 ||
          scan == vp9_col_scan_16x16) {
        neighbors[max_neighbors * n + 0] = a;
        neighbors[max_neighbors * n + 1] = -1;
      } else if (scan == vp9_row_scan_4x4 || scan == vp9_row_scan_8x8 ||
                 scan == vp9_row_scan_16x16) {
        neighbors[max_neighbors * n + 0] = b;
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        neighbors[max_neighbors * n + 1] = -1;
      } else {
        neighbors[max_neighbors * n + 0] = a;
        neighbors[max_neighbors * n + 1] = b;
      }
    } else if (i > 0) {
      neighbors[max_neighbors * n + 0] = find_in_scan(scan, l, (i - 1) * l + j);
      neighbors[max_neighbors * n + 1] = -1;
    } else if (j > 0) {
      neighbors[max_neighbors * n + 0] =
          find_in_scan(scan, l,  i      * l + j - 1);
      neighbors[max_neighbors * n + 1] = -1;
    } else {
      assert(n == 0);
      // dc predictor doesn't use previous tokens
      neighbors[max_neighbors * n + 0] = -1;
    }
    assert(neighbors[max_neighbors * n + 0] < n);
  }
}

void vp9_init_neighbors() {
  init_scan_neighbors(vp9_default_zig_zag1d_4x4, 4,
                      vp9_default_zig_zag1d_4x4_neighbors, MAX_NEIGHBORS);
  init_scan_neighbors(vp9_row_scan_4x4, 4,
                      vp9_row_scan_4x4_neighbors, MAX_NEIGHBORS);
  init_scan_neighbors(vp9_col_scan_4x4, 4,
                      vp9_col_scan_4x4_neighbors, MAX_NEIGHBORS);
  init_scan_neighbors(vp9_default_zig_zag1d_8x8, 8,
                      vp9_default_zig_zag1d_8x8_neighbors, MAX_NEIGHBORS);
703
704
705
706
  init_scan_neighbors(vp9_row_scan_8x8, 8,
                      vp9_row_scan_8x8_neighbors, MAX_NEIGHBORS);
  init_scan_neighbors(vp9_col_scan_8x8, 8,
                      vp9_col_scan_8x8_neighbors, MAX_NEIGHBORS);
707
708
  init_scan_neighbors(vp9_default_zig_zag1d_16x16, 16,
                      vp9_default_zig_zag1d_16x16_neighbors, MAX_NEIGHBORS);
709
710
711
712
  init_scan_neighbors(vp9_row_scan_16x16, 16,
                      vp9_row_scan_16x16_neighbors, MAX_NEIGHBORS);
  init_scan_neighbors(vp9_col_scan_16x16, 16,
                      vp9_col_scan_16x16_neighbors, MAX_NEIGHBORS);
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
  init_scan_neighbors(vp9_default_zig_zag1d_32x32, 32,
                      vp9_default_zig_zag1d_32x32_neighbors, MAX_NEIGHBORS);
}

const int *vp9_get_coef_neighbors_handle(const int *scan, int *pad) {
  if (scan == vp9_default_zig_zag1d_4x4) {
    *pad = MAX_NEIGHBORS;
    return vp9_default_zig_zag1d_4x4_neighbors;
  } else if (scan == vp9_row_scan_4x4) {
    *pad = MAX_NEIGHBORS;
    return vp9_row_scan_4x4_neighbors;
  } else if (scan == vp9_col_scan_4x4) {
    *pad = MAX_NEIGHBORS;
    return vp9_col_scan_4x4_neighbors;
  } else if (scan == vp9_default_zig_zag1d_8x8) {
    *pad = MAX_NEIGHBORS;
    return vp9_default_zig_zag1d_8x8_neighbors;
730
731
732
733
734
735
  } else if (scan == vp9_row_scan_8x8) {
    *pad = 2;
    return vp9_row_scan_8x8_neighbors;
  } else if (scan == vp9_col_scan_8x8) {
    *pad = 2;
    return vp9_col_scan_8x8_neighbors;
736
737
738
  } else if (scan == vp9_default_zig_zag1d_16x16) {
    *pad = MAX_NEIGHBORS;
    return vp9_default_zig_zag1d_16x16_neighbors;
739
740
741
742
743
744
  } else if (scan == vp9_row_scan_16x16) {
    *pad = 2;
    return vp9_row_scan_16x16_neighbors;
  } else if (scan == vp9_col_scan_16x16) {
    *pad = 2;
    return vp9_col_scan_16x16_neighbors;
745
746
747
748
749
750
751
752
753
  } else if (scan == vp9_default_zig_zag1d_32x32) {
    *pad = MAX_NEIGHBORS;
    return vp9_default_zig_zag1d_32x32_neighbors;
  } else {
    assert(0);
    return NULL;
  }
}

754
void vp9_coef_tree_initialize() {
755
  vp9_init_neighbors();
John Koleszar's avatar
John Koleszar committed
756
  init_bit_trees();
757
  vp9_tokens_from_tree(vp9_coef_encodings, vp9_coef_tree);
758
759
}

John Koleszar's avatar
John Koleszar committed
760
// #define COEF_COUNT_TESTING
761
762
763
764
765
766
767
768

#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
#if CONFIG_MODELCOEFPROB
void vp9_full_to_model_counts(
    vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) {
  int i, j, k, l;
  for (i = 0; i < BLOCK_TYPES; ++i)
    for (j = 0; j < REF_TYPES; ++j)
      for (k = 0; k < COEF_BANDS; ++k)
        for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
          int n;
          if (l >= 3 && k == 0)
            continue;
          model_count[i][j][k][l][ZERO_TOKEN] =
              full_count[i][j][k][l][ZERO_TOKEN];
          model_count[i][j][k][l][ONE_TOKEN] =
              full_count[i][j][k][l][ONE_TOKEN];
          model_count[i][j][k][l][TWO_TOKEN] =
              full_count[i][j][k][l][TWO_TOKEN];
          for (n = THREE_TOKEN; n < DCT_EOB_TOKEN; ++n)
            model_count[i][j][k][l][TWO_TOKEN] += full_count[i][j][k][l][n];
          model_count[i][j][k][l][DCT_EOB_MODEL_TOKEN] =
              full_count[i][j][k][l][DCT_EOB_TOKEN];
        }
}
#endif

static void adapt_coef_probs(
#if CONFIG_MODELCOEFPROB
    vp9_coeff_probs_model *dst_coef_probs,
    vp9_coeff_probs_model *pre_coef_probs,
    vp9_coeff_count_model *coef_counts,
#else
    vp9_coeff_probs *dst_coef_probs,
    vp9_coeff_probs *pre_coef_probs,
    vp9_coeff_count *coef_counts,
#endif
    unsigned int (*eob_branch_count)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS],
    int count_sat,
    int update_factor) {
807
  int t, i, j, k, l, count;
John Koleszar's avatar
John Koleszar committed
808
  int factor;
809
810
811
812
#if CONFIG_MODELCOEFPROB
  unsigned int branch_ct[UNCONSTRAINED_NODES][2];
  vp9_prob coef_probs[UNCONSTRAINED_NODES];
  int entropy_nodes_adapt = UNCONSTRAINED_NODES;
813
#else
814
815
  unsigned int branch_ct[ENTROPY_NODES][2];
  vp9_prob coef_probs[ENTROPY_NODES];
816
817
  int entropy_nodes_adapt = ENTROPY_NODES;
#endif
818

819
  for (i = 0; i < BLOCK_TYPES; ++i)
820
821
822
823
824
    for (j = 0; j < REF_TYPES; ++j)
      for (k = 0; k < COEF_BANDS; ++k)
        for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
          if (l >= 3 && k == 0)
            continue;
825
826
827
828
829
830
831
832
          vp9_tree_probs_from_distribution(
#if CONFIG_MODELCOEFPROB
              vp9_coefmodel_tree,
#else
              vp9_coef_tree,
#endif
              coef_probs, branch_ct,
              coef_counts[i][j][k][l], 0);
833
834
          branch_ct[0][1] = eob_branch_count[i][j][k][l] - branch_ct[0][0];
          coef_probs[0] = get_binary_prob(branch_ct[0][0], branch_ct[0][1]);
835
          for (t = 0; t < entropy_nodes_adapt; ++t) {
836
837
838
839
840
841
842
            count = branch_ct[t][0] + branch_ct[t][1];
            count = count > count_sat ? count_sat : count;
            factor = (update_factor * count / count_sat);
            dst_coef_probs[i][j][k][l][t] =
                weighted_prob(pre_coef_probs[i][j][k][l][t],
                              coef_probs[t], factor);
          }
843
844
845
846
        }
}

void vp9_adapt_coef_probs(VP9_COMMON *cm) {
John Koleszar's avatar
John Koleszar committed
847
  int count_sat;
848
  int update_factor; /* denominator 256 */
John Koleszar's avatar
John Koleszar committed
849
850
851
852
853
854
855
856
857
858
859

  if (cm->frame_type == KEY_FRAME) {
    update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
    count_sat = COEF_COUNT_SAT_KEY;
  } else if (cm->last_frame_type == KEY_FRAME) {
    update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY;  /* adapt quickly */
    count_sat = COEF_COUNT_SAT_AFTER_KEY;
  } else {
    update_factor = COEF_MAX_UPDATE_FACTOR;
    count_sat = COEF_COUNT_SAT;
  }
860
  adapt_coef_probs(cm->fc.coef_probs_4x4, cm->fc.pre_coef_probs_4x4,
861
                   cm->fc.coef_counts_4x4,
862
                   cm->fc.eob_branch_counts[TX_4X4],
863
864
                   count_sat, update_factor);
  adapt_coef_probs(cm->fc.coef_probs_8x8, cm->fc.pre_coef_probs_8x8,
865
                   cm->fc.coef_counts_8x8,
866
                   cm->fc.eob_branch_counts[TX_8X8],
867
868
                   count_sat, update_factor);
  adapt_coef_probs(cm->fc.coef_probs_16x16, cm->fc.pre_coef_probs_16x16,
869
                   cm->fc.coef_counts_16x16,
870
                   cm->fc.eob_branch_counts[TX_16X16],
871
872
                   count_sat, update_factor);
  adapt_coef_probs(cm->fc.coef_probs_32x32, cm->fc.pre_coef_probs_32x32,
873
                   cm->fc.coef_counts_32x32,
874
                   cm->fc.eob_branch_counts[TX_32X32],
875
876
                   count_sat, update_factor);
}