vp9_entropy.c 32.4 KB
Newer Older
1
/*
2
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
John Koleszar's avatar
John Koleszar committed
3
 *
4
 *  Use of this source code is governed by a BSD-style license
5
6
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
7
 *  in the file PATENTS.  All contributing project authors may
8
 *  be found in the AUTHORS file in the root of the source tree.
John Koleszar's avatar
John Koleszar committed
9
10
 */

11
12
13
14
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_entropymode.h"
15
#include "vpx_mem/vpx_mem.h"
16
#include "vpx/vpx_integer.h"
John Koleszar's avatar
John Koleszar committed
17

18
19
#define MODEL_NODES (ENTROPY_NODES - UNCONSTRAINED_NODES)

20
DECLARE_ALIGNED(16, const uint8_t, vp9_norm[256]) = {
John Koleszar's avatar
John Koleszar committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
37
38
};

Paul Wilkins's avatar
Paul Wilkins committed
39
40
41
42
43
44
45
46
DECLARE_ALIGNED(16, const uint8_t,
                vp9_coefband_trans_8x8plus[MAXBAND_INDEX + 1]) = {
  0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
  4, 4, 4, 4, 4, 5
};

DECLARE_ALIGNED(16, const uint8_t,
                vp9_coefband_trans_4x4[MAXBAND_INDEX + 1]) = {
Paul Wilkins's avatar
Paul Wilkins committed
47
48
  0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
  5, 5, 5, 5, 5, 5
Paul Wilkins's avatar
Paul Wilkins committed
49
50
};

51
52
DECLARE_ALIGNED(16, const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]) = {
  0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
Deb Mukherjee's avatar
Deb Mukherjee committed
53
};
54

55
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_4x4[16]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
56
57
58
59
60
61
  0,  4,  1,  5,
  8,  2, 12,  9,
  3,  6, 13, 10,
  7, 14, 11, 15,
};

62
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_4x4[16]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
63
64
65
66
67
68
  0,  4,  8,  1,
  12,  5,  9,  2,
  13,  6, 10,  3,
  7, 14, 11, 15,
};

69
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_4x4[16]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
70
71
72
73
74
75
  0,  1,  4,  2,
  5,  3,  6,  8,
  9,  7, 12, 10,
  13, 11, 14, 15,
};

76
DECLARE_ALIGNED(64, const int16_t, vp9_default_scan_8x8[64]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
77
78
79
80
81
82
83
84
85
86
  0,  8,  1, 16,  9,  2, 17, 24,
  10,  3, 18, 25, 32, 11,  4, 26,
  33, 19, 40, 12, 34, 27,  5, 41,
  20, 48, 13, 35, 42, 28, 21,  6,
  49, 56, 36, 43, 29,  7, 14, 50,
  57, 44, 22, 37, 15, 51, 58, 30,
  45, 23, 52, 59, 38, 31, 60, 53,
  46, 39, 61, 54, 47, 62, 55, 63,
};

87
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_8x8[64]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
88
89
90
91
92
93
94
95
96
97
  0,  8, 16,  1, 24,  9, 32, 17,
  2, 40, 25, 10, 33, 18, 48,  3,
  26, 41, 11, 56, 19, 34,  4, 49,
  27, 42, 12, 35, 20, 57, 50, 28,
  5, 43, 13, 36, 58, 51, 21, 44,
  6, 29, 59, 37, 14, 52, 22,  7,
  45, 60, 30, 15, 38, 53, 23, 46,
  31, 61, 39, 54, 47, 62, 55, 63,
};

98
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_8x8[64]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
99
100
101
102
103
104
105
106
107
108
  0,  1,  2,  8,  9,  3, 16, 10,
  4, 17, 11, 24,  5, 18, 25, 12,
  19, 26, 32,  6, 13, 20, 33, 27,
  7, 34, 40, 21, 28, 41, 14, 35,
  48, 42, 29, 36, 49, 22, 43, 15,
  56, 37, 50, 44, 30, 57, 23, 51,
  58, 45, 38, 52, 31, 59, 53, 46,
  60, 39, 61, 47, 54, 55, 62, 63,
};

109
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_16x16[256]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  0,  16,   1,  32,  17,   2,  48,  33,  18,   3,  64,  34,  49,  19,  65,  80,
  50,   4,  35,  66,  20,  81,  96,  51,   5,  36,  82,  97,  67, 112,  21,  52,
  98,  37,  83, 113,   6,  68, 128,  53,  22,  99, 114,  84,   7, 129,  38,  69,
  100, 115, 144, 130,  85,  54,  23,   8, 145,  39,  70, 116, 101, 131, 160, 146,
  55,  86,  24,  71, 132, 117, 161,  40,   9, 102, 147, 176, 162,  87,  56,  25,
  133, 118, 177, 148,  72, 103,  41, 163,  10, 192, 178,  88,  57, 134, 149, 119,
  26, 164,  73, 104, 193,  42, 179, 208,  11, 135,  89, 165, 120, 150,  58, 194,
  180,  27,  74, 209, 105, 151, 136,  43,  90, 224, 166, 195, 181, 121, 210,  59,
  12, 152, 106, 167, 196,  75, 137, 225, 211, 240, 182, 122,  91,  28, 197,  13,
  226, 168, 183, 153,  44, 212, 138, 107, 241,  60,  29, 123, 198, 184, 227, 169,
  242,  76, 213, 154,  45,  92,  14, 199, 139,  61, 228, 214, 170, 185, 243, 108,
  77, 155,  30,  15, 200, 229, 124, 215, 244,  93,  46, 186, 171, 201, 109, 140,
  230,  62, 216, 245,  31, 125,  78, 156, 231,  47, 187, 202, 217,  94, 246, 141,
  63, 232, 172, 110, 247, 157,  79, 218, 203, 126, 233, 188, 248,  95, 173, 142,
  219, 111, 249, 234, 158, 127, 189, 204, 250, 235, 143, 174, 220, 205, 159, 251,
  190, 221, 175, 236, 237, 191, 206, 252, 222, 253, 207, 238, 223, 254, 239, 255,
};

128
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_16x16[256]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  0,  16,  32,  48,   1,  64,  17,  80,  33,  96,  49,   2,  65, 112,  18,  81,
  34, 128,  50,  97,   3,  66, 144,  19, 113,  35,  82, 160,  98,  51, 129,   4,
  67, 176,  20, 114, 145,  83,  36,  99, 130,  52, 192,   5, 161,  68, 115,  21,
  146,  84, 208, 177,  37, 131, 100,  53, 162, 224,  69,   6, 116, 193, 147,  85,
  22, 240, 132,  38, 178, 101, 163,  54, 209, 117,  70,   7, 148, 194,  86, 179,
  225,  23, 133,  39, 164,   8, 102, 210, 241,  55, 195, 118, 149,  71, 180,  24,
  87, 226, 134, 165, 211,  40, 103,  56,  72, 150, 196, 242, 119,   9, 181, 227,
  88, 166,  25, 135,  41, 104, 212,  57, 151, 197, 120,  73, 243, 182, 136, 167,
  213,  89,  10, 228, 105, 152, 198,  26,  42, 121, 183, 244, 168,  58, 137, 229,
  74, 214,  90, 153, 199, 184,  11, 106, 245,  27, 122, 230, 169,  43, 215,  59,
  200, 138, 185, 246,  75,  12,  91, 154, 216, 231, 107,  28,  44, 201, 123, 170,
  60, 247, 232,  76, 139,  13,  92, 217, 186, 248, 155, 108,  29, 124,  45, 202,
  233, 171,  61,  14,  77, 140,  15, 249,  93,  30, 187, 156, 218,  46, 109, 125,
  62, 172,  78, 203,  31, 141, 234,  94,  47, 188,  63, 157, 110, 250, 219,  79,
  126, 204, 173, 142,  95, 189, 111, 235, 158, 220, 251, 127, 174, 143, 205, 236,
  159, 190, 221, 252, 175, 206, 237, 191, 253, 222, 238, 207, 254, 223, 239, 255,
};

147
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_16x16[256]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
  0,   1,   2,  16,   3,  17,   4,  18,  32,   5,  33,  19,   6,  34,  48,  20,
  49,   7,  35,  21,  50,  64,   8,  36,  65,  22,  51,  37,  80,   9,  66,  52,
  23,  38,  81,  67,  10,  53,  24,  82,  68,  96,  39,  11,  54,  83,  97,  69,
  25,  98,  84,  40, 112,  55,  12,  70,  99, 113,  85,  26,  41,  56, 114, 100,
  13,  71, 128,  86,  27, 115, 101, 129,  42,  57,  72, 116,  14,  87, 130, 102,
  144,  73, 131, 117,  28,  58,  15,  88,  43, 145, 103, 132, 146, 118,  74, 160,
  89, 133, 104,  29,  59, 147, 119,  44, 161, 148,  90, 105, 134, 162, 120, 176,
  75, 135, 149,  30,  60, 163, 177,  45, 121,  91, 106, 164, 178, 150, 192, 136,
  165, 179,  31, 151, 193,  76, 122,  61, 137, 194, 107, 152, 180, 208,  46, 166,
  167, 195,  92, 181, 138, 209, 123, 153, 224, 196,  77, 168, 210, 182, 240, 108,
  197,  62, 154, 225, 183, 169, 211,  47, 139,  93, 184, 226, 212, 241, 198, 170,
  124, 155, 199,  78, 213, 185, 109, 227, 200,  63, 228, 242, 140, 214, 171, 186,
  156, 229, 243, 125,  94, 201, 244, 215, 216, 230, 141, 187, 202,  79, 172, 110,
  157, 245, 217, 231,  95, 246, 232, 126, 203, 247, 233, 173, 218, 142, 111, 158,
  188, 248, 127, 234, 219, 249, 189, 204, 143, 174, 159, 250, 235, 205, 220, 175,
  190, 251, 221, 191, 206, 236, 207, 237, 252, 222, 253, 223, 238, 239, 254, 255,
};

166
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_32x32[1024]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
167
168
169
170
171
  0,   32,    1,   64,   33,    2,   96,   65,   34,  128,    3,   97,   66,  160,  129,   35,   98,    4,   67,  130,  161,  192,   36,   99,  224,    5,  162,  193,   68,  131,   37,  100,
  225,  194,  256,  163,   69,  132,    6,  226,  257,  288,  195,  101,  164,   38,  258,    7,  227,  289,  133,  320,   70,  196,  165,  290,  259,  228,   39,  321,  102,  352,    8,  197,
  71,  134,  322,  291,  260,  353,  384,  229,  166,  103,   40,  354,  323,  292,  135,  385,  198,  261,   72,    9,  416,  167,  386,  355,  230,  324,  104,  293,   41,  417,  199,  136,
  262,  387,  448,  325,  356,   10,   73,  418,  231,  168,  449,  294,  388,  105,  419,  263,   42,  200,  357,  450,  137,  480,   74,  326,  232,   11,  389,  169,  295,  420,  106,  451,
  481,  358,  264,  327,  201,   43,  138,  512,  482,  390,  296,  233,  170,  421,   75,  452,  359,   12,  513,  265,  483,  328,  107,  202,  514,  544,  422,  391,  453,  139,   44,  234,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  484,  297,  360,  171,   76,  515,  545,  266,  329,  454,   13,  423,  203,  108,  546,  485,  576,  298,  235,  140,  361,  330,  172,  547,   45,  455,  267,  577,  486,   77,  204,  362,
  608,   14,  299,  578,  109,  236,  487,  609,  331,  141,  579,   46,   15,  173,  610,  363,   78,  205,   16,  110,  237,  611,  142,   47,  174,   79,  206,   17,  111,  238,   48,  143,
  80,  175,  112,  207,   49,   18,  239,   81,  113,   19,   50,   82,  114,   51,   83,  115,  640,  516,  392,  268,  144,   20,  672,  641,  548,  517,  424,  393,  300,  269,  176,  145,
  52,   21,  704,  673,  642,  580,  549,  518,  456,  425,  394,  332,  301,  270,  208,  177,  146,   84,   53,   22,  736,  705,  674,  643,  612,  581,  550,  519,  488,  457,  426,  395,
  364,  333,  302,  271,  240,  209,  178,  147,  116,   85,   54,   23,  737,  706,  675,  613,  582,  551,  489,  458,  427,  365,  334,  303,  241,  210,  179,  117,   86,   55,  738,  707,
  614,  583,  490,  459,  366,  335,  242,  211,  118,   87,  739,  615,  491,  367,  243,  119,  768,  644,  520,  396,  272,  148,   24,  800,  769,  676,  645,  552,  521,  428,  397,  304,
  273,  180,  149,   56,   25,  832,  801,  770,  708,  677,  646,  584,  553,  522,  460,  429,  398,  336,  305,  274,  212,  181,  150,   88,   57,   26,  864,  833,  802,  771,  740,  709,
  678,  647,  616,  585,  554,  523,  492,  461,  430,  399,  368,  337,  306,  275,  244,  213,  182,  151,  120,   89,   58,   27,  865,  834,  803,  741,  710,  679,  617,  586,  555,  493,
  462,  431,  369,  338,  307,  245,  214,  183,  121,   90,   59,  866,  835,  742,  711,  618,  587,  494,  463,  370,  339,  246,  215,  122,   91,  867,  743,  619,  495,  371,  247,  123,
  896,  772,  648,  524,  400,  276,  152,   28,  928,  897,  804,  773,  680,  649,  556,  525,  432,  401,  308,  277,  184,  153,   60,   29,  960,  929,  898,  836,  805,  774,  712,  681,
  650,  588,  557,  526,  464,  433,  402,  340,  309,  278,  216,  185,  154,   92,   61,   30,  992,  961,  930,  899,  868,  837,  806,  775,  744,  713,  682,  651,  620,  589,  558,  527,
  496,  465,  434,  403,  372,  341,  310,  279,  248,  217,  186,  155,  124,   93,   62,   31,  993,  962,  931,  869,  838,  807,  745,  714,  683,  621,  590,  559,  497,  466,  435,  373,
  342,  311,  249,  218,  187,  125,   94,   63,  994,  963,  870,  839,  746,  715,  622,  591,  498,  467,  374,  343,  250,  219,  126,   95,  995,  871,  747,  623,  499,  375,  251,  127,
  900,  776,  652,  528,  404,  280,  156,  932,  901,  808,  777,  684,  653,  560,  529,  436,  405,  312,  281,  188,  157,  964,  933,  902,  840,  809,  778,  716,  685,  654,  592,  561,
  530,  468,  437,  406,  344,  313,  282,  220,  189,  158,  996,  965,  934,  903,  872,  841,  810,  779,  748,  717,  686,  655,  624,  593,  562,  531,  500,  469,  438,  407,  376,  345,
  314,  283,  252,  221,  190,  159,  997,  966,  935,  873,  842,  811,  749,  718,  687,  625,  594,  563,  501,  470,  439,  377,  346,  315,  253,  222,  191,  998,  967,  874,  843,  750,
  719,  626,  595,  502,  471,  378,  347,  254,  223,  999,  875,  751,  627,  503,  379,  255,  904,  780,  656,  532,  408,  284,  936,  905,  812,  781,  688,  657,  564,  533,  440,  409,
  316,  285,  968,  937,  906,  844,  813,  782,  720,  689,  658,  596,  565,  534,  472,  441,  410,  348,  317,  286, 1000,  969,  938,  907,  876,  845,  814,  783,  752,  721,  690,  659,
  628,  597,  566,  535,  504,  473,  442,  411,  380,  349,  318,  287, 1001,  970,  939,  877,  846,  815,  753,  722,  691,  629,  598,  567,  505,  474,  443,  381,  350,  319, 1002,  971,
  878,  847,  754,  723,  630,  599,  506,  475,  382,  351, 1003,  879,  755,  631,  507,  383,  908,  784,  660,  536,  412,  940,  909,  816,  785,  692,  661,  568,  537,  444,  413,  972,
  941,  910,  848,  817,  786,  724,  693,  662,  600,  569,  538,  476,  445,  414, 1004,  973,  942,  911,  880,  849,  818,  787,  756,  725,  694,  663,  632,  601,  570,  539,  508,  477,
  446,  415, 1005,  974,  943,  881,  850,  819,  757,  726,  695,  633,  602,  571,  509,  478,  447, 1006,  975,  882,  851,  758,  727,  634,  603,  510,  479, 1007,  883,  759,  635,  511,
  912,  788,  664,  540,  944,  913,  820,  789,  696,  665,  572,  541,  976,  945,  914,  852,  821,  790,  728,  697,  666,  604,  573,  542, 1008,  977,  946,  915,  884,  853,  822,  791,
  760,  729,  698,  667,  636,  605,  574,  543, 1009,  978,  947,  885,  854,  823,  761,  730,  699,  637,  606,  575, 1010,  979,  886,  855,  762,  731,  638,  607, 1011,  887,  763,  639,
  916,  792,  668,  948,  917,  824,  793,  700,  669,  980,  949,  918,  856,  825,  794,  732,  701,  670, 1012,  981,  950,  919,  888,  857,  826,  795,  764,  733,  702,  671, 1013,  982,
  951,  889,  858,  827,  765,  734,  703, 1014,  983,  890,  859,  766,  735, 1015,  891,  767,  920,  796,  952,  921,  828,  797,  984,  953,  922,  860,  829,  798, 1016,  985,  954,  923,
  892,  861,  830,  799, 1017,  986,  955,  893,  862,  831, 1018,  987,  894,  863, 1019,  895,  924,  956,  925,  988,  957,  926, 1020,  989,  958,  927, 1021,  990,  959, 1022,  991, 1023,
Ronald S. Bultje's avatar
Ronald S. Bultje committed
199
};
John Koleszar's avatar
John Koleszar committed
200
201
202

/* Array indices are identical to previously-existing CONTEXT_NODE indices */

203
const vp9_tree_index vp9_coef_tree[ 22] =     /* corresponding _CONTEXT_NODEs */
John Koleszar's avatar
John Koleszar committed
204
{
205
206
207
208
209
210
211
212
213
214
#if CONFIG_BALANCED_COEFTREE
  -ZERO_TOKEN, 2,                             /* 0 = ZERO */
  -DCT_EOB_TOKEN, 4,                          /* 1 = EOB  */
#else
  -DCT_EOB_TOKEN, 2,                          /* 0 = EOB */
  -ZERO_TOKEN, 4,                             /* 1 = ZERO */
#endif
  -ONE_TOKEN, 6,                              /* 2 = ONE */
  8, 12,                                      /* 3 = LOW_VAL */
  -TWO_TOKEN, 10,                            /* 4 = TWO */
John Koleszar's avatar
John Koleszar committed
215
  -THREE_TOKEN, -FOUR_TOKEN,                /* 5 = THREE */
216
  14, 16,                                   /* 6 = HIGH_LOW */
John Koleszar's avatar
John Koleszar committed
217
218
  -DCT_VAL_CATEGORY1, -DCT_VAL_CATEGORY2,   /* 7 = CAT_ONE */
  18, 20,                                   /* 8 = CAT_THREEFOUR */
219
220
  -DCT_VAL_CATEGORY3, -DCT_VAL_CATEGORY4,   /* 9 = CAT_THREE */
  -DCT_VAL_CATEGORY5, -DCT_VAL_CATEGORY6    /* 10 = CAT_FIVE */
John Koleszar's avatar
John Koleszar committed
221
222
};

223
struct vp9_token vp9_coef_encodings[MAX_ENTROPY_TOKENS];
John Koleszar's avatar
John Koleszar committed
224
225
226
227

/* Trees for extra bits.  Probabilities are constant and
   do not depend on previously encoded bits */

228
229
230
231
232
233
static const vp9_prob Pcat1[] = { 159};
static const vp9_prob Pcat2[] = { 165, 145};
static const vp9_prob Pcat3[] = { 173, 148, 140};
static const vp9_prob Pcat4[] = { 176, 155, 140, 135};
static const vp9_prob Pcat5[] = { 180, 157, 141, 134, 130};
static const vp9_prob Pcat6[] = {
234
235
  254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
};
John Koleszar's avatar
John Koleszar committed
236

237
const vp9_tree_index vp9_coefmodel_tree[6] = {
238
239
240
241
#if CONFIG_BALANCED_COEFTREE
  -ZERO_TOKEN, 2,
  -DCT_EOB_MODEL_TOKEN, 4,
#else
242
243
  -DCT_EOB_MODEL_TOKEN, 2,                      /* 0 = EOB */
  -ZERO_TOKEN, 4,                               /* 1 = ZERO */
244
245
#endif
  -ONE_TOKEN, -TWO_TOKEN,
246
247
};

248
249
250
251
252
253
254
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
255
256

// beta = 8
257
static const vp9_prob modelcoefprobs_pareto8[COEFPROB_MODELS][MODEL_NODES] = {
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
  {  3,  86, 128,   6,  86,  23,  88,  29},
  {  9,  86, 129,  17,  88,  61,  94,  76},
  { 15,  87, 129,  28,  89,  93, 100, 110},
  { 20,  88, 130,  38,  91, 118, 106, 136},
  { 26,  89, 131,  48,  92, 139, 111, 156},
  { 31,  90, 131,  58,  94, 156, 117, 171},
  { 37,  90, 132,  66,  95, 171, 122, 184},
  { 42,  91, 132,  75,  97, 183, 127, 194},
  { 47,  92, 133,  83,  98, 193, 132, 202},
  { 52,  93, 133,  90, 100, 201, 137, 208},
  { 57,  94, 134,  98, 101, 208, 142, 214},
  { 62,  94, 135, 105, 103, 214, 146, 218},
  { 66,  95, 135, 111, 104, 219, 151, 222},
  { 71,  96, 136, 117, 106, 224, 155, 225},
  { 76,  97, 136, 123, 107, 227, 159, 228},
  { 80,  98, 137, 129, 109, 231, 162, 231},
  { 84,  98, 138, 134, 110, 234, 166, 233},
  { 89,  99, 138, 140, 112, 236, 170, 235},
  { 93, 100, 139, 145, 113, 238, 173, 236},
  { 97, 101, 140, 149, 115, 240, 176, 238},
  {101, 102, 140, 154, 116, 242, 179, 239},
  {105, 103, 141, 158, 118, 243, 182, 240},
  {109, 104, 141, 162, 119, 244, 185, 241},
  {113, 104, 142, 166, 120, 245, 187, 242},
  {116, 105, 143, 170, 122, 246, 190, 243},
  {120, 106, 143, 173, 123, 247, 192, 244},
  {123, 107, 144, 177, 125, 248, 195, 244},
  {127, 108, 145, 180, 126, 249, 197, 245},
  {130, 109, 145, 183, 128, 249, 199, 245},
  {134, 110, 146, 186, 129, 250, 201, 246},
  {137, 111, 147, 189, 131, 251, 203, 246},
  {140, 112, 147, 192, 132, 251, 205, 247},
  {143, 113, 148, 194, 133, 251, 207, 247},
  {146, 114, 149, 197, 135, 252, 208, 248},
  {149, 115, 149, 199, 136, 252, 210, 248},
  {152, 115, 150, 201, 138, 252, 211, 248},
  {155, 116, 151, 204, 139, 253, 213, 249},
  {158, 117, 151, 206, 140, 253, 214, 249},
  {161, 118, 152, 208, 142, 253, 216, 249},
  {163, 119, 153, 210, 143, 253, 217, 249},
  {166, 120, 153, 212, 144, 254, 218, 250},
  {168, 121, 154, 213, 146, 254, 220, 250},
  {171, 122, 155, 215, 147, 254, 221, 250},
  {173, 123, 155, 217, 148, 254, 222, 250},
  {176, 124, 156, 218, 150, 254, 223, 250},
  {178, 125, 157, 220, 151, 254, 224, 251},
  {180, 126, 157, 221, 152, 254, 225, 251},
  {183, 127, 158, 222, 153, 254, 226, 251},
  {185, 128, 159, 224, 155, 255, 227, 251},
  {187, 129, 160, 225, 156, 255, 228, 251},
  {189, 131, 160, 226, 157, 255, 228, 251},
  {191, 132, 161, 227, 159, 255, 229, 251},
  {193, 133, 162, 228, 160, 255, 230, 252},
  {195, 134, 163, 230, 161, 255, 231, 252},
  {197, 135, 163, 231, 162, 255, 231, 252},
  {199, 136, 164, 232, 163, 255, 232, 252},
  {201, 137, 165, 233, 165, 255, 233, 252},
  {202, 138, 166, 233, 166, 255, 233, 252},
  {204, 139, 166, 234, 167, 255, 234, 252},
  {206, 140, 167, 235, 168, 255, 235, 252},
  {207, 141, 168, 236, 169, 255, 235, 252},
  {209, 142, 169, 237, 171, 255, 236, 252},
  {210, 144, 169, 237, 172, 255, 236, 252},
  {212, 145, 170, 238, 173, 255, 237, 252},
  {214, 146, 171, 239, 174, 255, 237, 253},
  {215, 147, 172, 240, 175, 255, 238, 253},
  {216, 148, 173, 240, 176, 255, 238, 253},
  {218, 149, 173, 241, 177, 255, 239, 253},
  {219, 150, 174, 241, 179, 255, 239, 253},
  {220, 152, 175, 242, 180, 255, 240, 253},
  {222, 153, 176, 242, 181, 255, 240, 253},
  {223, 154, 177, 243, 182, 255, 240, 253},
  {224, 155, 178, 244, 183, 255, 241, 253},
  {225, 156, 178, 244, 184, 255, 241, 253},
  {226, 158, 179, 244, 185, 255, 242, 253},
  {228, 159, 180, 245, 186, 255, 242, 253},
  {229, 160, 181, 245, 187, 255, 242, 253},
  {230, 161, 182, 246, 188, 255, 243, 253},
  {231, 163, 183, 246, 189, 255, 243, 253},
  {232, 164, 184, 247, 190, 255, 243, 253},
  {233, 165, 185, 247, 191, 255, 244, 253},
  {234, 166, 185, 247, 192, 255, 244, 253},
  {235, 168, 186, 248, 193, 255, 244, 253},
  {236, 169, 187, 248, 194, 255, 244, 253},
  {236, 170, 188, 248, 195, 255, 245, 253},
  {237, 171, 189, 249, 196, 255, 245, 254},
  {238, 173, 190, 249, 197, 255, 245, 254},
  {239, 174, 191, 249, 198, 255, 245, 254},
  {240, 175, 192, 249, 199, 255, 246, 254},
  {240, 177, 193, 250, 200, 255, 246, 254},
  {241, 178, 194, 250, 201, 255, 246, 254},
  {242, 179, 195, 250, 202, 255, 246, 254},
  {242, 181, 196, 250, 203, 255, 247, 254},
  {243, 182, 197, 251, 204, 255, 247, 254},
  {244, 184, 198, 251, 205, 255, 247, 254},
  {244, 185, 199, 251, 206, 255, 247, 254},
  {245, 186, 200, 251, 207, 255, 247, 254},
  {246, 188, 201, 252, 207, 255, 248, 254},
  {246, 189, 202, 252, 208, 255, 248, 254},
  {247, 191, 203, 252, 209, 255, 248, 254},
  {247, 192, 204, 252, 210, 255, 248, 254},
  {248, 194, 205, 252, 211, 255, 248, 254},
  {248, 195, 206, 252, 212, 255, 249, 254},
  {249, 197, 207, 253, 213, 255, 249, 254},
  {249, 198, 208, 253, 214, 255, 249, 254},
  {250, 200, 210, 253, 215, 255, 249, 254},
  {250, 201, 211, 253, 215, 255, 249, 254},
  {250, 203, 212, 253, 216, 255, 249, 254},
  {251, 204, 213, 253, 217, 255, 250, 254},
  {251, 206, 214, 254, 218, 255, 250, 254},
  {252, 207, 216, 254, 219, 255, 250, 254},
  {252, 209, 217, 254, 220, 255, 250, 254},
  {252, 211, 218, 254, 221, 255, 250, 254},
  {253, 213, 219, 254, 222, 255, 250, 254},
  {253, 214, 221, 254, 223, 255, 250, 254},
  {253, 216, 222, 254, 224, 255, 251, 254},
  {253, 218, 224, 254, 225, 255, 251, 254},
  {254, 220, 225, 254, 225, 255, 251, 254},
  {254, 222, 227, 255, 226, 255, 251, 254},
  {254, 224, 228, 255, 227, 255, 251, 254},
  {254, 226, 230, 255, 228, 255, 251, 254},
  {255, 228, 231, 255, 230, 255, 251, 254},
  {255, 230, 233, 255, 231, 255, 252, 254},
  {255, 232, 235, 255, 232, 255, 252, 254},
  {255, 235, 237, 255, 233, 255, 252, 254},
  {255, 238, 240, 255, 235, 255, 252, 255},
  {255, 241, 243, 255, 236, 255, 252, 254},
  {255, 246, 247, 255, 239, 255, 253, 255}
386
387
};

388
389
390
static void extend_model_to_full_distribution(vp9_prob p,
                                              vp9_prob *tree_probs) {
  const int l = ((p - 1) / 2);
391
  const vp9_prob (*model)[MODEL_NODES] = modelcoefprobs_pareto8;
392
  if (p & 1) {
393
    vpx_memcpy(tree_probs + UNCONSTRAINED_NODES,
394
395
               model[l], MODEL_NODES * sizeof(vp9_prob));
  } else {
396
397
398
    // interpolate
    int i;
    for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i)
399
400
      tree_probs[i] = (model[l][i - UNCONSTRAINED_NODES] +
                       model[l + 1][i - UNCONSTRAINED_NODES]) >> 1;
401
  }
402
}
403

404
405
406
407
void vp9_model_to_full_probs(const vp9_prob *model, vp9_prob *full) {
  if (full != model)
    vpx_memcpy(full, model, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
  extend_model_to_full_distribution(model[PIVOT_NODE], full);
408
409
}

410
static vp9_tree_index cat1[2], cat2[4], cat3[6], cat4[8], cat5[10], cat6[28];
John Koleszar's avatar
John Koleszar committed
411

412
static void init_bit_tree(vp9_tree_index *p, int n) {
John Koleszar's avatar
John Koleszar committed
413
  int i = 0;
John Koleszar's avatar
John Koleszar committed
414

John Koleszar's avatar
John Koleszar committed
415
416
417
418
  while (++i < n) {
    p[0] = p[1] = i << 1;
    p += 2;
  }
John Koleszar's avatar
John Koleszar committed
419

John Koleszar's avatar
John Koleszar committed
420
  p[0] = p[1] = 0;
John Koleszar's avatar
John Koleszar committed
421
422
}

John Koleszar's avatar
John Koleszar committed
423
424
425
426
427
428
static void init_bit_trees() {
  init_bit_tree(cat1, 1);
  init_bit_tree(cat2, 2);
  init_bit_tree(cat3, 3);
  init_bit_tree(cat4, 4);
  init_bit_tree(cat5, 5);
429
  init_bit_tree(cat6, 14);
John Koleszar's avatar
John Koleszar committed
430
431
}

432
vp9_extra_bit vp9_extra_bits[12] = {
John Koleszar's avatar
John Koleszar committed
433
434
435
436
437
438
439
440
441
442
  { 0, 0, 0, 0},
  { 0, 0, 0, 1},
  { 0, 0, 0, 2},
  { 0, 0, 0, 3},
  { 0, 0, 0, 4},
  { cat1, Pcat1, 1, 5},
  { cat2, Pcat2, 2, 7},
  { cat3, Pcat3, 3, 11},
  { cat4, Pcat4, 4, 19},
  { cat5, Pcat5, 5, 35},
443
  { cat6, Pcat6, 14, 67},
John Koleszar's avatar
John Koleszar committed
444
  { 0, 0, 0, 0}
John Koleszar's avatar
John Koleszar committed
445
};
446

447
#include "vp9/common/vp9_default_coef_probs.h"
John Koleszar's avatar
John Koleszar committed
448

449
void vp9_default_coef_probs(VP9_COMMON *pc) {
450
451
452
453
454
455
456
457
  vpx_memcpy(pc->fc.coef_probs[TX_4X4], default_coef_probs_4x4,
             sizeof(pc->fc.coef_probs[TX_4X4]));
  vpx_memcpy(pc->fc.coef_probs[TX_8X8], default_coef_probs_8x8,
             sizeof(pc->fc.coef_probs[TX_8X8]));
  vpx_memcpy(pc->fc.coef_probs[TX_16X16], default_coef_probs_16x16,
             sizeof(pc->fc.coef_probs[TX_16X16]));
  vpx_memcpy(pc->fc.coef_probs[TX_32X32], default_coef_probs_32x32,
             sizeof(pc->fc.coef_probs[TX_32X32]));
458
}
John Koleszar's avatar
John Koleszar committed
459

460
461
462
463
// Neighborhood 5-tuples for various scans and blocksizes,
// in {top, left, topleft, topright, bottomleft} order
// for each position in raster scan order.
// -1 indicates the neighbor does not exist.
464
DECLARE_ALIGNED(16, int16_t,
465
                vp9_default_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
466
DECLARE_ALIGNED(16, int16_t,
467
                vp9_col_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
468
DECLARE_ALIGNED(16, int16_t,
469
                vp9_row_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
470
DECLARE_ALIGNED(16, int16_t,
471
                vp9_col_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
472
DECLARE_ALIGNED(16, int16_t,
473
                vp9_row_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
474
DECLARE_ALIGNED(16, int16_t,
475
                vp9_default_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
476
DECLARE_ALIGNED(16, int16_t,
477
                vp9_col_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
478
DECLARE_ALIGNED(16, int16_t,
479
                vp9_row_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
480
DECLARE_ALIGNED(16, int16_t,
481
                vp9_default_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
482
DECLARE_ALIGNED(16, int16_t,
483
                vp9_default_scan_32x32_neighbors[1025 * MAX_NEIGHBORS]);
484

485
486
487
488
489
490
491
492
493
494
495
496
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_32x32[1024]);

static int find_in_scan(const int16_t *scan, int l, int idx) {
497
498
499
500
501
502
503
504
505
  int n, l2 = l * l;
  for (n = 0; n < l2; n++) {
    int rc = scan[n];
    if (rc == idx)
      return  n;
  }
  assert(0);
  return -1;
}
506
507
static void init_scan_neighbors(const int16_t *scan,
                                int16_t *iscan,
508
                                int l, int16_t *neighbors) {
509
510
511
  int l2 = l * l;
  int n, i, j;

512
513
514
515
516
  // dc doesn't use this type of prediction
  neighbors[MAX_NEIGHBORS * 0 + 0] = 0;
  neighbors[MAX_NEIGHBORS * 0 + 1] = 0;
  iscan[0] = find_in_scan(scan, l, 0);
  for (n = 1; n < l2; n++) {
517
    int rc = scan[n];
518
    iscan[n] = find_in_scan(scan, l, n);
519
520
521
522
523
524
525
526
527
528
529
    i = rc / l;
    j = rc % l;
    if (i > 0 && j > 0) {
      // col/row scan is used for adst/dct, and generally means that
      // energy decreases to zero much faster in the dimension in
      // which ADST is used compared to the direction in which DCT
      // is used. Likewise, we find much higher correlation between
      // coefficients within the direction in which DCT is used.
      // Therefore, if we use ADST/DCT, prefer the DCT neighbor coeff
      // as a context. If ADST or DCT is used in both directions, we
      // use the combination of the two as a context.
530
531
      int a = (i - 1) * l + j;
      int b =  i      * l + j - 1;
532
533
      if (scan == vp9_col_scan_4x4 || scan == vp9_col_scan_8x8 ||
          scan == vp9_col_scan_16x16) {
534
535
536
537
538
        // in the col/row scan cases (as well as left/top edge cases), we set
        // both contexts to the same value, so we can branchlessly do a+b+1>>1
        // which automatically becomes a if a == b
        neighbors[MAX_NEIGHBORS * n + 0] =
        neighbors[MAX_NEIGHBORS * n + 1] = a;
539
540
      } else if (scan == vp9_row_scan_4x4 || scan == vp9_row_scan_8x8 ||
                 scan == vp9_row_scan_16x16) {
541
542
        neighbors[MAX_NEIGHBORS * n + 0] =
        neighbors[MAX_NEIGHBORS * n + 1] = b;
543
      } else {
544
545
        neighbors[MAX_NEIGHBORS * n + 0] = a;
        neighbors[MAX_NEIGHBORS * n + 1] = b;
546
547
      }
    } else if (i > 0) {
548
549
      neighbors[MAX_NEIGHBORS * n + 0] =
      neighbors[MAX_NEIGHBORS * n + 1] = (i - 1) * l + j;
550
    } else {
551
552
553
      assert(j > 0);
      neighbors[MAX_NEIGHBORS * n + 0] =
      neighbors[MAX_NEIGHBORS * n + 1] =  i      * l + j - 1;
554
    }
555
    assert(iscan[neighbors[MAX_NEIGHBORS * n + 0]] < n);
556
  }
557
558
559
560
  // one padding item so we don't have to add branches in code to handle
  // calls to get_coef_context() for the token after the final dc token
  neighbors[MAX_NEIGHBORS * l2 + 0] = 0;
  neighbors[MAX_NEIGHBORS * l2 + 1] = 0;
561
562
563
}

void vp9_init_neighbors() {
564
  init_scan_neighbors(vp9_default_scan_4x4, vp9_default_iscan_4x4, 4,
565
                      vp9_default_scan_4x4_neighbors);
566
  init_scan_neighbors(vp9_row_scan_4x4, vp9_row_iscan_4x4, 4,
567
                      vp9_row_scan_4x4_neighbors);
568
  init_scan_neighbors(vp9_col_scan_4x4, vp9_col_iscan_4x4, 4,
569
                      vp9_col_scan_4x4_neighbors);
570
  init_scan_neighbors(vp9_default_scan_8x8, vp9_default_iscan_8x8, 8,
571
                      vp9_default_scan_8x8_neighbors);
572
  init_scan_neighbors(vp9_row_scan_8x8, vp9_row_iscan_8x8, 8,
573
                      vp9_row_scan_8x8_neighbors);
574
  init_scan_neighbors(vp9_col_scan_8x8, vp9_col_iscan_8x8, 8,
575
                      vp9_col_scan_8x8_neighbors);
576
  init_scan_neighbors(vp9_default_scan_16x16, vp9_default_iscan_16x16, 16,
577
                      vp9_default_scan_16x16_neighbors);
578
  init_scan_neighbors(vp9_row_scan_16x16, vp9_row_iscan_16x16, 16,
579
                      vp9_row_scan_16x16_neighbors);
580
  init_scan_neighbors(vp9_col_scan_16x16, vp9_col_iscan_16x16, 16,
581
                      vp9_col_scan_16x16_neighbors);
582
  init_scan_neighbors(vp9_default_scan_32x32, vp9_default_iscan_32x32, 32,
583
                      vp9_default_scan_32x32_neighbors);
584
585
}

586
const int16_t *vp9_get_coef_neighbors_handle(const int16_t *scan) {
Paul Wilkins's avatar
Paul Wilkins committed
587
588
  if (scan == vp9_default_scan_4x4) {
    return vp9_default_scan_4x4_neighbors;
589
590
591
592
  } else if (scan == vp9_row_scan_4x4) {
    return vp9_row_scan_4x4_neighbors;
  } else if (scan == vp9_col_scan_4x4) {
    return vp9_col_scan_4x4_neighbors;
Paul Wilkins's avatar
Paul Wilkins committed
593
594
  } else if (scan == vp9_default_scan_8x8) {
    return vp9_default_scan_8x8_neighbors;
595
596
597
598
  } else if (scan == vp9_row_scan_8x8) {
    return vp9_row_scan_8x8_neighbors;
  } else if (scan == vp9_col_scan_8x8) {
    return vp9_col_scan_8x8_neighbors;
Paul Wilkins's avatar
Paul Wilkins committed
599
600
  } else if (scan == vp9_default_scan_16x16) {
    return vp9_default_scan_16x16_neighbors;
601
602
603
604
  } else if (scan == vp9_row_scan_16x16) {
    return vp9_row_scan_16x16_neighbors;
  } else if (scan == vp9_col_scan_16x16) {
    return vp9_col_scan_16x16_neighbors;
605
  } else {
606
607
    assert(scan == vp9_default_scan_32x32);
    return vp9_default_scan_32x32_neighbors;
608
609
610
  }
}

611
void vp9_coef_tree_initialize() {
612
  vp9_init_neighbors();
John Koleszar's avatar
John Koleszar committed
613
  init_bit_trees();
614
  vp9_tokens_from_tree(vp9_coef_encodings, vp9_coef_tree);
615
616
}

John Koleszar's avatar
John Koleszar committed
617
// #define COEF_COUNT_TESTING
618
619
620
621
622
623
624
625

#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128

626
627
static void adapt_coef_probs(VP9_COMMON *cm, TX_SIZE txfm_size,
                             int count_sat, int update_factor) {
628
629
  FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx];

630
  vp9_coeff_probs_model *dst_coef_probs = cm->fc.coef_probs[txfm_size];
631
  vp9_coeff_probs_model *pre_coef_probs = pre_fc->coef_probs[txfm_size];
632
  vp9_coeff_count_model *coef_counts = cm->counts.coef[txfm_size];
633
  unsigned int (*eob_branch_count)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
634
      cm->counts.eob_branch[txfm_size];
635
  int t, i, j, k, l, count;
John Koleszar's avatar
John Koleszar committed
636
  int factor;
637
638
639
  unsigned int branch_ct[UNCONSTRAINED_NODES][2];
  vp9_prob coef_probs[UNCONSTRAINED_NODES];
  int entropy_nodes_adapt = UNCONSTRAINED_NODES;
640

641
  for (i = 0; i < BLOCK_TYPES; ++i)
642
643
644
645
646
    for (j = 0; j < REF_TYPES; ++j)
      for (k = 0; k < COEF_BANDS; ++k)
        for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
          if (l >= 3 && k == 0)
            continue;
647
648
649
650
          vp9_tree_probs_from_distribution(
              vp9_coefmodel_tree,
              coef_probs, branch_ct,
              coef_counts[i][j][k][l], 0);
651
652
653
654
#if CONFIG_BALANCED_COEFTREE
          branch_ct[1][1] = eob_branch_count[i][j][k][l] - branch_ct[1][0];
          coef_probs[1] = get_binary_prob(branch_ct[1][0], branch_ct[1][1]);
#else
655
656
          branch_ct[0][1] = eob_branch_count[i][j][k][l] - branch_ct[0][0];
          coef_probs[0] = get_binary_prob(branch_ct[0][0], branch_ct[0][1]);
657
#endif
658
          for (t = 0; t < entropy_nodes_adapt; ++t) {
659
660
661
662
663
664
665
            count = branch_ct[t][0] + branch_ct[t][1];
            count = count > count_sat ? count_sat : count;
            factor = (update_factor * count / count_sat);
            dst_coef_probs[i][j][k][l][t] =
                weighted_prob(pre_coef_probs[i][j][k][l][t],
                              coef_probs[t], factor);
          }
666
667
668
669
        }
}

void vp9_adapt_coef_probs(VP9_COMMON *cm) {
670
  TX_SIZE t;
John Koleszar's avatar
John Koleszar committed
671
  int count_sat;
672
  int update_factor; /* denominator 256 */
John Koleszar's avatar
John Koleszar committed
673

Adrian Grange's avatar
Adrian Grange committed
674
  if ((cm->frame_type == KEY_FRAME) || cm->intra_only) {
John Koleszar's avatar
John Koleszar committed
675
676
677
678
679
680
681
682
683
    update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
    count_sat = COEF_COUNT_SAT_KEY;
  } else if (cm->last_frame_type == KEY_FRAME) {
    update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY;  /* adapt quickly */
    count_sat = COEF_COUNT_SAT_AFTER_KEY;
  } else {
    update_factor = COEF_MAX_UPDATE_FACTOR;
    count_sat = COEF_COUNT_SAT;
  }
684
685
  for (t = TX_4X4; t <= TX_32X32; t++)
    adapt_coef_probs(cm, t, count_sat, update_factor);
686
}