dct32x32_test.cc 5.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/include/gtest/gtest.h"

extern "C" {
#include "vp9/common/vp9_entropy.h"
#include "./vp9_rtcd.h"
  void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch);
  void vp9_short_idct32x32_c(short *input, short *output, int pitch);
}

#include "test/acm_random.h"
#include "vpx/vpx_integer.h"

using libvpx_test::ACMRandom;

namespace {
Yaowu Xu's avatar
Yaowu Xu committed
30
31
32
33
34
35
36
37
#ifdef _MSC_VER
static int round(double x) {
  if (x < 0)
    return (int)ceil(x - 0.5);
  else
    return (int)floor(x + 0.5);
}
#endif
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

static const double kPi = 3.141592653589793238462643383279502884;
static void reference2_32x32_idct_2d(double *input, double *output) {
  double x;
  for (int l = 0; l < 32; ++l) {
    for (int k = 0; k < 32; ++k) {
      double s = 0;
      for (int i = 0; i < 32; ++i) {
        for (int j = 0; j < 32; ++j) {
          x = cos(kPi * j * (l + 0.5) / 32.0) *
              cos(kPi * i * (k + 0.5) / 32.0) * input[i * 32 + j] / 1024;
          if (i != 0)
            x *= sqrt(2.0);
          if (j != 0)
            x *= sqrt(2.0);
          s += x;
        }
      }
      output[k * 32 + l] = s / 4;
    }
  }
}

static void reference_32x32_dct_1d(double in[32], double out[32], int stride) {
  const double kInvSqrt2 = 0.707106781186547524400844362104;
  for (int k = 0; k < 32; k++) {
    out[k] = 0.0;
    for (int n = 0; n < 32; n++)
      out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
    if (k == 0)
      out[k] = out[k] * kInvSqrt2;
  }
}

static void reference_32x32_dct_2d(int16_t input[32*32], double output[32*32]) {
  // First transform columns
  for (int i = 0; i < 32; ++i) {
    double temp_in[32], temp_out[32];
    for (int j = 0; j < 32; ++j)
      temp_in[j] = input[j*32 + i];
    reference_32x32_dct_1d(temp_in, temp_out, 1);
    for (int j = 0; j < 32; ++j)
      output[j * 32 + i] = temp_out[j];
  }
  // Then transform rows
  for (int i = 0; i < 32; ++i) {
    double temp_in[32], temp_out[32];
    for (int j = 0; j < 32; ++j)
      temp_in[j] = output[j + i*32];
    reference_32x32_dct_1d(temp_in, temp_out, 1);
    // Scale by some magic number
    for (int j = 0; j < 32; ++j)
      output[j + i * 32] = temp_out[j] / 4;
  }
}


TEST(VP9Idct32x32Test, AccuracyCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t in[1024], coeff[1024];
    int16_t out_c[1024];
    double out_r[1024];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 1024; ++j)
      in[j] = rnd.Rand8() - rnd.Rand8();

    reference_32x32_dct_2d(in, out_r);
    for (int j = 0; j < 1024; j++)
      coeff[j] = round(out_r[j]);
    vp9_short_idct32x32_c(coeff, out_c, 64);
    for (int j = 0; j < 1024; ++j) {
      const int diff = out_c[j] - in[j];
      const int error = diff * diff;
      EXPECT_GE(1, error)
          << "Error: 3x32 IDCT has error " << error
          << " at index " << j;
    }

    vp9_short_fdct32x32_c(in, out_c, 64);
    for (int j = 0; j < 1024; ++j) {
      const double diff = coeff[j] - out_c[j];
      const double error = diff * diff;
      EXPECT_GE(1.0, error)
          << "Error: 32x32 FDCT has error " << error
          << " at index " << j;
    }
  }
}
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
TEST(VP9Fdct32x32Test, AccuracyCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  unsigned int max_error = 0;
  int64_t total_error = 0;
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t test_input_block[1024];
    int16_t test_temp_block[1024];
    int16_t test_output_block[1024];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 1024; ++j)
      test_input_block[j] = rnd.Rand8() - rnd.Rand8();

    const int pitch = 64;
    vp9_short_fdct32x32_c(test_input_block, test_temp_block, pitch);
    vp9_short_idct32x32_c(test_temp_block, test_output_block, pitch);

    for (int j = 0; j < 1024; ++j) {
      const unsigned diff = test_input_block[j] - test_output_block[j];
      const unsigned error = diff * diff;
      if (max_error < error)
        max_error = error;
      total_error += error;
    }
  }

  EXPECT_GE(1u, max_error)
      << "Error: 32x32 FDCT/IDCT has an individual roundtrip error > 1";

  EXPECT_GE(count_test_block/10, total_error)
      << "Error: 32x32 FDCT/IDCT has average roundtrip error > 1/10 per block";
}

TEST(VP9Fdct32x32Test, CoeffSizeCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t input_block[1024], input_extreme_block[1024];
    int16_t output_block[1024], output_extreme_block[1024];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 1024; ++j) {
      input_block[j] = rnd.Rand8() - rnd.Rand8();
      input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
    }
    if (i == 0)
      for (int j = 0; j < 1024; ++j)
        input_extreme_block[j] = 255;

180
    const int pitch = 64;
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    vp9_short_fdct32x32_c(input_block, output_block, pitch);
    vp9_short_fdct32x32_c(input_extreme_block, output_extreme_block, pitch);

    // The minimum quant value is 4.
    for (int j = 0; j < 1024; ++j) {
      EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j]))
          << "Error: 32x32 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
      EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j]))
          << "Error: 32x32 FDCT extreme has coefficient larger than "
             "4*DCT_MAX_VALUE";
    }
  }
}
}  // namespace