dct16x16_test.cc 9.89 KB
Newer Older
Daniel Kang's avatar
Daniel Kang committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/include/gtest/gtest.h"

extern "C" {
18
#include "vp9/common/entropy.h"
19
#include "vp9_rtcd.h"
Daniel Kang's avatar
Daniel Kang committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
}

#include "acm_random.h"
#include "vpx/vpx_integer.h"

using libvpx_test::ACMRandom;

namespace {

const double PI = 3.1415926535898;
void reference2_16x16_idct_2d(double *input, double *output) {
  double x;
  for (int l = 0; l < 16; ++l) {
    for (int k = 0; k < 16; ++k) {
      double s = 0;
      for (int i = 0; i < 16; ++i) {
        for (int j = 0; j < 16; ++j) {
          x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/256;
          if (i != 0)
            x *= sqrt(2.0);
          if (j != 0)
            x *= sqrt(2.0);
          s += x;
        }
      }
      output[k*16+l] = s;
    }
  }
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;

Daniel Kang's avatar
Daniel Kang committed
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static void butterfly_16x16_dct_1d(double input[16], double output[16]) {
  double step[16];
  double intermediate[16];
  double temp1, temp2;

  // step 1
  step[ 0] = input[0] + input[15];
  step[ 1] = input[1] + input[14];
  step[ 2] = input[2] + input[13];
  step[ 3] = input[3] + input[12];
  step[ 4] = input[4] + input[11];
  step[ 5] = input[5] + input[10];
  step[ 6] = input[6] + input[ 9];
  step[ 7] = input[7] + input[ 8];
  step[ 8] = input[7] - input[ 8];
  step[ 9] = input[6] - input[ 9];
  step[10] = input[5] - input[10];
  step[11] = input[4] - input[11];
  step[12] = input[3] - input[12];
  step[13] = input[2] - input[13];
  step[14] = input[1] - input[14];
  step[15] = input[0] - input[15];

  // step 2
  output[0] = step[0] + step[7];
  output[1] = step[1] + step[6];
  output[2] = step[2] + step[5];
  output[3] = step[3] + step[4];
  output[4] = step[3] - step[4];
  output[5] = step[2] - step[5];
  output[6] = step[1] - step[6];
  output[7] = step[0] - step[7];

  temp1 = step[ 8]*C7;
  temp2 = step[15]*C9;
  output[ 8] = temp1 + temp2;

  temp1 = step[ 9]*C11;
  temp2 = step[14]*C5;
  output[ 9] = temp1 - temp2;

  temp1 = step[10]*C3;
  temp2 = step[13]*C13;
  output[10] = temp1 + temp2;

  temp1 = step[11]*C15;
  temp2 = step[12]*C1;
  output[11] = temp1 - temp2;

  temp1 = step[11]*C1;
  temp2 = step[12]*C15;
  output[12] = temp2 + temp1;

  temp1 = step[10]*C13;
  temp2 = step[13]*C3;
  output[13] = temp2 - temp1;

  temp1 = step[ 9]*C5;
  temp2 = step[14]*C11;
  output[14] = temp2 + temp1;

  temp1 = step[ 8]*C9;
  temp2 = step[15]*C7;
  output[15] = temp2 - temp1;

  // step 3
  step[ 0] = output[0] + output[3];
  step[ 1] = output[1] + output[2];
  step[ 2] = output[1] - output[2];
  step[ 3] = output[0] - output[3];

  temp1 = output[4]*C14;
  temp2 = output[7]*C2;
  step[ 4] = temp1 + temp2;

  temp1 = output[5]*C10;
  temp2 = output[6]*C6;
  step[ 5] = temp1 + temp2;

  temp1 = output[5]*C6;
  temp2 = output[6]*C10;
  step[ 6] = temp2 - temp1;

  temp1 = output[4]*C2;
  temp2 = output[7]*C14;
  step[ 7] = temp2 - temp1;

  step[ 8] = output[ 8] + output[11];
  step[ 9] = output[ 9] + output[10];
  step[10] = output[ 9] - output[10];
  step[11] = output[ 8] - output[11];

  step[12] = output[12] + output[15];
  step[13] = output[13] + output[14];
  step[14] = output[13] - output[14];
  step[15] = output[12] - output[15];

  // step 4
  output[ 0] = (step[ 0] + step[ 1]);
  output[ 8] = (step[ 0] - step[ 1]);

  temp1 = step[2]*C12;
  temp2 = step[3]*C4;
  temp1 = temp1 + temp2;
  output[ 4] = 2*(temp1*C8);

  temp1 = step[2]*C4;
  temp2 = step[3]*C12;
  temp1 = temp2 - temp1;
  output[12] = 2*(temp1*C8);

  output[ 2] = 2*((step[4] + step[ 5])*C8);
  output[14] = 2*((step[7] - step[ 6])*C8);

  temp1 = step[4] - step[5];
  temp2 = step[6] + step[7];
  output[ 6] = (temp1 + temp2);
  output[10] = (temp1 - temp2);

  intermediate[8] = step[8] + step[14];
  intermediate[9] = step[9] + step[15];

  temp1 = intermediate[8]*C12;
  temp2 = intermediate[9]*C4;
  temp1 = temp1 - temp2;
  output[3] = 2*(temp1*C8);

  temp1 = intermediate[8]*C4;
  temp2 = intermediate[9]*C12;
  temp1 = temp2 + temp1;
  output[13] = 2*(temp1*C8);

  output[ 9] = 2*((step[10] + step[11])*C8);

  intermediate[11] = step[10] - step[11];
  intermediate[12] = step[12] + step[13];
  intermediate[13] = step[12] - step[13];
  intermediate[14] = step[ 8] - step[14];
  intermediate[15] = step[ 9] - step[15];

  output[15] = (intermediate[11] + intermediate[12]);
  output[ 1] = -(intermediate[11] - intermediate[12]);

  output[ 7] = 2*(intermediate[13]*C8);

  temp1 = intermediate[14]*C12;
  temp2 = intermediate[15]*C4;
  temp1 = temp1 - temp2;
  output[11] = -2*(temp1*C8);

  temp1 = intermediate[14]*C4;
  temp2 = intermediate[15]*C12;
  temp1 = temp2 + temp1;
  output[ 5] = 2*(temp1*C8);
}

static void reference_16x16_dct_1d(double in[16], double out[16]) {
  const double kPi = 3.141592653589793238462643383279502884;
  const double kInvSqrt2 = 0.707106781186547524400844362104;
  for (int k = 0; k < 16; k++) {
    out[k] = 0.0;
    for (int n = 0; n < 16; n++)
      out[k] += in[n]*cos(kPi*(2*n+1)*k/32.0);
    if (k == 0)
      out[k] = out[k]*kInvSqrt2;
  }
}

void reference_16x16_dct_2d(int16_t input[16*16], double output[16*16]) {
  // First transform columns
  for (int i = 0; i < 16; ++i) {
    double temp_in[16], temp_out[16];
    for (int j = 0; j < 16; ++j)
      temp_in[j] = input[j*16 + i];
    butterfly_16x16_dct_1d(temp_in, temp_out);
    for (int j = 0; j < 16; ++j)
      output[j*16 + i] = temp_out[j];
  }
  // Then transform rows
  for (int i = 0; i < 16; ++i) {
    double temp_in[16], temp_out[16];
    for (int j = 0; j < 16; ++j)
      temp_in[j] = output[j + i*16];
    butterfly_16x16_dct_1d(temp_in, temp_out);
    // Scale by some magic number
    for (int j = 0; j < 16; ++j)
      output[j + i*16] = temp_out[j]/2;
  }
}


James Zern's avatar
James Zern committed
258
TEST(VP9Idct16x16Test, AccuracyCheck) {
Daniel Kang's avatar
Daniel Kang committed
259 260 261 262 263 264 265 266 267 268 269 270 271 272
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t in[256], coeff[256];
    int16_t out_c[256];
    double out_r[256];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 256; ++j)
      in[j] = rnd.Rand8() - rnd.Rand8();

    reference_16x16_dct_2d(in, out_r);
    for (int j = 0; j < 256; j++)
      coeff[j] = round(out_r[j]);
James Zern's avatar
James Zern committed
273
    vp9_short_idct16x16_c(coeff, out_c, 32);
Daniel Kang's avatar
Daniel Kang committed
274 275 276 277 278 279 280 281
    for (int j = 0; j < 256; ++j) {
      const int diff = out_c[j] - in[j];
      const int error = diff * diff;
      EXPECT_GE(1, error)
          << "Error: 16x16 IDCT has error " << error
          << " at index " << j;
    }

James Zern's avatar
James Zern committed
282
    vp9_short_fdct16x16_c(in, out_c, 32);
Daniel Kang's avatar
Daniel Kang committed
283 284 285 286 287 288 289 290 291 292
    for (int j = 0; j < 256; ++j) {
      const double diff = coeff[j] - out_c[j];
      const double error = diff * diff;
      EXPECT_GE(1.0, error)
          << "Error: 16x16 FDCT has error " << error
          << " at index " << j;
    }
  }
}

James Zern's avatar
James Zern committed
293
TEST(VP9Fdct16x16Test, AccuracyCheck) {
Daniel Kang's avatar
Daniel Kang committed
294 295 296 297 298 299 300 301 302 303 304 305 306 307
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int max_error = 0;
  double total_error = 0;
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t test_input_block[256];
    int16_t test_temp_block[256];
    int16_t test_output_block[256];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 256; ++j)
      test_input_block[j] = rnd.Rand8() - rnd.Rand8();

    const int pitch = 32;
James Zern's avatar
James Zern committed
308 309
    vp9_short_fdct16x16_c(test_input_block, test_temp_block, pitch);
    vp9_short_idct16x16_c(test_temp_block, test_output_block, pitch);
Daniel Kang's avatar
Daniel Kang committed
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    for (int j = 0; j < 256; ++j) {
      const int diff = test_input_block[j] - test_output_block[j];
      const int error = diff * diff;
      if (max_error < error)
        max_error = error;
      total_error += error;
    }
  }

  EXPECT_GE(1, max_error)
      << "Error: 16x16 FDCT/IDCT has an individual roundtrip error > 1";

  EXPECT_GE(count_test_block/10, total_error)
      << "Error: 16x16 FDCT/IDCT has average roundtrip error > 1/10 per block";
}

James Zern's avatar
James Zern committed
327
TEST(VP9Fdct16x16Test, CoeffSizeCheck) {
Daniel Kang's avatar
Daniel Kang committed
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t input_block[256], input_extreme_block[256];
    int16_t output_block[256], output_extreme_block[256];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 256; ++j) {
      input_block[j] = rnd.Rand8() - rnd.Rand8();
      input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
    }
    if (i == 0)
      for (int j = 0; j < 256; ++j)
        input_extreme_block[j] = 255;

    const int pitch = 32;
James Zern's avatar
James Zern committed
344 345
    vp9_short_fdct16x16_c(input_block, output_block, pitch);
    vp9_short_fdct16x16_c(input_extreme_block, output_extreme_block, pitch);
Daniel Kang's avatar
Daniel Kang committed
346 347 348 349 350 351 352 353 354 355 356

    // The minimum quant value is 4.
    for (int j = 0; j < 256; ++j) {
      EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j]))
          << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
      EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j]))
          << "Error: 16x16 FDCT extreme has coefficient larger than 4*DCT_MAX_VALUE";
    }
  }
}
}  // namespace