denoising.c 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "denoising.h"

#include "vp8/common/reconinter.h"
#include "vpx/vpx_integer.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_rtcd.h"

18
19

static const unsigned int NOISE_MOTION_THRESHOLD = 20 * 20;
20
// SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming var(noise) ~= 100.
21
22
23
static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;

24

25
26
27
28
29
30
31
static unsigned int denoiser_motion_compensate(YV12_BUFFER_CONFIG *src,
        YV12_BUFFER_CONFIG *dst,
        MACROBLOCK *x,
        unsigned int best_sse,
        unsigned int zero_mv_sse,
        int recon_yoffset,
        int recon_uvoffset)
32
{
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    MACROBLOCKD filter_xd = x->e_mbd;
    int mv_col;
    int mv_row;
    int sse_diff = zero_mv_sse - best_sse;
    // Compensate the running average.
    filter_xd.pre.y_buffer = src->y_buffer + recon_yoffset;
    filter_xd.pre.u_buffer = src->u_buffer + recon_uvoffset;
    filter_xd.pre.v_buffer = src->v_buffer + recon_uvoffset;
    // Write the compensated running average to the destination buffer.
    filter_xd.dst.y_buffer = dst->y_buffer + recon_yoffset;
    filter_xd.dst.u_buffer = dst->u_buffer + recon_uvoffset;
    filter_xd.dst.v_buffer = dst->v_buffer + recon_uvoffset;
    // Use the best MV for the compensation.
    filter_xd.mode_info_context->mbmi.ref_frame = LAST_FRAME;
    filter_xd.mode_info_context->mbmi.mode = filter_xd.best_sse_inter_mode;
    filter_xd.mode_info_context->mbmi.mv = filter_xd.best_sse_mv;
    filter_xd.mode_info_context->mbmi.need_to_clamp_mvs =
        filter_xd.need_to_clamp_best_mvs;
    mv_col = filter_xd.best_sse_mv.as_mv.col;
    mv_row = filter_xd.best_sse_mv.as_mv.row;

    if (filter_xd.mode_info_context->mbmi.mode <= B_PRED ||
        (mv_row *mv_row + mv_col *mv_col <= NOISE_MOTION_THRESHOLD &&
         sse_diff < SSE_DIFF_THRESHOLD))
    {
        // Handle intra blocks as referring to last frame with zero motion and
        // let the absolute pixel difference affect the filter factor.
        // Also consider small amount of motion as being random walk due to
        // noise, if it doesn't mean that we get a much bigger error.
        // Note that any changes to the mode info only affects the denoising.
        filter_xd.mode_info_context->mbmi.ref_frame = LAST_FRAME;
        filter_xd.mode_info_context->mbmi.mode = ZEROMV;
        filter_xd.mode_info_context->mbmi.mv.as_int = 0;
        x->e_mbd.best_sse_inter_mode = ZEROMV;
        x->e_mbd.best_sse_mv.as_int = 0;
        best_sse = zero_mv_sse;
    }

    if (!x->skip)
    {
        vp8_build_inter_predictors_mb(&filter_xd);
    }
    else
    {
        vp8_build_inter16x16_predictors_mb(&filter_xd,
                                           filter_xd.dst.y_buffer,
                                           filter_xd.dst.u_buffer,
                                           filter_xd.dst.v_buffer,
                                           filter_xd.dst.y_stride,
                                           filter_xd.dst.uv_stride);
    }

    return best_sse;
86
87
}

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// The filtering coefficients used for denoizing are adjusted for static
// blocks, or blocks with very small motion vectors. This is done through
// the motion magnitude parameter.
//
// There are currently 2048 possible mapping from absolute difference to
// filter coefficient depending on the motion magnitude. Each mapping is
// in a LUT table. All these tables are staticly allocated but they are only
// filled on their first use.
//
// Each entry is a pair of 16b values, the coefficient and its complement
// to 256. Each of these value should only be 8b but they are 16b wide to
// avoid slow partial register manipulations.
enum {num_motion_magnitude_adjustments = 2048};

static union coeff_pair filter_coeff_LUT[num_motion_magnitude_adjustments][256];
static uint8_t filter_coeff_LUT_initialized[num_motion_magnitude_adjustments] =
    { 0 };


union coeff_pair *vp8_get_filter_coeff_LUT(unsigned int motion_magnitude)
108
{
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    union coeff_pair *LUT;
    unsigned int motion_magnitude_adjustment = motion_magnitude >> 3;

    if (motion_magnitude_adjustment >= num_motion_magnitude_adjustments)
    {
        motion_magnitude_adjustment = num_motion_magnitude_adjustments - 1;
    }

    LUT = filter_coeff_LUT[motion_magnitude_adjustment];

    if (!filter_coeff_LUT_initialized[motion_magnitude_adjustment])
    {
        int absdiff;

        for (absdiff = 0; absdiff < 256; ++absdiff)
        {
            unsigned int filter_coefficient;
            filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
            filter_coefficient += filter_coefficient /
                                  (3 + motion_magnitude_adjustment);

            if (filter_coefficient > 255)
            {
                filter_coefficient = 255;
            }

            LUT[absdiff].as_short[0] = filter_coefficient ;
            LUT[absdiff].as_short[1] = 256 - filter_coefficient;
        }

        filter_coeff_LUT_initialized[motion_magnitude_adjustment] = 1;
    }

    return LUT;
143
144
}

145
146
147
148
149
150


void vp8_denoiser_filter_c(YV12_BUFFER_CONFIG *mc_running_avg,
                           YV12_BUFFER_CONFIG *running_avg, MACROBLOCK *signal,
                           unsigned int motion_magnitude, int y_offset,
                           int uv_offset)
151
{
152
153
154
155
156
157
158
159
160
161
    unsigned char *sig = signal->thismb;
    int sig_stride = 16;
    unsigned char *mc_running_avg_y = mc_running_avg->y_buffer + y_offset;
    int mc_avg_y_stride = mc_running_avg->y_stride;
    unsigned char *running_avg_y = running_avg->y_buffer + y_offset;
    int avg_y_stride = running_avg->y_stride;
    const union coeff_pair *LUT = vp8_get_filter_coeff_LUT(motion_magnitude);
    int r, c;

    for (r = 0; r < 16; ++r)
162
    {
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        // Calculate absolute differences
        unsigned char abs_diff[16];

        union coeff_pair filter_coefficient[16];

        for (c = 0; c < 16; ++c)
        {
            int absdiff = sig[c] - mc_running_avg_y[c];
            absdiff = absdiff > 0 ? absdiff : -absdiff;
            abs_diff[c] = absdiff;
        }

        // Use LUT to get filter coefficients (two 16b value; f and 256-f)
        for (c = 0; c < 16; ++c)
        {
            filter_coefficient[c] = LUT[abs_diff[c]];
        }

        // Filtering...
        for (c = 0; c < 16; ++c)
        {
            const uint16_t state = (uint16_t)(mc_running_avg_y[c]);
            const uint16_t sample = (uint16_t)(sig[c]);

            running_avg_y[c] = (filter_coefficient[c].as_short[0] * state +
                    filter_coefficient[c].as_short[1] * sample + 128) >> 8;
        }

        // Depending on the magnitude of the difference between the signal and
        // filtered version, either replace the signal by the filtered one or
        // update the filter state with the signal when the change in a pixel
        // isn't classified as noise.
        for (c = 0; c < 16; ++c)
        {
            const int diff = sig[c] - running_avg_y[c];

            if (diff * diff < NOISE_DIFF2_THRESHOLD)
            {
                sig[c] = running_avg_y[c];
            }
            else
            {
                running_avg_y[c] = sig[c];
            }
        }

        // Update pointers for next iteration.
        sig += sig_stride;
        mc_running_avg_y += mc_avg_y_stride;
        running_avg_y += avg_y_stride;
213
214
215
    }
}

216

217
218
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height)
{
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    assert(denoiser);
    denoiser->yv12_running_avg.flags = 0;

    if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg), width,
                                    height, VP8BORDERINPIXELS) < 0)
    {
        vp8_denoiser_free(denoiser);
        return 1;
    }

    denoiser->yv12_mc_running_avg.flags = 0;

    if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
                                    height, VP8BORDERINPIXELS) < 0)
    {
        vp8_denoiser_free(denoiser);
        return 1;
    }

    vpx_memset(denoiser->yv12_running_avg.buffer_alloc, 0,
               denoiser->yv12_running_avg.frame_size);
    vpx_memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
               denoiser->yv12_mc_running_avg.frame_size);
    return 0;
243
244
245
246
}

void vp8_denoiser_free(VP8_DENOISER *denoiser)
{
247
248
249
    assert(denoiser);
    vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg);
    vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
250
251
252
253
254
255
256
}

void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
                             MACROBLOCK *x,
                             unsigned int best_sse,
                             unsigned int zero_mv_sse,
                             int recon_yoffset,
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
                             int recon_uvoffset)
{
    int mv_row;
    int mv_col;
    unsigned int motion_magnitude2;
    // Motion compensate the running average.
    best_sse = denoiser_motion_compensate(&denoiser->yv12_running_avg,
                                          &denoiser->yv12_mc_running_avg,
                                          x,
                                          best_sse,
                                          zero_mv_sse,
                                          recon_yoffset,
                                          recon_uvoffset);

    mv_row = x->e_mbd.best_sse_mv.as_mv.row;
    mv_col = x->e_mbd.best_sse_mv.as_mv.col;
    motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;

    if (best_sse > SSE_THRESHOLD ||
        motion_magnitude2 > 8 * NOISE_MOTION_THRESHOLD)
    {
        // No filtering of this block since it differs too much from the
        // predictor, or the motion vector magnitude is considered too big.
        vp8_copy_mem16x16(x->thismb, 16,
                          denoiser->yv12_running_avg.y_buffer + recon_yoffset,
                          denoiser->yv12_running_avg.y_stride);
        return;
    }

    // Filter.
    vp8_denoiser_filter(&denoiser->yv12_mc_running_avg,
                        &denoiser->yv12_running_avg, x, motion_magnitude2,
                        recon_yoffset, recon_uvoffset);
290
}