rdopt.c 419 KB
Newer Older
Jingning Han's avatar
Jingning Han committed
1
/*
Yaowu Xu's avatar
Yaowu Xu committed
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
Jingning Han's avatar
Jingning Han committed
3
 *
Yaowu Xu's avatar
Yaowu Xu committed
4
5
6
7
8
9
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
Jingning Han's avatar
Jingning Han committed
10
11
12
13
14
 */

#include <assert.h>
#include <math.h>

Yaowu Xu's avatar
Yaowu Xu committed
15
#include "./aom_dsp_rtcd.h"
Jingning Han's avatar
Jingning Han committed
16
#include "./av1_rtcd.h"
Jingning Han's avatar
Jingning Han committed
17

Yaowu Xu's avatar
Yaowu Xu committed
18
#include "aom_dsp/aom_dsp_common.h"
19
#include "aom_dsp/blend.h"
Yaowu Xu's avatar
Yaowu Xu committed
20
#include "aom_mem/aom_mem.h"
21
22
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
Jingning Han's avatar
Jingning Han committed
23

24
25
26
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
27
28
29
30
31
32
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
33
#include "av1/common/obmc.h"
34
35
36
37
38
39
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
40
41
42
#if CONFIG_LV_MAP
#include "av1/common/txb_common.h"
#endif
Yue Chen's avatar
Yue Chen committed
43
#include "av1/common/warped_motion.h"
Jingning Han's avatar
Jingning Han committed
44

Jingning Han's avatar
Jingning Han committed
45
#include "av1/encoder/aq_variance.h"
46
#include "av1/encoder/av1_quantize.h"
47
48
49
50
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
51
52
53
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
54
55
56
57
58
59
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
60
#include "av1/encoder/tokenize.h"
61
#include "av1/encoder/tx_prune_model_weights.h"
Yushin Cho's avatar
Yushin Cho committed
62

63
#if CONFIG_DUAL_FILTER
Angie Chiang's avatar
Angie Chiang committed
64
#define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS)
65
#if USE_EXTRA_FILTER
Angie Chiang's avatar
Angie Chiang committed
66
static const int filter_sets[DUAL_FILTER_SET_SIZE][2] = {
67
68
69
  { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 0 }, { 1, 1 },
  { 1, 2 }, { 1, 3 }, { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 },
  { 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 },
70
};
71
72
73
74
75
76
#else   // USE_EXTRA_FILTER
static const int filter_sets[DUAL_FILTER_SET_SIZE][2] = {
  { 0, 0 }, { 0, 1 }, { 0, 2 }, { 1, 0 }, { 1, 1 },
  { 1, 2 }, { 2, 0 }, { 2, 1 }, { 2, 2 },
};
#endif  // USE_EXTRA_FILTER
Angie Chiang's avatar
Angie Chiang committed
77
#endif  // CONFIG_DUAL_FILTER
78

Zoe Liu's avatar
Zoe Liu committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#define LAST_FRAME_MODE_MASK                                          \
  ((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) |     \
   (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define LAST2_FRAME_MODE_MASK                                         \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) |      \
   (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define LAST3_FRAME_MODE_MASK                                         \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |      \
   (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define GOLDEN_FRAME_MODE_MASK                                       \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |     \
   (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define BWDREF_FRAME_MODE_MASK                                       \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |     \
   (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF2_FRAME) | \
   (1 << ALTREF_FRAME))
#define ALTREF2_FRAME_MODE_MASK                                     \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |    \
   (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | \
   (1 << ALTREF_FRAME))
#define ALTREF_FRAME_MODE_MASK                                      \
  ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) |    \
   (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | \
   (1 << ALTREF2_FRAME))

Zoe Liu's avatar
Zoe Liu committed
108
#if CONFIG_EXT_COMP_REFS
109
110
111
#define SECOND_REF_FRAME_MASK                                         \
  ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | \
   (1 << GOLDEN_FRAME) | (1 << LAST2_FRAME) | 0x01)
112
#else  // !CONFIG_EXT_COMP_REFS
Zoe Liu's avatar
Zoe Liu committed
113
114
#define SECOND_REF_FRAME_MASK \
  ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | 0x01)
Zoe Liu's avatar
Zoe Liu committed
115
#endif  // CONFIG_EXT_COMP_REFS
Jingning Han's avatar
Jingning Han committed
116

117
118
#define MIN_EARLY_TERM_INDEX 3
#define NEW_MV_DISCOUNT_FACTOR 8
Jingning Han's avatar
Jingning Han committed
119

120
121
122
123
124
#if CONFIG_EXT_INTRA
#define ANGLE_SKIP_THRESH 10
#define FILTER_FAST_SEARCH 1
#endif  // CONFIG_EXT_INTRA

125
126
127
// Setting this to 1 will disable trellis optimization within the
// transform search. Trellis optimization will still be applied
// in the final encode.
128
#ifndef DISABLE_TRELLISQ_SEARCH
129
#define DISABLE_TRELLISQ_SEARCH 0
130
#endif
131

132
133
134
135
136
137
static const double ADST_FLIP_SVM[8] = {
  /* vertical */
  -6.6623, -2.8062, -3.2531, 3.1671,
  /* horizontal */
  -7.7051, -3.2234, -3.6193, 3.4533
};
138

Jingning Han's avatar
Jingning Han committed
139
140
141
142
143
typedef struct {
  PREDICTION_MODE mode;
  MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;

144
typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION;
Jingning Han's avatar
Jingning Han committed
145
146

struct rdcost_block_args {
Yaowu Xu's avatar
Yaowu Xu committed
147
  const AV1_COMP *cpi;
Jingning Han's avatar
Jingning Han committed
148
  MACROBLOCK *x;
149
150
  ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE];
  ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE];
151
  RD_STATS rd_stats;
Jingning Han's avatar
Jingning Han committed
152
153
154
155
156
157
158
  int64_t this_rd;
  int64_t best_rd;
  int exit_early;
  int use_fast_coef_costing;
};

#define LAST_NEW_MV_INDEX 6
Yaowu Xu's avatar
Yaowu Xu committed
159
static const MODE_DEFINITION av1_mode_order[MAX_MODES] = {
Emil Keyder's avatar
Emil Keyder committed
160
161
162
163
  { NEARESTMV, { LAST_FRAME, NONE_FRAME } },
  { NEARESTMV, { LAST2_FRAME, NONE_FRAME } },
  { NEARESTMV, { LAST3_FRAME, NONE_FRAME } },
  { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
164
  { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } },
Emil Keyder's avatar
Emil Keyder committed
165
166
  { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
167

Emil Keyder's avatar
Emil Keyder committed
168
  { DC_PRED, { INTRA_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
169

Emil Keyder's avatar
Emil Keyder committed
170
171
172
173
  { NEWMV, { LAST_FRAME, NONE_FRAME } },
  { NEWMV, { LAST2_FRAME, NONE_FRAME } },
  { NEWMV, { LAST3_FRAME, NONE_FRAME } },
  { NEWMV, { BWDREF_FRAME, NONE_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
174
  { NEWMV, { ALTREF2_FRAME, NONE_FRAME } },
Emil Keyder's avatar
Emil Keyder committed
175
176
  { NEWMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEWMV, { GOLDEN_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
177

Emil Keyder's avatar
Emil Keyder committed
178
179
180
181
  { NEARMV, { LAST_FRAME, NONE_FRAME } },
  { NEARMV, { LAST2_FRAME, NONE_FRAME } },
  { NEARMV, { LAST3_FRAME, NONE_FRAME } },
  { NEARMV, { BWDREF_FRAME, NONE_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
182
  { NEARMV, { ALTREF2_FRAME, NONE_FRAME } },
Emil Keyder's avatar
Emil Keyder committed
183
184
  { NEARMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEARMV, { GOLDEN_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
185

Sarah Parker's avatar
Sarah Parker committed
186
187
188
189
190
191
192
  { GLOBALMV, { LAST_FRAME, NONE_FRAME } },
  { GLOBALMV, { LAST2_FRAME, NONE_FRAME } },
  { GLOBALMV, { LAST3_FRAME, NONE_FRAME } },
  { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } },
  { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } },
  { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } },
  { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
193

194
  // TODO(zoeliu): May need to reconsider the order on the modes to check
195

196
197
198
199
200
201
202
203
  { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
204
205
206
207
  { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
208
209
210

#if CONFIG_EXT_COMP_REFS
  { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
211
  { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
212
213
214
  { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },
#endif  // CONFIG_EXT_COMP_REFS
215

Urvang Joshi's avatar
Urvang Joshi committed
216
  { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } },
Jingning Han's avatar
Jingning Han committed
217

Emil Keyder's avatar
Emil Keyder committed
218
  { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } },
Urvang Joshi's avatar
Urvang Joshi committed
219
220
  { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } },
  { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } },
221

222
223
224
225
226
227
  { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
228
  { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } },
229

230
231
232
233
234
235
  { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
236
  { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } },
237
238
239
240
241
242
243

  { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
244
  { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } },
245

246
247
248
249
250
251
  { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
252
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } },
253

254
255
256
257
258
259
  { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
260
  { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } },
261
262
263
264
265
266
267

  { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
268
  { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } },
269
270
271
272
273
274
275

  { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
276
  { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } },
277
278
279
280
281
282
283

  { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
284
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
285

Zoe Liu's avatar
Zoe Liu committed
286
287
288
289
290
291
  { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
292
  { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
293
294
295
296
297
298
299

  { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
300
  { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
301
302
303
304
305
306
307

  { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
308
  { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
309
310
311
312
313
314
315

  { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
Sarah Parker's avatar
Sarah Parker committed
316
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
317

Emil Keyder's avatar
Emil Keyder committed
318
319
320
321
322
323
324
325
  { H_PRED, { INTRA_FRAME, NONE_FRAME } },
  { V_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D135_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D207_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D153_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D63_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D117_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D45_PRED, { INTRA_FRAME, NONE_FRAME } },
326

Sarah Parker's avatar
Sarah Parker committed
327
  { GLOBALMV, { LAST_FRAME, INTRA_FRAME } },
328
329
330
  { NEARESTMV, { LAST_FRAME, INTRA_FRAME } },
  { NEARMV, { LAST_FRAME, INTRA_FRAME } },
  { NEWMV, { LAST_FRAME, INTRA_FRAME } },
331

Sarah Parker's avatar
Sarah Parker committed
332
  { GLOBALMV, { LAST2_FRAME, INTRA_FRAME } },
333
334
335
336
  { NEARESTMV, { LAST2_FRAME, INTRA_FRAME } },
  { NEARMV, { LAST2_FRAME, INTRA_FRAME } },
  { NEWMV, { LAST2_FRAME, INTRA_FRAME } },

Sarah Parker's avatar
Sarah Parker committed
337
  { GLOBALMV, { LAST3_FRAME, INTRA_FRAME } },
338
339
340
  { NEARESTMV, { LAST3_FRAME, INTRA_FRAME } },
  { NEARMV, { LAST3_FRAME, INTRA_FRAME } },
  { NEWMV, { LAST3_FRAME, INTRA_FRAME } },
341

Sarah Parker's avatar
Sarah Parker committed
342
  { GLOBALMV, { GOLDEN_FRAME, INTRA_FRAME } },
343
344
345
  { NEARESTMV, { GOLDEN_FRAME, INTRA_FRAME } },
  { NEARMV, { GOLDEN_FRAME, INTRA_FRAME } },
  { NEWMV, { GOLDEN_FRAME, INTRA_FRAME } },
346

Sarah Parker's avatar
Sarah Parker committed
347
  { GLOBALMV, { BWDREF_FRAME, INTRA_FRAME } },
348
349
350
  { NEARESTMV, { BWDREF_FRAME, INTRA_FRAME } },
  { NEARMV, { BWDREF_FRAME, INTRA_FRAME } },
  { NEWMV, { BWDREF_FRAME, INTRA_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
351

Sarah Parker's avatar
Sarah Parker committed
352
  { GLOBALMV, { ALTREF2_FRAME, INTRA_FRAME } },
Zoe Liu's avatar
Zoe Liu committed
353
354
355
  { NEARESTMV, { ALTREF2_FRAME, INTRA_FRAME } },
  { NEARMV, { ALTREF2_FRAME, INTRA_FRAME } },
  { NEWMV, { ALTREF2_FRAME, INTRA_FRAME } },
356

Sarah Parker's avatar
Sarah Parker committed
357
  { GLOBALMV, { ALTREF_FRAME, INTRA_FRAME } },
358
359
360
  { NEARESTMV, { ALTREF_FRAME, INTRA_FRAME } },
  { NEARMV, { ALTREF_FRAME, INTRA_FRAME } },
  { NEWMV, { ALTREF_FRAME, INTRA_FRAME } },
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

#if CONFIG_EXT_COMP_REFS
  { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } },

  { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } },
#endif  // CONFIG_EXT_COMP_REFS
Jingning Han's avatar
Jingning Han committed
395
396
};

hui su's avatar
hui su committed
397
static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = {
Urvang Joshi's avatar
Urvang Joshi committed
398
  DC_PRED,       H_PRED,        V_PRED,    SMOOTH_PRED, PAETH_PRED,
399
400
  SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D207_PRED,   D153_PRED,
  D63_PRED,      D117_PRED,     D45_PRED,
hui su's avatar
hui su committed
401
402
};

Luc Trudeau's avatar
Luc Trudeau committed
403
404
#if CONFIG_CFL
static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = {
405
406
407
408
  UV_DC_PRED,     UV_CFL_PRED,   UV_H_PRED,        UV_V_PRED,
  UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED,
  UV_D135_PRED,   UV_D207_PRED,  UV_D153_PRED,     UV_D63_PRED,
  UV_D117_PRED,   UV_D45_PRED,
Luc Trudeau's avatar
Luc Trudeau committed
409
410
411
412
413
};
#else
#define uv_rd_search_mode_order intra_rd_search_mode_order
#endif  // CONFIG_CFL

hui su's avatar
hui su committed
414
static INLINE int write_uniform_cost(int n, int v) {
415
416
  const int l = get_unsigned_bits(n);
  const int m = (1 << l) - n;
417
  if (l == 0) return 0;
hui su's avatar
hui su committed
418
  if (v < m)
Yaowu Xu's avatar
Yaowu Xu committed
419
    return (l - 1) * av1_cost_bit(128, 0);
hui su's avatar
hui su committed
420
  else
Yaowu Xu's avatar
Yaowu Xu committed
421
    return l * av1_cost_bit(128, 0);
hui su's avatar
hui su committed
422
423
}

424
425
426
// constants for prune 1 and prune 2 decision boundaries
#define FAST_EXT_TX_CORR_MID 0.0
#define FAST_EXT_TX_EDST_MID 0.1
427
428
429
#define FAST_EXT_TX_CORR_MARGIN 0.5
#define FAST_EXT_TX_EDST_MARGIN 0.3

430
431
432
433
434
int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats,
                    BLOCK_SIZE bsize, int64_t ref_best_rd, int fast);
int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats,
                     BLOCK_SIZE bsize, int64_t ref_best_rd, int fast);

435
436
437
438
439
440
441
static unsigned pixel_dist_visible_only(
    const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
    const int src_stride, const uint8_t *dst, const int dst_stride,
    const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
    int visible_cols) {
  unsigned sse;

442
  if (txb_rows == visible_rows && txb_cols == visible_cols) {
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
    return sse;
  }
#if CONFIG_HIGHBITDEPTH
  const MACROBLOCKD *xd = &x->e_mbd;

  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
                                             visible_cols, visible_rows);
    return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
  }
#else
  (void)x;
#endif  // CONFIG_HIGHBITDEPTH
  sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
                         visible_rows);
  return sse;
}

462
#if CONFIG_DIST_8X8
Yushin Cho's avatar
Yushin Cho committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src,
                                    int sstride, int coeff_shift) {
  uint64_t svar = 0;
  uint64_t dvar = 0;
  uint64_t sum_s = 0;
  uint64_t sum_d = 0;
  uint64_t sum_s2 = 0;
  uint64_t sum_d2 = 0;
  uint64_t sum_sd = 0;
  uint64_t dist = 0;

  int i, j;
  for (i = 0; i < 8; i++) {
    for (j = 0; j < 8; j++) {
      sum_s += src[i * sstride + j];
      sum_d += dst[i * dstride + j];
      sum_s2 += src[i * sstride + j] * src[i * sstride + j];
      sum_d2 += dst[i * dstride + j] * dst[i * dstride + j];
      sum_sd += src[i * sstride + j] * dst[i * dstride + j];
    }
  }
  /* Compute the variance -- the calculation cannot go negative. */
  svar = sum_s2 - ((sum_s * sum_s + 32) >> 6);
  dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6);

  // Tuning of jm's original dering distortion metric used in CDEF tool,
  // suggested by jm
  const uint64_t a = 4;
  const uint64_t b = 2;
  const uint64_t c1 = (400 * a << 2 * coeff_shift);
  const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift);

  dist =
      (uint64_t)floor(.5 +
                      (sum_d2 + sum_s2 - 2 * sum_sd) * .5 * (svar + dvar + c1) /
                          (sqrt(svar * (double)dvar + c2)));

  // Calibrate dist to have similar rate for the same QP with MSE only
  // distortion (as in master branch)
  dist = (uint64_t)((float)dist * 0.75);

  return dist;
}

Yushin Cho's avatar
Yushin Cho committed
507
static int od_compute_var_4x4(uint16_t *x, int stride) {
Yushin Cho's avatar
Yushin Cho committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
  int sum;
  int s2;
  int i;
  sum = 0;
  s2 = 0;
  for (i = 0; i < 4; i++) {
    int j;
    for (j = 0; j < 4; j++) {
      int t;

      t = x[i * stride + j];
      sum += t;
      s2 += t * t;
    }
  }
Yushin Cho's avatar
Yushin Cho committed
523

Yushin Cho's avatar
Yushin Cho committed
524
525
526
  return (s2 - (sum * sum >> 4)) >> 4;
}

527
528
529
530
531
532
533
/* OD_DIST_LP_MID controls the frequency weighting filter used for computing
   the distortion. For a value X, the filter is [1 X 1]/(X + 2) and
   is applied both horizontally and vertically. For X=5, the filter is
   a good approximation for the OD_QM8_Q4_HVS quantization matrix. */
#define OD_DIST_LP_MID (5)
#define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2)

Yushin Cho's avatar
Yushin Cho committed
534
535
static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x,
                                  uint16_t *y, od_coeff *e_lp, int stride) {
Yushin Cho's avatar
Yushin Cho committed
536
537
538
539
540
541
542
543
544
545
546
  double sum;
  int min_var;
  double mean_var;
  double var_stat;
  double activity;
  double calibration;
  int i;
  int j;
  double vardist;

  vardist = 0;
Yushin Cho's avatar
Yushin Cho committed
547

Yushin Cho's avatar
Yushin Cho committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#if 1
  min_var = INT_MAX;
  mean_var = 0;
  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      int varx;
      int vary;
      varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride);
      vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride);
      min_var = OD_MINI(min_var, varx);
      mean_var += 1. / (1 + varx);
      /* The cast to (double) is to avoid an overflow before the sqrt.*/
      vardist += varx - 2 * sqrt(varx * (double)vary) + vary;
    }
  }
  /* We use a different variance statistic depending on whether activity
James Zern's avatar
James Zern committed
564
     masking is used, since the harmonic mean appeared slightly worse with
Yushin Cho's avatar
Yushin Cho committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
     masking off. The calibration constant just ensures that we preserve the
     rate compared to activity=1. */
  if (use_activity_masking) {
    calibration = 1.95;
    var_stat = 9. / mean_var;
  } else {
    calibration = 1.62;
    var_stat = min_var;
  }
  /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the
     activity masking constant. */
  activity = calibration * pow(.25 + var_stat, -1. / 6);
#else
  activity = 1;
579
#endif  // 1
Yushin Cho's avatar
Yushin Cho committed
580
581
582
  sum = 0;
  for (i = 0; i < 8; i++) {
    for (j = 0; j < 8; j++)
583
      sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j];
Yushin Cho's avatar
Yushin Cho committed
584
  }
585
586
587
  /* Normalize the filter to unit DC response. */
  sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM *
               OD_DIST_LP_NORM);
Yushin Cho's avatar
Yushin Cho committed
588
589
590
591
  return activity * activity * (sum + vardist);
}

// Note : Inputs x and y are in a pixel domain
Yushin Cho's avatar
Yushin Cho committed
592
593
static double od_compute_dist_common(int activity_masking, uint16_t *x,
                                     uint16_t *y, int bsize_w, int bsize_h,
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
                                     int qindex, od_coeff *tmp,
                                     od_coeff *e_lp) {
  int i, j;
  double sum = 0;
  const int mid = OD_DIST_LP_MID;

  for (j = 0; j < bsize_w; j++) {
    e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j];
    e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] +
                                        2 * tmp[(bsize_h - 2) * bsize_w + j];
  }
  for (i = 1; i < bsize_h - 1; i++) {
    for (j = 0; j < bsize_w; j++) {
      e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] +
                              tmp[(i - 1) * bsize_w + j] +
                              tmp[(i + 1) * bsize_w + j];
    }
  }
  for (i = 0; i < bsize_h; i += 8) {
    for (j = 0; j < bsize_w; j += 8) {
Yushin Cho's avatar
Yushin Cho committed
614
      sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j],
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
                                 &y[i * bsize_w + j], &e_lp[i * bsize_w + j],
                                 bsize_w);
    }
  }
  /* Scale according to linear regression against SSE, for 8x8 blocks. */
  if (activity_masking) {
    sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) +
           (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0);
  } else {
    sum *= qindex >= 128
               ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128)
               : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43)
                              : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43);
  }

  return sum;
}

Yushin Cho's avatar
Yushin Cho committed
633
634
static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w,
                              int bsize_h, int qindex) {
Yushin Cho's avatar
Yushin Cho committed
635
  assert(bsize_w >= 8 && bsize_h >= 8);
Yushin Cho's avatar
Yushin Cho committed
636

Yushin Cho's avatar
Yushin Cho committed
637
  int activity_masking = 0;
Yushin Cho's avatar
Yushin Cho committed
638

Luc Trudeau's avatar
Luc Trudeau committed
639
640
641
642
643
644
645
  int i, j;
  DECLARE_ALIGNED(16, od_coeff, e[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, tmp[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_TX_SQUARE]);
  for (i = 0; i < bsize_h; i++) {
    for (j = 0; j < bsize_w; j++) {
      e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j];
646
    }
Luc Trudeau's avatar
Luc Trudeau committed
647
648
649
650
651
652
653
654
655
  }
  int mid = OD_DIST_LP_MID;
  for (i = 0; i < bsize_h; i++) {
    tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
    tmp[i * bsize_w + bsize_w - 1] =
        mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
    for (j = 1; j < bsize_w - 1; j++) {
      tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
                             e[i * bsize_w + j + 1];
656
    }
657
  }
Luc Trudeau's avatar
Luc Trudeau committed
658
659
  return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
                                qindex, tmp, e_lp);
660
661
}

Yushin Cho's avatar
Yushin Cho committed
662
663
static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w,
                                   int bsize_h, int qindex) {
664
  assert(bsize_w >= 8 && bsize_h >= 8);
Yushin Cho's avatar
Yushin Cho committed
665

Yushin Cho's avatar
Yushin Cho committed
666
  int activity_masking = 0;
Yushin Cho's avatar
Yushin Cho committed
667

Luc Trudeau's avatar
Luc Trudeau committed
668
669
670
671
672
673
674
  DECLARE_ALIGNED(16, uint16_t, y[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, tmp[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_TX_SQUARE]);
  int i, j;
  for (i = 0; i < bsize_h; i++) {
    for (j = 0; j < bsize_w; j++) {
      y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j];
675
    }
Luc Trudeau's avatar
Luc Trudeau committed
676
677
678
679
680
681
682
683
684
  }
  int mid = OD_DIST_LP_MID;
  for (i = 0; i < bsize_h; i++) {
    tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
    tmp[i * bsize_w + bsize_w - 1] =
        mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
    for (j = 1; j < bsize_w - 1; j++) {
      tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
                             e[i * bsize_w + j + 1];
Yushin Cho's avatar
Yushin Cho committed
685
686
    }
  }
Luc Trudeau's avatar
Luc Trudeau committed
687
688
  return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
                                qindex, tmp, e_lp);
Yushin Cho's avatar
Yushin Cho committed
689
690
}

691
int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x,
Yushin Cho's avatar
Yushin Cho committed
692
693
694
695
                     const uint8_t *src, int src_stride, const uint8_t *dst,
                     int dst_stride, const BLOCK_SIZE tx_bsize, int bsw,
                     int bsh, int visible_w, int visible_h, int qindex) {
  int64_t d = 0;
Yushin Cho's avatar
Yushin Cho committed
696
  int i, j;
697
  const MACROBLOCKD *xd = &x->e_mbd;
Yushin Cho's avatar
Yushin Cho committed
698
699
700
701

  DECLARE_ALIGNED(16, uint16_t, orig[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, uint16_t, rec[MAX_TX_SQUARE]);

Yushin Cho's avatar
Yushin Cho committed
702
703
704
705
706
  assert(bsw >= 8);
  assert(bsh >= 8);
  assert((bsw & 0x07) == 0);
  assert((bsh & 0x07) == 0);

707
708
  if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
      x->tune_metric == AOM_TUNE_DAALA_DIST) {
709
#if CONFIG_HIGHBITDEPTH
710
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
711
      for (j = 0; j < bsh; j++)
712
        for (i = 0; i < bsw; i++)
713
          orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
714

715
      if ((bsw == visible_w) && (bsh == visible_h)) {
716
717
        for (j = 0; j < bsh; j++)
          for (i = 0; i < bsw; i++)
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
            rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];
      } else {
        for (j = 0; j < visible_h; j++)
          for (i = 0; i < visible_w; i++)
            rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];

        if (visible_w < bsw) {
          for (j = 0; j < bsh; j++)
            for (i = visible_w; i < bsw; i++)
              rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
        }

        if (visible_h < bsh) {
          for (j = visible_h; j < bsh; j++)
            for (i = 0; i < bsw; i++)
              rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
        }
735
      }
736
    } else {
737
738
#endif
      for (j = 0; j < bsh; j++)
739
        for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];
740

741
      if ((bsw == visible_w) && (bsh == visible_h)) {
742
        for (j = 0; j < bsh; j++)
743
744
745
746
747
748
749
750
751
752
753
          for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i];
      } else {
        for (j = 0; j < visible_h; j++)
          for (i = 0; i < visible_w; i++)
            rec[j * bsw + i] = dst[j * dst_stride + i];

        if (visible_w < bsw) {
          for (j = 0; j < bsh; j++)
            for (i = visible_w; i < bsw; i++)
              rec[j * bsw + i] = src[j * src_stride + i];
        }
754

755
756
757
758
759
        if (visible_h < bsh) {
          for (j = visible_h; j < bsh; j++)
            for (i = 0; i < bsw; i++)
              rec[j * bsw + i] = src[j * src_stride + i];
        }
760
761
      }
#if CONFIG_HIGHBITDEPTH
762
    }
763
#endif  // CONFIG_HIGHBITDEPTH
764
  }
Yushin Cho's avatar
Yushin Cho committed
765

766
767
768
  if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
    d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex);
  } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
Yushin Cho's avatar
Yushin Cho committed
769
770
771
772
773
774
775
776
777
778
779
780
    int coeff_shift = AOMMAX(xd->bd - 8, 0);

    for (i = 0; i < bsh; i += 8) {
      for (j = 0; j < bsw; j += 8) {
        d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j],
                                 bsw, coeff_shift);
      }
    }
#if CONFIG_HIGHBITDEPTH
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
      d = ((uint64_t)d) >> 2 * coeff_shift;
#endif
781
782
  } else {
    // Otherwise, MSE by default
783
784
    d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride,
                                tx_bsize, bsh, bsw, visible_h, visible_w);
Yushin Cho's avatar
Yushin Cho committed
785
  }
786

Yushin Cho's avatar
Yushin Cho committed
787
788
  return d;
}
789

790
static int64_t av1_dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src,
Yushin Cho's avatar
Yushin Cho committed
791
792
793
794
                                 int src_stride, const int16_t *diff,
                                 int diff_stride, int bsw, int bsh,
                                 int visible_w, int visible_h, int qindex) {
  int64_t d = 0;
795
  int i, j;
796
  const MACROBLOCKD *xd = &x->e_mbd;
Yushin Cho's avatar
Yushin Cho committed
797
798
799
800

  DECLARE_ALIGNED(16, uint16_t, orig[MAX_TX_SQUARE]);
  DECLARE_ALIGNED(16, int16_t, diff16[MAX_TX_SQUARE]);

Yushin Cho's avatar
Yushin Cho committed
801
802
803
804
805
  assert(bsw >= 8);
  assert(bsh >= 8);
  assert((bsw & 0x07) == 0);
  assert((bsh & 0x07) == 0);

806
807
  if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
      x->tune_metric == AOM_TUNE_DAALA_DIST) {
808
#if CONFIG_HIGHBITDEPTH
809
810
811
812
813
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++)
          orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
    } else {
814
#endif
815
816
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];
817
#if CONFIG_HIGHBITDEPTH
818
    }
819
#endif  // CONFIG_HIGHBITDEPTH
820

821
    if ((bsw == visible_w) && (bsh == visible_h)) {
822
      for (j = 0; j < bsh; j++)
823
824
825
826
827
828
829
830
831
832
833
        for (i = 0; i < bsw; i++)
          diff16[j * bsw + i] = diff[j * diff_stride + i];
    } else {
      for (j = 0; j < visible_h; j++)
        for (i = 0; i < visible_w; i++)
          diff16[j * bsw + i] = diff[j * diff_stride + i];

      if (visible_w < bsw) {
        for (j = 0; j < bsh; j++)
          for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0;
      }
834

835
836
837
838
      if (visible_h < bsh) {
        for (j = visible_h; j < bsh; j++)
          for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0;
      }
839
840
    }
  }
841

842
843
844
  if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
    d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex);
  } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
Yushin Cho's avatar
Yushin Cho committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
    int coeff_shift = AOMMAX(xd->bd - 8, 0);
    DECLARE_ALIGNED(16, uint16_t, dst16[MAX_TX_SQUARE]);

    for (i = 0; i < bsh; i++) {
      for (j = 0; j < bsw; j++) {
        dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j];
      }
    }

    for (i = 0; i < bsh; i += 8) {
      for (j = 0; j < bsw; j += 8) {
        d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j],
                                 bsw, coeff_shift);
      }
    }
    // Don't scale 'd' for HBD since it will be done by caller side for diff
    // input
862
863
  } else {
    // Otherwise, MSE by default
864
    d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h);
Yushin Cho's avatar
Yushin Cho committed
865
  }
866
867
868

  return d;
}
Yushin Cho's avatar
Yushin Cho committed
869
#endif  // CONFIG_DIST_8X8
Yushin Cho's avatar
Yushin Cho committed
870

Yaowu Xu's avatar
Yaowu Xu committed
871
static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize,
872
873
                                         const uint8_t *src, int src_stride,
                                         const uint8_t *dst, int dst_stride,
874
                                         double *hordist, double *verdist) {
875
876
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
877
  unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
878

879
  const int f_index = bsize - BLOCK_16X16;
880
  if (f_index < 0) {
881
882
    const int w_shift = bw == 8 ? 1 : 2;
    const int h_shift = bh == 8 ? 1 : 2;
883
#if CONFIG_HIGHBITDEPTH
884
    if (cpi->common.use_highbitdepth) {
885
886
887
888
889
      const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
      const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
      for (int i = 0; i < bh; ++i)
        for (int j = 0; j < bw; ++j) {
          const int index = (j >> w_shift) + ((i >> h_shift) << 2);
890
891
892
          esq[index] +=
              (src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
              (src16[j + i * src_stride] - dst16[j + i * dst_stride]);
893
894
        }
    } else {
895
#endif  // CONFIG_HIGHBITDEPTH
896

897
898
899
      for (int i = 0; i < bh; ++i)
        for (int j = 0; j < bw; ++j) {
          const int index = (j >> w_shift) + ((i >> h_shift) << 2);
900
901
902
          esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
                        (src[j + i * src_stride] - dst[j + i * dst_stride]);
        }
903
#if CONFIG_HIGHBITDEPTH
904
    }
905
#endif  // CONFIG_HIGHBITDEPTH
906
  } else {
907
908
909
910
911
912
913
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[0]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[1]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[2]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[3]);
914
915
916
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

917
918
919
920
921
922
923
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[4]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[5]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[6]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[7]);
924
925
926
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

927
928
929
930
931
932
933
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[8]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[9]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[10]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[11]);
934
935
936
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

937
938
939
940
941
942
943
    cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[12]);
    cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[13]);
    cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[14]);
    cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[15]);
944
945
  }

946
947
948
  double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
                 esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
                 esq[12] + esq[13] + esq[14] + esq[15];
949
950
  if (total > 0) {
    const double e_recip = 1.0 / total;
951
952
953
954
955
956
    hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
    hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
    hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
    verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
    verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
    verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
957
958
959
960
961
962
963
  } else {
    hordist[0] = verdist[0] = 0.25;
    hordist[1] = verdist[1] = 0.25;
    hordist[2] = verdist[2] = 0.25;
  }
}

Urvang Joshi's avatar
Urvang Joshi committed
964
965
966
static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize,
                            const uint8_t *src, int src_stride,
                            const uint8_t *dst, int dst_stride) {
967
968
  int prune_bitmask = 0;
  double svm_proj_h = 0, svm_proj_v = 0;
Alex Converse's avatar
Alex Converse committed
969
  double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
970
971
  get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride,
                               hdist, vdist);
972

973
  svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] +
974
               vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3];
975
  svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] +
976
977
978
979
980
981
982
983
984
985
986
987
988
989
               hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7];
  if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << FLIPADST_1D;
  else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << ADST_1D;

  if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << (FLIPADST_1D + 8);
  else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << (ADST_1D + 8);

  return prune_bitmask;
}

Alex Converse's avatar
Alex Converse committed
990
991
static void get_horver_correlation(const int16_t *diff, int stride, int w,
                                   int h, double *hcorr, double *vcorr) {
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
  // Returns hor/ver correlation coefficient
  const int num = (h - 1) * (w - 1);
  double num_r;
  int i, j;
  int64_t xy_sum = 0, xz_sum = 0;
  int64_t x_sum = 0, y_sum = 0, z_sum = 0;
  int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0;
  double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n;
  *hcorr = *vcorr = 1;

  assert(num > 0);
  num_r = 1.0 / num;
  for (i = 1; i < h; ++i) {
    for (j = 1; j < w; ++j) {
      const int16_t x = diff[i * stride + j];
      const int16_t y = diff[i * stride + j - 1];
      const int16_t z = diff[(i - 1) * stride + j];
      xy_sum += x * y;
      xz_sum += x * z;
      x_sum += x;
      y_sum += y;
      z_sum += z;
      x2_sum += x * x;
      y2_sum += y * y;
      z2_sum += z * z;
    }
  }
1019
1020
1021
  x_var_n = x2_sum - (x_sum * x_sum) * num_r;
  y_var_n = y2_sum - (y_sum * y_sum) * num_r;
  z_var_n = z2_sum - (z_sum * z_sum) * num_r;
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
  xy_var_n = xy_sum - (x_sum * y_sum) * num_r;
  xz_var_n = xz_sum - (x_sum * z_sum) * num_r;
  if (x_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrt(x_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  }
  if (x_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrt(x_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  }
}

Alex Converse's avatar
Alex Converse committed
1034
1035
int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) {
  double hcorr, vcorr;
1036
  int prune_bitmask = 0;
Alex Converse's avatar
Alex Converse committed
1037
  get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr);
1038

Alex Converse's avatar
Alex Converse committed
1039
  if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
1040
    prune_bitmask |= 1 << IDTX_1D;
Alex Converse's avatar
Alex Converse committed
1041
  else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
1042
1043
    prune_bitmask |= 1 << DCT_1D;

Alex Converse's avatar
Alex Converse committed
1044
  if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
1045
    prune_bitmask |= 1 << (IDTX_1D + 8);
Alex Converse's avatar
Alex Converse committed
1046
  else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
1047
1048
1049
1050
1051
    prune_bitmask |= 1 << (DCT_1D + 8);
  return prune_bitmask;
}

// Performance drop: 0.5%, Speed improvement: 24%
Yaowu Xu's avatar
Yaowu Xu committed
1052
static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
Alex Converse's avatar
Alex Converse committed
1053
1054
                             MACROBLOCK *x, const MACROBLOCKD *xd,
                             int adst_flipadst, int dct_idtx) {
1055
  int prune = 0;
1056

Alex Converse's avatar
Alex Converse committed
1057
1058
1059
  if (adst_flipadst) {
    const struct macroblock_plane *const p = &x->plane[0];
    const struct macroblockd_plane *const pd = &xd->plane[0];
1060
    prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride,
Alex Converse's avatar
Alex Converse committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
                              pd->dst.buf, pd->dst.stride);
  }
  if (dct_idtx) {
    av1_subtract_plane(x, bsize, 0);
    const struct macroblock_plane *const p = &x->plane[0];
    const int bw = 4 << (b_width_log2_lookup[bsize]);
    const int bh = 4 << (b_height_log2_lookup[bsize]);
    prune |= dct_vs_idtx(p->src_diff, bw, bw, bh);
  }
1070
1071
1072

  return prune;
}
1073

1074
// Performance drop: 0.3%, Speed improvement: 5%
Yaowu Xu's avatar
Yaowu Xu committed
1075
static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
Alex Converse's avatar
Alex Converse committed
1076
1077
1078
                             const MACROBLOCK *x, const MACROBLOCKD *xd) {
  const struct macroblock_plane *const p = &x->plane[0];
  const struct macroblockd_plane *const pd = &xd->plane[0];
1079
  return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf,
Alex Converse's avatar
Alex Converse committed
1080
                          pd->dst.stride);
1081
1082
}

Hui Su's avatar
Hui Su committed
1083
1084
1085
1086
1087
1088
1089
1090
// 1D Transforms used in inter set, this needs to be changed if
// ext_tx_used_inter is changed
static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = {
  { 1, 0, 0, 0 }, { 1, 1, 1, 1 }, { 1, 1, 1, 1 }, { 1, 0, 0, 1 },
#if CONFIG_MRC_TX
  { 1, 0, 0, 1 },
#endif  // CONFIG_MRC_TX
};
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

static void get_energy_distribution_finer(const int16_t *diff, int stride,
                                          int bw, int bh, float *hordist,
                                          float *verdist) {
  // First compute downscaled block energy values (esq); downscale factors
  // are defined by w_shift and h_shift.
  unsigned int esq[256];
  const int w_shift = bw <= 8 ? 0 : 1;
  const int h_shift = bh <= 8 ? 0 : 1;
  const int esq_w = bw <= 8 ? bw : bw / 2;
  const int esq_h = bh <= 8 ? bh : bh / 2;
  const int esq_sz = esq_w * esq_h;
  int i, j;
  memset(esq, 0, esq_sz * sizeof(esq[0]));
  for (i = 0; i < bh; i++) {
    unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
    const int16_t *cur_diff_row = diff + i * stride;
    for (j = 0; j < bw; j++) {
      cur_esq_row[j >> w_shift] += cur_diff_row[j] * cur_diff_row[j];
    }
  }

  uint64_t total = 0;
  for (i = 0; i < esq_sz; i++) total += esq[i];

  // Output hordist and verdist arrays are normalized 1D projections of esq
  if (total == 0) {
    float hor_val = 1.0f / esq_w;
    for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
    float ver_val = 1.0f / esq_h;
    for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
    return;
  }

  const float e_recip = 1.0f / (float)total;
  memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
  memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
  const unsigned int *cur_esq_row;
  for (i = 0; i < esq_h - 1; i++) {
    cur_esq_row = esq + i * esq_w;
    for (j = 0; j < esq_w - 1; j++) {
      hordist[j] += (float)cur_esq_row[j];
      verdist[i] += (float)cur_esq_row[j];
    }
    verdist[i] += (float)cur_esq_row[j];
  }
  cur_esq_row = esq + i * esq_w;
  for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];

  for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
  for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
}

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
// Instead of 1D projections of the block energy distribution computed by
// get_energy_distribution_finer() this function computes a full
// two-dimensional energy distribution of the input block.
static void get_2D_energy_distribution(const int16_t *diff, int stride, int bw,
                                       int bh, float *edist) {
  unsigned int esq[256] = { 0 };
  const int esq_w = bw >> 2;
  const int esq_h = bh >> 2;
  const int esq_sz = esq_w * esq_h;
  uint64_t total = 0;
  for (int i = 0; i < bh; i += 4) {
    for (int j = 0; j < bw; j += 4) {
      unsigned int cur_sum_energy = 0;
      for (int k = 0; k < 4; k++) {
        const int16_t *cur_diff = diff + (i + k) * stride + j;
        cur_sum_energy += cur_diff[0] * cur_diff[0] +
                          cur_diff[1] * cur_diff[1] +
                          cur_diff[2] * cur_diff[2] + cur_diff[3] * cur_diff[3];
      }
      esq[(i >> 2) * esq_w + (j >> 2)] = cur_sum_energy;
      total += cur_sum_energy;
    }
  }

  const float e_recip = 1.0f / (float)total;
  for (int i = 0; i < esq_sz - 1; i++) edist[i] = esq[i] * e_recip;
}

1172
1173
1174
1175
// Similar to get_horver_correlation, but also takes into account first
// row/column, when computing horizontal/vertical correlation.
static void get_horver_correlation_full(const int16_t *diff, int stride, int w,
                                        int h, float *hcorr, float *vcorr) {
1176
1177
  const float num_hor = (float)(h * (w - 1));
  const float num_ver = (float)((h - 1) * w);
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
  int i, j;

  // The following notation is used:
  // x - current pixel
  // y - left neighbor pixel
  // z - top neighbor pixel
  int64_t xy_sum = 0, xz_sum = 0;
  int64_t xhor_sum = 0, xver_sum = 0, y_sum = 0, z_sum = 0;
  int64_t x2hor_sum = 0, x2ver_sum = 0, y2_sum = 0, z2_sum = 0;

  int16_t x, y, z;
  for (j = 1; j < w; ++j) {
    x = diff[j];
    y = diff[j - 1];
    xy_sum += x * y;
    xhor_sum += x;
    y_sum += y;
    x2hor_sum += x * x;
    y2_sum += y * y;
  }
  for (i = 1; i < h; ++i) {
    x = diff[i * stride];
    z = diff[(i - 1) * stride];
    xz_sum += x * z;
    xver_sum += x;
    z_sum += z;
    x2ver_sum += x * x;
    z2_sum += z * z;
    for (j = 1; j < w; ++j) {
      x = diff[i * stride + j];
      y = diff[i * stride + j - 1];
      z = diff[(i - 1) * stride + j];
      xy_sum += x * y;
      xz_sum += x * z;
      xhor_sum += x;
      xver_sum += x;
      y_sum += y;
      z_sum += z;
      x2hor_sum += x * x;
      x2ver_sum += x * x;
      y2_sum += y * y;
      z2_sum += z * z;
    }
  }
  const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
  const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
  const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
  const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
  const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
  const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;

  *hcorr = *vcorr = 1;
  if (xhor_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  }
  if (xver_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  }
}

// Performs a forward pass through a neural network with 2 fully-connected
// layers, assuming ReLU as activation function. Number of output neurons
// is always equal to 4.
// fc1, fc2 - weight matrices of the respective layers.
// b1, b2 - bias vectors of the respective layers.
static void compute_1D_scores(float *features, int num_features,
                              const float *fc1, const float *b1,
                              const float *fc2, const float *b2,
                              int num_hidden_units, float *dst_scores) {
  assert(num_hidden_units <= 32);
  float hidden_layer[32];
  for (int i = 0; i < num_hidden_units; i++) {
    const float *cur_coef = fc1 + i * num_features;
    hidden_layer[i] = 0.0f;
    for (int j = 0; j < num_features; j++)
      hidden_layer[i] += cur_coef[j] * features[j];
    hidden_layer[i] = AOMMAX(hidden_layer[i] + b1[i], 0.0f);
  }
  for (int i = 0; i < 4; i++) {
    const float *cur_coef = fc2 + i * num_hidden_units;
    dst_scores[i] = 0.0f;
    for (int j = 0; j < num_hidden_units; j++)
      dst_scores[i] += cur_coef[j] * hidden_layer[j];
    dst_scores[i] += b2[i];
  }
}

// Transforms raw scores into a probability distribution across 16 TX types
static void score_2D_transform_pow8(float *scores_2D, float shift) {
  float sum = 0.0f;
  int i;

  for (i = 0; i < 16; i++) {
    float v, v2, v4;
    v = AOMMAX(scores_2D[i] + shift, 0.0f);
    v2 = v * v;
    v4 = v2 * v2;
    scores_2D[i] = v4 * v4;
    sum += scores_2D[i];
  }
  for (i = 0; i < 16; i++) scores_2D[i] /= sum;
}

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
// Similarly to compute_1D_scores() performs a forward pass through a
// neural network with two fully-connected layers. The only difference
// is that it assumes 1 output neuron, as required by the classifier used
// for TX size pruning.
static float compute_tx_split_prune_score(float *features, int num_features,
                                          const float *fc1, const float *b1,
                                          const float *fc2, float b2,
                                          int num_hidden_units) {
  assert(num_hidden_units <= 64);
  float hidden_layer[64];
  for (int i = 0; i < num_hidden_units; i++) {
    const float *cur_coef = fc1 + i * num_features;
    hidden_layer[i] = 0.0f;
    for (int j = 0; j < num_features; j++)
      hidden_layer[i] += cur_coef[j] * features[j];
    hidden_layer[i] = AOMMAX(hidden_layer[i] + b1[i], 0.0f);
  }
  float dst_score = 0.0f;
  for (int j = 0; j < num_hidden_units; j++)
    dst_score += fc2[j] * hidden_layer[j];
  dst_score += b2;
  return dst_score;
}

static int prune_tx_split(BLOCK_SIZE bsize, const int16_t *diff, float hcorr,
                          float vcorr) {
  if (bsize <= BLOCK_4X4 || bsize > BLOCK_16X16) return 0;

  float features[17];
  const int bw = block_size_wide[bsize], bh = block_size_high[bsize];
  const int feature_num = (bw / 4) * (bh / 4) + 1;
  assert(feature_num <= 17);

  get_2D_energy_distribution(diff, bw, bw, bh, features);
  features[feature_num - 2] = hcorr;
  features[feature_num - 1] = vcorr;

  const int bidx = bsize - BLOCK_4X4 - 1;
  const float *fc1 = av1_prune_tx_split_learned_weights[bidx];
  const float *b1 =
      fc1 + av1_prune_tx_split_num_hidden_units[bidx] * feature_num;
  const float *fc2 = b1 + av1_prune_tx_split_num_hidden_units[bidx];
  float b2 = *(fc2 + av1_prune_tx_split_num_hidden_units[bidx]);
  float score =
      compute_tx_split_prune_score(features, feature_num, fc1, b1, fc2, b2,
                                   av1_prune_tx_split_num_hidden_units[bidx]);

  return (score > av1_prune_tx_split_thresholds[bidx]);
}

static int prune_tx_2D(BLOCK_SIZE bsize, const MACROBLOCK *x, int tx_set_type,
                       int tx_type_pruning_aggressiveness,
                       int use_tx_split_prune) {
1336
1337
1338
1339
  if (bsize >= BLOCK_32X32) return 0;
  const struct macroblock_plane *const p = &x->plane[0];
  const int bidx = AOMMAX(bsize - BLOCK_4X4, 0);
  const float score_thresh =
1340
1341
      av1_prune_2D_adaptive_thresholds[bidx]
                                      [tx_type_pruning_aggressiveness - 1];
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

  float hfeatures[16], vfeatures[16];
  float hscores[4], vscores[4];
  float scores_2D[16];
  int tx_type_table_2D[16] = {
    DCT_DCT,      DCT_ADST,      DCT_FLIPADST,      V_DCT,
    ADST_DCT,     ADST_ADST,     ADST_FLIPADST,     V_ADST,
    FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
    H_DCT,        H_ADST,        H_FLIPADST,        IDTX
  };
  const int bw = block_size_wide[bsize], bh = block_size_high[bsize];
  const int hfeatures_num = bw <= 8 ? bw : bw / 2;
  const int vfeatures_num = bh <= 8 ? bh : bh / 2;
  assert(hfeatures_num <= 16);
  assert(vfeatures_num <= 16);

  get_energy_distribution_finer(p->src_diff, bw, bw, bh, hfeatures, vfeatures);
  get_horver_correlation_full(p->src_diff, bw, bw, bh,
                              &hfeatures[hfeatures_num - 1],
                              &vfeatures[vfeatures_num - 1]);

  const float *fc1_hor = av1_prune_2D_learned_weights_hor[bidx];
  const float *b1_hor =
      fc1_hor + av1_prune_2D_num_hidden_units_hor[bidx] * hfeatures_num;
  const float *fc2_hor = b1_hor + av1_prune_2D_num_hidden_units_hor[bidx];
  const float *b2_hor = fc2_hor + av1_prune_2D_num_hidden_units_hor[bidx] * 4;
  compute_1D_scores(hfeatures, hfeatures_num, fc1_hor, b1_hor, fc2_hor, b2_hor,
                    av1_prune_2D_num_hidden_units_hor[bidx], hscores);

  const float *fc1_ver = av1_prune_2D_learned_weights_ver[bidx];
  const float *b1_ver =
      fc1_ver + av1_prune_2D_num_hidden_units_ver[bidx] * vfeatures_num;
  const float *fc2_ver = b1_ver + av1_prune_2D_num_hidden_units_ver[bidx];
  const float *b2_ver = fc2_ver + av1_prune_2D_num_hidden_units_ver[bidx] * 4;
  compute_1D_scores(vfeatures, vfeatures_num, fc1_ver, b1_ver, fc2_ver, b2_ver,
                    av1_prune_2D_num_hidden_units_ver[bidx], vscores);

  float score_2D_average = 0.0f;
  for (int i = 0; i < 4; i++) {
    float *cur_scores_2D = scores_2D + i * 4;
    cur_scores_2D[0] = vscores[i] * hscores[0];
    cur_scores_2D[1] = vscores[i] * hscores[1];
    cur_scores_2D[2] = vscores[i] * hscores[2];
    cur_scores_2D[3] = vscores[i] * hscores[3];
    score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] +
                        cur_scores_2D[3];
  }
  score_2D_average /= 16;
  score_2D_transform_pow8(scores_2D, (20 - score_2D_average));

  // Always keep the TX type with the highest score, prune all others with
  // score below score_thresh.
  int max_score_i = 0;
  float max_score = 0.0f;
  for (int i = 0; i < 16; i++) {
    if (scores_2D[i] > max_score &&
        av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) {
      max_score = scores_2D[i];
      max_score_i = i;
    }
  }

  int prune_bitmask = 0;
  for (int i = 0; i < 16; i++) {
    if (scores_2D[i] < score_thresh && i != max_score_i)
      prune_bitmask |= (1 << tx_type_table_2D[i]);
  }

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
  // Also apply TX size pruning if it's turned on. The value
  // of prune_tx_split_flag indicates whether we should do
  // full TX size search (flag=0) or use the largest available
  // TX size without performing any further search (flag=1).
  int prune_tx_split_flag = 0;
  if (use_tx_split_prune) {
    prune_tx_split_flag =
        prune_tx_split(bsize, p->src_diff, hfeatures[hfeatures_num - 1],
                       vfeatures[vfeatures_num - 1]);
  }
  prune_bitmask |= (prune_tx_split_flag << TX_TYPES);
1421
1422
  return prune_bitmask;
}
Hui Su's avatar
Hui Su committed
1423

1424
1425
1426
static int prune_tx(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
                    const MACROBLOCKD *const xd, int tx_set_type,
                    int use_tx_split_prune) {
1427
1428
1429
  int tx_set = ext_tx_set_index[1][tx_set_type];
  assert(tx_set >= 0);
  const int *tx_set_1D = ext_tx_used_inter_1D[tx_set];
1430

1431
  switch (cpi->sf.tx_type_search.prune_mode) {
1432
1433
    case NO_PRUNE: return 0; break;
    case PRUNE_ONE:
1434
      if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return 0;
1435
1436
      return prune_one_for_sby(cpi, bsize, x, xd);
      break;
1437
    case PRUNE_TWO:
1438
      if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) {
1439
        if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return 0;
1440
1441
        return prune_two_for_sby(cpi, bsize, x, xd, 0, 1);
      }
1442
      if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D]))
1443
1444
        return prune_two_for_sby(cpi, bsize, x, xd, 1, 0);
      return prune_two_for_sby(cpi, bsize, x, xd, 1, 1);
1445
      break;
1446
1447
    case PRUNE_2D_ACCURATE:
      if (tx_set_type == EXT_TX_SET_ALL16)
1448
        return prune_tx_2D(bsize, x, tx_set_type, 6, use_tx_split_prune);
1449
      else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
1450
        return prune_tx_2D(bsize, x, tx_set_type, 4, use_tx_split_prune);
1451
1452
1453
1454
1455
      else
        return 0;
      break;
    case PRUNE_2D_FAST:
      if (tx_set_type == EXT_TX_SET_ALL16)
1456
        return prune_tx_2D(bsize, x, tx_set_type, 10, use_tx_split_prune);
1457
      else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
1458
        return prune_tx_2D(bsize, x, tx_set_type, 7, use_tx_split_prune);
1459
1460
1461
      else
        return 0;
      break;
1462
1463
1464
1465
1466
  }
  assert(0);
  return 0;
}

1467
1468
static int do_tx_type_search(TX_TYPE tx_type, int prune,
                             TX_TYPE_PRUNE_MODE mode) {
1469
  // TODO(sarahparker) implement for non ext tx
1470
1471
1472
1473
1474
1475
  if (mode >= PRUNE_2D_ACCURATE) {
    return !((prune >> tx_type) & 1);
  } else {
    return !(((prune >> vtx_tab[tx_type]) & 1) |
             ((prune >> (htx_tab[tx_type] + 8)) & 1));
  }
1476
1477
}

Yaowu Xu's avatar
Yaowu Xu committed
1478
static void model_rd_from_sse(const AV1_COMP *const cpi,
1479
1480
                              const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
                              int plane, int64_t sse, int *rate,
Geza Lore's avatar
Geza Lore committed
1481
1482
1483
                              int64_t *dist) {
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int dequant_shift =
1484
#if CONFIG_HIGHBITDEPTH
1485
      (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 :
1486
#endif  // CONFIG_HIGHBITDEPTH
1487
                                                    3;
Geza Lore's avatar
Geza Lore committed
1488
1489
1490
1491

  // Fast approximate the modelling function.
  if (cpi->sf.simple_model_rd_from_var) {
    const int64_t square_error = sse;
1492
    int quantizer = (pd->dequant_Q3[1] >> dequant_shift);
Geza Lore's avatar
Geza Lore committed
1493
1494

    if (quantizer < 120)
Yaowu Xu's avatar
Yaowu Xu committed
1495
      *rate = (int)((square_error * (280 - quantizer)) >>
Yaowu Xu's avatar
Yaowu Xu committed
1496
                    (16 - AV1_PROB_COST_SHIFT));
Geza Lore's avatar
Geza Lore committed
1497
1498
1499
1500
    else
      *rate = 0;
    *dist = (square_error * quantizer) >> 8;
  } else {
Yaowu Xu's avatar
Yaowu Xu committed
1501
    av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize],
1502
1503
                                 pd->dequant_Q3[1] >> dequant_shift, rate,
                                 dist);
Geza Lore's avatar
Geza Lore committed
1504
1505
1506
1507
1508
  }

  *dist <<= 4;
}

Yaowu Xu's avatar
Yaowu Xu committed
1509
static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
1510
1511
1512
1513
                            MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
                            int plane_to, int *out_rate_sum,
                            int64_t *out_dist_sum, int *skip_txfm_sb,
                            int64_t *skip_sse_sb) {
Jingning Han's avatar
Jingning Han committed
1514
1515
1516
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
Geza Lore's avatar
Geza Lore committed
1517
1518
1519
  int plane;
  const int ref = xd->mi[0]->mbmi.ref_frame[0];

Jingning Han's avatar
Jingning Han committed
1520
1521
1522
1523
1524
1525
  int64_t rate_sum = 0;
  int64_t dist_sum = 0;
  int64_t total_sse = 0;

  x->pred_sse[ref] = 0;

Geza Lore's avatar
Geza Lore committed
1526
1527
1528
  for (plane = plane_from; plane <= plane_to; ++plane) {
    struct macroblock_plane *const p = &x->plane[plane];
    struct macroblockd_plane *const pd = &xd->plane[plane];
1529
    const BLOCK_SIZE bs = AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
Geza Lore's avatar
Geza Lore committed
1530
1531
1532
    unsigned int sse;
    int rate;
    int64_t dist;
Jingning Han's avatar
Jingning Han committed
1533

1534
1535
    if (x->skip_chroma_rd && plane) continue;

Geza Lore's avatar
Geza Lore committed
1536
1537
    // TODO(geza): Write direct sse functions that do not compute
    // variance as well.
1538
1539
    cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
                       &sse);
Jingning Han's avatar
Jingning Han committed
1540

1541
    if (plane == 0) x->pred_sse[ref] = sse;
Jingning Han's avatar
Jingning Han committed
1542

Geza Lore's avatar
Geza Lore committed
1543
    total_sse += sse;
Jingning Han's avatar
Jingning Han committed
1544

Geza Lore's avatar
Geza Lore committed
1545
    model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist);
Geza Lore's avatar
Geza Lore committed
1546
1547
1548

    rate_sum += rate;
    dist_sum += dist;
Jingning Han's avatar
Jingning Han committed
1549
1550
  }

Geza Lore's avatar