restoration.c 81.7 KB
Newer Older
1
/*
Yaowu Xu's avatar
Yaowu Xu committed
2
3
4
5
6
7
8
9
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
11
12
13
14
 *
 */

#include <math.h>

Yaowu Xu's avatar
Yaowu Xu committed
15
16
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
17
#include "./aom_scale_rtcd.h"
18
#include "av1/common/onyxc_int.h"
19
20
21
#if CONFIG_FRAME_SUPERRES
#include "av1/common/resize.h"
#endif
22
#include "av1/common/restoration.h"
Yaowu Xu's avatar
Yaowu Xu committed
23
24
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
25

26
#include "aom_ports/mem.h"
27

28
const sgr_params_type sgr_params[SGRPROJ_PARAMS] = {
29
30
31
32
33
34
35
#if USE_HIGHPASS_IN_SGRPROJ
  // corner, edge, r2, eps2
  { -1, 2, 1, 1 }, { -1, 2, 1, 2 }, { -1, 2, 1, 3 }, { -1, 2, 1, 4 },
  { -1, 2, 1, 5 }, { -2, 3, 1, 2 }, { -2, 3, 1, 3 }, { -2, 3, 1, 4 },
  { -2, 3, 1, 5 }, { -2, 3, 1, 6 }, { -3, 4, 1, 3 }, { -3, 4, 1, 4 },
  { -3, 4, 1, 5 }, { -3, 4, 1, 6 }, { -3, 4, 1, 7 }, { -3, 4, 1, 8 }
#else
36
// r1, eps1, r2, eps2
37
#if MAX_RADIUS == 2
38
39
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
40
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 2, 30, 1, 6 },
41
42
  { 2, 50, 1, 12 }, { 2, 60, 1, 13 }, { 2, 70, 1, 14 }, { 2, 80, 1, 15 },
#else
43
44
45
46
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 },
  { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 },
47
#endif  // MAX_RADIUS == 2
48
#endif
49
50
};

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#if CONFIG_MAX_TILE
static void tile_width_and_height(const AV1_COMMON *cm, int is_uv, int sb_w,
                                  int sb_h, int *px_w, int *px_h) {
  const int scaled_sb_w = sb_w << MAX_MIB_SIZE_LOG2;
  const int scaled_sb_h = sb_h << MAX_MIB_SIZE_LOG2;

  const int ss_x = is_uv && cm->subsampling_x;
  const int ss_y = is_uv && cm->subsampling_y;

  *px_w = (scaled_sb_w + ss_x) >> ss_x;
  *px_h = (scaled_sb_h + ss_y) >> ss_y;
#if CONFIG_FRAME_SUPERRES
  if (!av1_superres_unscaled(cm)) {
    av1_calculate_unscaled_superres_size(px_w, px_h,
                                         cm->superres_scale_denominator);
  }
#endif  // CONFIG_FRAME_SUPERRES
}
#endif  // CONFIG_MAX_TILE

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
// Count horizontal or vertical units per tile (use a width or height for
// tile_size, respectively). We basically want to divide the tile size by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a restoration
// unit.
static int count_units_in_tile(int unit_size, int tile_size) {
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
}

void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
                                  int is_uv) {
#if CONFIG_MAX_TILE
  // We need to allocate enough space for restoration units to cover the
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
  // top-left and we can use av1_get_tile_rect. With CONFIG_MAX_TILE, we have
  // to do the computation ourselves, iterating over the tiles and keeping
  // track of the largest width and height, then upscaling.
90
91
  int max_sb_w = 0;
  int max_sb_h = 0;
92
  for (int i = 0; i < cm->tile_cols; ++i) {
93
94
    const int sb_w = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
    max_sb_w = AOMMAX(max_sb_w, sb_w);
95
96
  }
  for (int i = 0; i < cm->tile_rows; ++i) {
97
98
    const int sb_h = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i];
    max_sb_h = AOMMAX(max_sb_h, sb_h);
99
  }
100
101
102
103

  int max_tile_w, max_tile_h;
  tile_width_and_height(cm, is_uv, max_sb_w, max_sb_h, &max_tile_w,
                        &max_tile_h);
104
105
106
107
108
109
110
111
112
#else
  TileInfo tile_info;
  av1_tile_init(&tile_info, cm, 0, 0);

  const AV1PixelRect tile_rect = av1_get_tile_rect(&tile_info, cm, is_uv);
  assert(tile_rect.left == 0 && tile_rect.top == 0);

  const int max_tile_w = tile_rect.right;
  const int max_tile_h = tile_rect.bottom;
113
#endif  // CONFIG_MAX_TILE
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

  // To calculate hpertile and vpertile (horizontal and vertical units per
  // tile), we basically want to divide the largest tile width or height by the
  // size of a restoration unit. Rather than rounding up unconditionally as you
  // might expect, we round to nearest, which models the way a right or bottom
  // restoration unit can extend to up to 150% its normal width or height. The
  // max with 1 is to deal with tiles that are smaller than half of a
  // restoration unit.
  const int unit_size = rsi->restoration_unit_size;
  const int hpertile = count_units_in_tile(unit_size, max_tile_w);
  const int vpertile = count_units_in_tile(unit_size, max_tile_h);

  rsi->units_per_tile = hpertile * vpertile;
  rsi->horz_units_per_tile = hpertile;
  rsi->vert_units_per_tile = vpertile;

  const int ntiles = cm->tile_rows * cm->tile_cols;
  const int nunits = ntiles * rsi->units_per_tile;

  aom_free(rsi->unit_info);
  CHECK_MEM_ERROR(cm, rsi->unit_info, (RestorationUnitInfo *)aom_malloc(
                                          sizeof(*rsi->unit_info) * nunits));
136
137
138
}

void av1_free_restoration_struct(RestorationInfo *rst_info) {
139
140
  aom_free(rst_info->unit_info);
  rst_info->unit_info = NULL;
141
}
142
143
144

// TODO(debargha): This table can be substantially reduced since only a few
// values are actually used.
David Barker's avatar
David Barker committed
145
int sgrproj_mtable[MAX_EPS][MAX_NELEM];
146
147
148
149
150
151
152
153
154
155

static void GenSgrprojVtable() {
  int e, n;
  for (e = 1; e <= MAX_EPS; ++e)
    for (n = 1; n <= MAX_NELEM; ++n) {
      const int n2e = n * n * e;
      sgrproj_mtable[e - 1][n - 1] =
          (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
    }
}
156
157

void av1_loop_restoration_precal() { GenSgrprojVtable(); }
158

159
160
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
                               int border_horz, int border_vert) {
161
162
163
164
  uint8_t *data_p;
  int i;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
165
166
    memset(data_p - border_horz, data_p[0], border_horz);
    memset(data_p + width, data_p[width - 1], border_horz);
167
  }
168
169
170
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
171
  }
172
  for (i = height; i < height + border_vert; ++i) {
173
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
174
           width + 2 * border_horz);
175
176
177
  }
}

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#if CONFIG_HIGHBITDEPTH
static void extend_frame_highbd(uint16_t *data, int width, int height,
                                int stride, int border_horz, int border_vert) {
  uint16_t *data_p;
  int i, j;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
  }
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
  for (i = height; i < height + border_vert; ++i) {
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
}
#endif

void extend_frame(uint8_t *data, int width, int height, int stride,
                  int border_horz, int border_vert, int highbd) {
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
                        border_horz, border_vert);
  else
#endif
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
}

214
215
216
217
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
                            int src_stride, uint8_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
218
219
220
}

#if CONFIG_HIGHBITDEPTH
221
222
223
224
static void copy_tile_highbd(int width, int height, const uint16_t *src,
                             int src_stride, uint16_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
225
226
227
}
#endif

228
229
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
                      uint8_t *dst, int dst_stride, int highbd) {
230
231
232
233
234
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
235
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
236
237
238
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
  else
#endif
239
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
240
}
241

242
243
244
#if CONFIG_STRIPED_LOOP_RESTORATION
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))

245
246
247
248
249
250
251
252
253
254
255
256
// Helper function: Save one column of left/right context to the appropriate
// column buffers, then extend the edge of the current tile into that column.
//
// Note: The code to deal with above/below boundaries may have filled out
// the corners of the border with data from the tiles to our left or right,
// which isn't allowed. To fix that up, we need to include the top and
// bottom context regions in the area which we extend.
// But note that we don't need to store the pixels we overwrite in the
// corners of the context area - those have already been overwritten once,
// so their original values are already in rlbs->tmp_save_{above,below}.
#if CONFIG_LOOPFILTERING_ACROSS_TILES
static void setup_boundary_column(const uint8_t *src8, int src_stride,
257
258
                                  uint8_t *dst8, int dst_stride, uint16_t *buf,
                                  int h, int use_highbd) {
259
260
261
262
263
  if (use_highbd) {
    const uint16_t *src16 = CONVERT_TO_SHORTPTR(src8);
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst16[i * dst_stride] = src16[i * src_stride];
264
265
    for (int i = 0; i < h; i++) {
      buf[i] = dst16[i * dst_stride];
266
267
      dst16[i * dst_stride] = src16[i * src_stride];
    }
268
    for (int i = h; i < h + RESTORATION_BORDER; i++)
269
270
271
272
      dst16[i * dst_stride] = src16[i * src_stride];
  } else {
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst8[i * dst_stride] = src8[i * src_stride];
273
274
    for (int i = 0; i < h; i++) {
      buf[i] = dst8[i * dst_stride];
275
276
      dst8[i * dst_stride] = src8[i * src_stride];
    }
277
    for (int i = h; i < h + RESTORATION_BORDER; i++)
278
279
280
      dst8[i * dst_stride] = src8[i * src_stride];
  }
}
281
282
283
284
285
286
287
288
289
290
291

static void restore_boundary_column(uint8_t *dst8, int dst_stride,
                                    const uint16_t *buf, int h,
                                    int use_highbd) {
  if (use_highbd) {
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = 0; i < h; i++) dst16[i * dst_stride] = buf[i];
  } else {
    for (int i = 0; i < h; i++) dst8[i * dst_stride] = buf[i];
  }
}
292
293
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES

294
// With striped loop restoration, the filtering for each 64-pixel stripe gets
295
296
297
298
// most of its input from the output of CDEF (stored in data8), but we need to
// fill out a border of 3 pixels above/below the stripe according to the
// following
// rules:
299
//
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
//   This extension is done by a call to extend_frame() at the start of the loop
//   restoration process, so the value of copy_above/copy_below doesn't strictly
//   matter.
//   However, by setting *copy_above = *copy_below = 1 whenever loop filtering
//   across tiles is disabled, we can allow
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
//   data has always been copied, simplifying the behaviour at the left and
//   right edges of tiles.
//
// * If we're at a tile boundary and loop filtering across tiles is enabled,
//   then there is a logical stripe which is 64 pixels high, but which is split
//   into an 8px high and a 56px high stripe so that the processing (and
//   coefficient set usage) can be aligned to tiles.
//   In this case, we use the 3 rows of CDEF output across the boundary for
//   context; this corresponds to leaving the frame buffer as-is.
//
// * If we're at a tile boundary and loop filtering across tiles is disabled,
//   then we take the outermost row of CDEF pixels *within the current tile*
//   and copy it three times. Thus we behave exactly as if the tile were a full
//   frame.
//
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
//
// The distinction between the latter two cases is handled by the
// av1_loop_restoration_save_boundary_lines() function, so here we just need
// to decide if we're overwriting the above/below boundary pixels or not.
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
                                     const AV1PixelRect *tile_rect, int ss_y,
#if CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int *copy_above, int *copy_below) {
  *copy_above = 1;
  *copy_below = 1;

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (loop_filter_across_tiles_enabled) {
#endif
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
    const int rtile_offset = RESTORATION_TILE_OFFSET >> ss_y;

    const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
    const int this_stripe_height =
        full_stripe_height - (first_stripe_in_tile ? rtile_offset : 0);
    const int last_stripe_in_tile =
        (limits->v_start + this_stripe_height >= tile_rect->bottom);

    if (first_stripe_in_tile) *copy_above = 0;
    if (last_stripe_in_tile) *copy_below = 0;
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  }
#endif
}

// Overwrite the border pixels around a processing stripe so that the conditions
// listed above get_stripe_boundary_info() are preserved.
// We save the pixels which get overwritten into a temporary buffer, so that
// they can be restored by restore_processing_stripe_boundary() after we've
// processed the stripe.
361
362
//
// limits gives the rectangular limits of the remaining stripes for the current
363
364
// restoration unit. rsb is the stored stripe boundaries (taken from either
// deblock or CDEF output as necessary).
365
366
367
368
//
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
// the first stripe in this tile (needed to convert the tile-relative stripe
// index we get from limits into something we can look up in rsb).
369
static void setup_processing_stripe_boundary(
370
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
371
    int rsb_row, int use_highbd, int h,
372
#if CONFIG_LOOPFILTERING_ACROSS_TILES
373
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
374
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
375
376
    uint8_t *data8, int data_stride, RestorationLineBuffers *rlbs,
    int copy_above, int copy_below) {
377
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
378

379
380
381
  // Offsets within the line buffers. The buffer logically starts at column
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
  // has column x0 in the buffer.
382
  const int buf_stride = rsb->stripe_boundary_stride;
383
384
385
386
  const int buf_x0_off = limits->h_start;
  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
387

388
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
389

390
391
392
393
394
  // Replace RESTORATION_BORDER pixels above the top of the stripe
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  //
  // Special case: If we're at the top of a tile, which isn't on the topmost
  // tile row, and we're allowed to loop filter across tiles, then we have a
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
  // we want to leave the boundary alone!
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;

    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *buf = rsb->stripe_boundary_above + (buf_off << use_highbd);
      uint8_t *dst8 = data8_tl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_above
      memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
             REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
    }
414
  }
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
  // The second buffer row is repeated, so src_row gets the values 0, 1, 1
  // for i = 0, 1, 2.
  if (copy_below) {
    const int stripe_end = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;

    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *src = rsb->stripe_boundary_below + (buf_off << use_highbd);

      uint8_t *dst8 = data8_bl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_below
      memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
    }
433
  }
434

435
436
437
438
439
440
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // If loopfiltering across tiles is disabled, we need to check if we're at
    // the edge of the current tile column. If we are, we need to extend the
    // leftmost/rightmost column within the tile by 3 pixels, so that the output
    // doesn't depend on pixels from the next column over.
441
442
    // This applies to the top and bottom borders too, since those may have
    // been filled out with data from the tile to the top-left (etc.) of us.
443
444
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);
445

446
447
448
449
    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
        setup_boundary_column(dst8, data_stride, dst8 + j, data_stride,
450
451
                              rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                              use_highbd);
452
453
454
455
456
457
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
        setup_boundary_column(dst8 - 1, data_stride, dst8 + j, data_stride,
458
                              rlbs->tmp_save_right[j], h, use_highbd);
459
460
461
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
462
463
464
465
}

// This function restores the boundary lines modified by
// setup_processing_stripe_boundary.
466
static void restore_processing_stripe_boundary(
467
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
468
    int use_highbd, int h,
469
470
471
#if CONFIG_LOOPFILTERING_ACROSS_TILES
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
472
    uint8_t *data8, int data_stride, int copy_above, int copy_below) {
473
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
474
475
476
477

  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
478

479
480
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;

481
482
483
484
485
486
487
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      uint8_t *dst8 = data8_tl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8),
             rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
    }
488
  }
489

490
491
492
  if (copy_below) {
    const int stripe_bottom = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
493

494
495
    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
496

497
498
499
      uint8_t *dst8 = data8_bl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
    }
500
  }
501
502
503
504
505
506

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // Restore any pixels we overwrote at the left/right edge of this
    // processing unit
    // Note: We don't need to restore the corner pixels, even if we overwrote
507
508
509
    // them in the equivalent place in setup_processing_stripe_boundary:
    // Because !loop_filter_across_tiles_enabled => copy_above = copy_below = 1,
    // the corner pixels will already have been restored before we get here.
510
511
512
513
514
515
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);

    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
516
517
518
        restore_boundary_column(dst8 + j, data_stride,
                                rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                                use_highbd);
519
520
521
522
523
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
524
525
        restore_boundary_column(dst8 + j, data_stride, rlbs->tmp_save_right[j],
                                h, use_highbd);
526
527
528
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
529
530
531
}
#endif

532
533
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
#define wiener_convolve8_add_src aom_convolve8_add_src_hip
534
#else
535
#define wiener_convolve8_add_src aom_convolve8_add_src
536
537
#endif

538
539
540
541
542
543
544
545
546
547
548
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
                                 int stripe_width, int stripe_height,
                                 int procunit_width, const uint8_t *src,
                                 int src_stride, uint8_t *dst, int dst_stride,
                                 int32_t *tmpbuf, int bit_depth) {
  (void)tmpbuf;
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
549
550
551
    const uint8_t *src_p = src + j;
    uint8_t *dst_p = dst + j;
    wiener_convolve8_add_src(src_p, src_stride, dst_p, dst_stride,
552
                             rui->wiener_info.hfilter, 16,
553
                             rui->wiener_info.vfilter, 16, w, stripe_height);
554
  }
555
}
556

557
558
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
   over the input. The window is of size (2r + 1)x(2r + 1), and we
559
   specialize to r = 1, 2, 3. A default function is used for r > 3.
560
561
562
563
564
565
566
567
568
569
570
571
572
573

   Each loop follows the same format: We keep a window's worth of input
   in individual variables and select data out of that as appropriate.
*/
static void boxsum1(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c;

  // Vertical sum over 3-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 1) * src_stride + j]
        // b = src[(i    ) * src_stride + j]
        // c = src[(i + 1) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
589
  } else {
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];

      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
  }

  // Horizontal sum over 3-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];

    dst[i * dst_stride] = a + b;
    for (j = 1; j < width - 2; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 1)]
      // b = src[i * src_stride + (j    )]
      // c = src[i * src_stride + (j + 1)]
      dst[i * dst_stride + j] = a + b + c;
      a = b;
      b = c;
      c = dst[i * dst_stride + (j + 2)];
    }
    dst[i * dst_stride + j] = a + b + c;
    dst[i * dst_stride + (j + 1)] = b + c;
  }
}

static void boxsum2(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e;

  // Vertical sum over 5-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 2) * src_stride + j]
        // b = src[(i - 1) * src_stride + j]
        // c = src[(i    ) * src_stride + j]
        // d = src[(i + 1) * src_stride + j]
        // e = src[(i + 2) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  }

  // Horizontal sum over 5-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];

    dst[i * dst_stride] = a + b + c;
    dst[i * dst_stride + 1] = a + b + c + d;
    for (j = 2; j < width - 3; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 2)]
      // b = src[i * src_stride + (j - 1)]
      // c = src[i * src_stride + (j    )]
      // d = src[i * src_stride + (j + 1)]
      // e = src[i * src_stride + (j + 2)]
      dst[i * dst_stride + j] = a + b + c + d + e;
      a = b;
      b = c;
      c = d;
      d = e;
      e = dst[i * dst_stride + (j + 3)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e;
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
    dst[i * dst_stride + (j + 2)] = c + d + e;
  }
}

716
#if MAX_RADIUS > 2
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
static void boxsum3(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e, f, g;

  // Vertical sum over 7-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[1 * src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];
      f = src[5 * src_stride + j];
      g = src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[1 * src_stride + j] * src[1 * src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
      f = src[5 * src_stride + j] * src[5 * src_stride + j];
      g = src[6 * src_stride + j] * src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  }

  // Horizontal sum over 7-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];
    f = dst[i * dst_stride + 5];
    g = dst[i * dst_stride + 6];

    dst[i * dst_stride] = a + b + c + d;
    dst[i * dst_stride + 1] = a + b + c + d + e;
    dst[i * dst_stride + 2] = a + b + c + d + e + f;
    for (j = 3; j < width - 4; ++j) {
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      a = b;
      b = c;
      c = d;
      d = e;
      e = f;
      f = g;
      g = dst[i * dst_stride + (j + 4)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e + f + g;
    dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g;
    dst[i * dst_stride + (j + 2)] = c + d + e + f + g;
    dst[i * dst_stride + (j + 3)] = d + e + f + g;
  }
}

// Generic version for any r. To be removed after experiments are done.
static void boxsumr(int32_t *src, int width, int height, int src_stride, int r,
                    int sqr, int32_t *dst, int dst_stride) {
  int32_t *tmp = aom_malloc(width * height * sizeof(*tmp));
  int tmp_stride = width;
  int i, j;
  if (sqr) {
    for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j];
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] +
            src[i * src_stride + j] * src[i * src_stride + j];
  } else {
    memcpy(tmp, src, sizeof(*tmp) * width);
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j];
  }
  for (i = 0; i <= r; ++i)
    memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride],
           sizeof(*tmp) * width);
  for (i = r + 1; i < height - r; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] =
          tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j];
  for (i = height - r; i < height; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] -
                                tmp[(i - r - 1) * tmp_stride + j];

  for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride];
  for (i = 0; i < height; ++i)
    for (j = 1; j < width; ++j)
      tmp[i * tmp_stride + j] =
          tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j];

  for (j = 0; j <= r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r];
  for (j = r + 1; j < width - r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1];
  for (j = width - r; j < width; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1];
  aom_free(tmp);
}
861
#endif  // MAX_RADIUS > 2
862

863
864
865
866
867
868
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
                   int sqr, int32_t *dst, int dst_stride) {
  if (r == 1)
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
  else if (r == 2)
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
869
#if MAX_RADIUS > 2
870
871
  else if (r == 3)
    boxsum3(src, width, height, src_stride, sqr, dst, dst_stride);
872
  else if (r > 3)
873
    boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride);
874
875
876
#endif  // MAX_RADIUS > 2
  else
    assert(0 && "Invalid value of r in self-guided filter");
877
878
}

879
#if MAX_RADIUS > 2
880
881
static void boxnum(int width, int height, int r, int8_t *num, int num_stride) {
  int i, j;
882
883
884
  for (i = 0; i <= r; ++i) {
    for (j = 0; j <= r; ++j) {
      num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j);
885
886
887
888
889
890
      num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + (width - 1 - j)] =
          num[i * num_stride + j];
    }
  }
891
892
  for (j = 0; j <= r; ++j) {
    const int val = (2 * r + 1) * (r + 1 + j);
893
894
895
896
897
    for (i = r + 1; i < height - r; ++i) {
      num[i * num_stride + j] = val;
      num[i * num_stride + (width - 1 - j)] = val;
    }
  }
898
899
  for (i = 0; i <= r; ++i) {
    const int val = (2 * r + 1) * (r + 1 + i);
900
901
902
903
904
905
906
    for (j = r + 1; j < width - r; ++j) {
      num[i * num_stride + j] = val;
      num[(height - 1 - i) * num_stride + j] = val;
    }
  }
  for (i = r + 1; i < height - r; ++i) {
    for (j = r + 1; j < width - r; ++j) {
907
      num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1);
908
909
910
    }
  }
}
911
#endif  // MAX_RADIUS > 2
912

913
void decode_xq(const int *xqd, int *xq) {
914
  xq[0] = xqd[0];
915
916
917
  xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
}

David Barker's avatar
David Barker committed
918
const int32_t x_by_xplus1[256] = {
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
  0,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  256,
};

David Barker's avatar
David Barker committed
939
const int32_t one_by_x[MAX_NELEM] = {
940
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
941
942
943
944
945
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
#if MAX_RADIUS > 2
  158,  152,  146,  141,  137, 132, 128, 124, 120, 117, 114, 111, 108,
  105,  102,  100,  98,   95,  93,  91,  89,  87,  85,  84
#endif  // MAX_RADIUS > 2
946
947
};

948
static void av1_selfguided_restoration_internal(int32_t *dgd, int width,
949
950
                                                int height, int dgd_stride,
                                                int32_t *dst, int dst_stride,
951
                                                int bit_depth, int r, int eps) {
952
953
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
David Barker's avatar
David Barker committed
954
955
956
957
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
  // leading to a significant speed improvement.
  // We also align the stride to a multiple of 16 bytes, for consistency
  // with the SIMD version of this function.
958
  int buf_stride = ((width_ext + 3) & ~3) + 16;
959
960
961
962
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
  int32_t *A = A_;
  int32_t *B = B_;
963
964
#if MAX_RADIUS > 2
  const int num_stride = width_ext;
965
  int8_t num_[RESTORATION_PROC_UNIT_PELS];
966
  int8_t *num = num_ + SGRPROJ_BORDER_VERT * num_stride + SGRPROJ_BORDER_HORZ;
967
#endif
968
  int i, j;
969

970
971
972
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
         "Need SGRPROJ_BORDER_* >= r+1");
973

974
975
976
977
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
978
#if MAX_RADIUS > 2
979
  boxnum(width_ext, height_ext, r, num_, num_stride);
980
#endif
981
982
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
983
984
985
986
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
  for (i = -1; i < height + 1; ++i) {
    for (j = -1; j < width + 1; ++j) {
David Barker's avatar
David Barker committed
987
      const int k = i * buf_stride + j;
988
#if MAX_RADIUS > 2
989
      const int n = num[i * num_stride + j];
990
991
992
#else
      const int n = (2 * r + 1) * (2 * r + 1);
#endif
993

994
995
996
997
998
999
1000
1001
1002
1003
1004
      // a < 2^16 * n < 2^22 regardless of bit depth
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
      // b < 2^8 * n < 2^14 regardless of bit depth
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);

      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
      // This is an artefact of rounding, and can only happen if all pixels
      // are (almost) identical, so in this case we saturate to p=0.
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
1005
1006
1007
1008
1009

      // Note: If MAX_RADIUS <= 2, then this 's' is a function only of
      // r and eps. Further, this is the only place we use 'eps', so we could
      // pre-calculate 's' for each parameter set and store that in place of
      // 'eps'.
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
      uint32_t s = sgrproj_mtable[eps - 1][n - 1];

      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
      // (this holds even after accounting for the rounding in s)
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);

      A[k] = x_by_xplus1[AOMMIN(z, 255)];  // < 2^8

      // SGRPROJ_SGR - A[k] < 2^8, B[k] < 2^(bit_depth) * n,
      // one_by_x[n - 1] = round(2^12 / n)
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
      // and B[k] is set to a value < 2^(8 + bit depth)
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
                                             (uint32_t)B[k] *
                                             (uint32_t)one_by_x[n - 1],
                                         SGRPROJ_RECIP_BITS);
1027
1028
    }
  }
1029
1030
1031
  // Use the A[] and B[] arrays to calculate the filtered image
  for (i = 0; i < height; ++i) {
    for (j = 0; j < width; ++j) {
David Barker's avatar
David Barker committed
1032
      const int k = i * buf_stride + j;
1033
1034
      const int l = i * dgd_stride + j;
      const int m = i * dst_stride + j;
1035
      const int nb = 5;
1036
      const int32_t a =
David Barker's avatar
David Barker committed
1037
1038
1039
1040
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
              4 +
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
1041
              3;
1042
      const int32_t b =
David Barker's avatar
David Barker committed
1043
1044
1045
1046
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
              4 +
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
1047
              3;
1048
      const int32_t v = a * dgd[l] + b;
1049
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
1050
1051
1052
1053
    }
  }
}

1054
void av1_selfguided_restoration_c(const uint8_t *dgd, int width, int height,
1055
                                  int stride, int32_t *dst, int dst_stride,
1056
1057
                                  int r, int eps) {
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
1058
1059
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
  int32_t *dgd32 =
1060
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
1061
  int i, j;
1062
1063
1064
  for (i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
    for (j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
      dgd32[i * dgd32_stride + j] = dgd[i * stride + j];
1065
1066
    }
  }
1067
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, dst,
1068
                                      dst_stride, 8, r, eps);
1069
1070
}

1071
1072
1073
void av1_highpass_filter_c(const uint8_t *dgd, int width, int height,
                           int stride, int32_t *dst, int dst_stride, int corner,
                           int edge) {
1074
  int i, j;
1075
  const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge);
1076
1077
1078
1079
1080

  i = 0;
  j = 0;
  {
    const int k = i * stride + j;
1081
1082
1083
1084
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) +
        corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]);
1085
1086
1087
1088
1089
  }
  i = 0;
  j = width - 1;
  {
    const int k = i * stride + j;
1090
1091
1092
1093
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) +
        corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]);
1094
1095
1096
1097
1098
  }
  i = height - 1;
  j = 0;
  {
    const int k = i * stride + j;
1099
1100
1101
1102
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) +
        corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]);
1103
1104
1105
1106
1107
  }
  i = height - 1;
  j = width - 1;
  {
    const int k = i * stride + j;
1108
1109
1110
1111
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) +
        corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]);
1112
1113
1114
1115
  }
  i = 0;
  for (j = 1; j < width - 1; ++j) {
    const int k = i * stride + j;
1116
1117
1118
1119
1120
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) +
             corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] +
                       dgd[k + 1]);
1121
1122
1123
1124
  }
  i = height - 1;
  for (j = 1; j < width - 1; ++j) {
    const int k = i * stride + j;
1125
1126
1127
1128
1129
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) +
             corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] +
                       dgd[k + 1]);
1130
1131
1132
1133
  }
  j = 0;
  for (i = 1; i < height - 1; ++i) {
    const int k = i * stride + j;
1134
1135
1136
1137
1138
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) +
             corner * (dgd[k + stride + 1] + dgd[k - stride + 1] +
                       dgd[k - stride] + dgd[k + stride]);
1139
1140
1141
1142
  }
  j = width - 1;
  for (i = 1; i < height - 1; ++i) {
    const int k = i * stride + j;
1143
1144
1145
1146
1147
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) +
             corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
                       dgd[k - stride] + dgd[k + stride]);
1148
1149
1150
1151
  }
  for (i = 1; i < height - 1; ++i) {
    for (j = 1; j < width - 1; ++j) {
      const int k = i * stride + j;
1152
1153
1154
1155
1156
1157
      const int l = i * dst_stride + j;
      dst[l] =
          center * dgd[k] +
          edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) +
          corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
                    dgd[k - stride + 1] + dgd[k + stride + 1]);
1158
1159
1160
1161
    }
  }
}

1162
void apply_selfguided_restoration_c(const uint8_t *dat, int width, int height,
1163
1164
1165
                                    int stride, int eps, const int *xqd,
                                    uint8_t *dst, int dst_stride,
                                    int32_t *tmpbuf) {
1166
  int xq[2];
1167
  int32_t *flt1 = tmpbuf;
1168
  int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
1169
  int i, j;
1170
  assert(width * height <= RESTORATION_TILEPELS_MAX);
1171
1172
#if USE_HIGHPASS_IN_SGRPROJ
  av1_highpass_filter_c(dat, width, height, stride, flt1, width,
1173
                        sgr_params[eps].corner, sgr_params[eps].edge);
1174
#else
1175
  av1_selfguided_restoration_c(dat, width, height, stride, flt1, width,
1176
                               sgr_params[eps].r1, sgr_params[eps].e1);
1177
#endif  // USE_HIGHPASS_IN_SGRPROJ
1178
  av1_selfguided_restoration_c(dat, width, height, stride, flt2, width,
1179
                               sgr_params[eps].r2, sgr_params[eps].e2);
1180
1181
1182
1183
1184
  decode_xq(xqd, xq);
  for (i = 0; i < height; ++i) {
    for (j = 0; j < width; ++j) {
      const int k = i * width + j;
      const int l = i * stride + j;
1185
1186
1187
1188
      const int m = i * dst_stride + j;
      const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS);
      const int32_t f1 = (int32_t)flt1[k] - u;
      const int32_t f2 = (int32_t)flt2[k] - u;
David Barker's avatar
David Barker committed
1189
      const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
1190
1191
      const int16_t w =
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
1192
      dst[m] = clip_pixel(w);
1193
1194
1195
1196
    }
  }
}

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
                                  int stripe_width, int stripe_height,
                                  int procunit_width, const uint8_t *src,
                                  int src_stride, uint8_t *dst, int dst_stride,
                                  int32_t *tmpbuf, int bit_depth) {
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, stripe_width - j);
    apply_selfguided_restoration(src + j, w, stripe_height, src_stride,
                                 rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
                                 dst + j, dst_stride, tmpbuf);
1210
1211
1212
  }
}

1213
#if CONFIG_HIGHBITDEPTH
1214
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
1215
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src_hip
1216
#else
1217
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src
1218
#endif
1219

1220
1221
1222
static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
                                        int stripe_width, int stripe_height,
                                        int procunit_width, const uint8_t *src8,
1223
                                        int src_stride, uint8_t *dst8,
1224
1225
1226
1227
1228
1229
                                        int dst_stride, int32_t *tmpbuf,
                                        int bit_depth) {
  (void)tmpbuf;

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
1230
1231
    const uint8_t *src8_p = src8 + j;
    uint8_t *dst8_p = dst8 + j;
1232
1233
    wiener_highbd_convolve8_add_src(
        src8_p, src_stride, dst8_p, dst_stride, rui->wiener_info.hfilter, 16,
1234
        rui->wiener_info.vfilter, 16, w, stripe_height, bit_depth);