entdec.c 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
Nathan E. Egge's avatar
Nathan E. Egge committed
11 12

#ifdef HAVE_CONFIG_H
13
#include "./config.h"
Nathan E. Egge's avatar
Nathan E. Egge committed
14 15
#endif

16
#include "aom_dsp/entdec.h"
Nathan E. Egge's avatar
Nathan E. Egge committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

/*A range decoder.
  This is an entropy decoder based upon \cite{Mar79}, which is itself a
   rediscovery of the FIFO arithmetic code introduced by \cite{Pas76}.
  It is very similar to arithmetic encoding, except that encoding is done with
   digits in any base, instead of with bits, and so it is faster when using
   larger bases (i.e.: a byte).
  The author claims an average waste of $\frac{1}{2}\log_b(2b)$ bits, where $b$
   is the base, longer than the theoretical optimum, but to my knowledge there
   is no published justification for this claim.
  This only seems true when using near-infinite precision arithmetic so that
   the process is carried out with no rounding errors.

  An excellent description of implementation details is available at
   http://www.arturocampos.com/ac_range.html
  A recent work \cite{MNW98} which proposes several changes to arithmetic
   encoding for efficiency actually re-discovers many of the principles
   behind range encoding, and presents a good theoretical analysis of them.

  End of stream is handled by writing out the smallest number of bits that
   ensures that the stream will be correctly decoded regardless of the value of
   any subsequent bits.
  od_ec_dec_tell() can be used to determine how many bits were needed to decode
   all the symbols thus far; other data can be packed in the remaining bits of
   the input buffer.
  @PHDTHESIS{Pas76,
    author="Richard Clark Pasco",
    title="Source coding algorithms for fast data compression",
    school="Dept. of Electrical Engineering, Stanford University",
    address="Stanford, CA",
    month=May,
    year=1976,
    URL="http://www.richpasco.org/scaffdc.pdf"
  }
  @INPROCEEDINGS{Mar79,
   author="Martin, G.N.N.",
   title="Range encoding: an algorithm for removing redundancy from a digitised
    message",
   booktitle="Video & Data Recording Conference",
   year=1979,
   address="Southampton",
   month=Jul,
   URL="http://www.compressconsult.com/rangecoder/rngcod.pdf.gz"
  }
  @ARTICLE{MNW98,
   author="Alistair Moffat and Radford Neal and Ian H. Witten",
   title="Arithmetic Coding Revisited",
   journal="{ACM} Transactions on Information Systems",
   year=1998,
   volume=16,
   number=3,
   pages="256--294",
   month=Jul,
   URL="http://researchcommons.waikato.ac.nz/bitstream/handle/10289/78/content.pdf"
  }*/

/*This is meant to be a large, positive constant that can still be efficiently
   loaded as an immediate (on platforms like ARM, for example).
  Even relatively modest values like 100 would work fine.*/
#define OD_EC_LOTS_OF_BITS (0x4000)

static void od_ec_dec_refill(od_ec_dec *dec) {
  int s;
  od_ec_window dif;
  int16_t cnt;
  const unsigned char *bptr;
  const unsigned char *end;
  dif = dec->dif;
  cnt = dec->cnt;
  bptr = dec->bptr;
  end = dec->end;
  s = OD_EC_WINDOW_SIZE - 9 - (cnt + 15);
  for (; s >= 0 && bptr < end; s -= 8, bptr++) {
    OD_ASSERT(s <= OD_EC_WINDOW_SIZE - 8);
    dif |= (od_ec_window)bptr[0] << s;
    cnt += 8;
  }
  if (bptr >= end) {
    dec->tell_offs += OD_EC_LOTS_OF_BITS - cnt;
    cnt = OD_EC_LOTS_OF_BITS;
  }
  dec->dif = dif;
  dec->cnt = cnt;
  dec->bptr = bptr;
}

/*Takes updated dif and range values, renormalizes them so that
   32768 <= rng < 65536 (reading more bytes from the stream into dif if
   necessary), and stores them back in the decoder context.
  dif: The new value of dif.
  rng: The new value of the range.
  ret: The value to return.
  Return: ret.
          This allows the compiler to jump to this function via a tail-call.*/
111 112
static int od_ec_dec_normalize(od_ec_dec *dec, od_ec_window dif, unsigned rng,
                               int ret) {
Nathan E. Egge's avatar
Nathan E. Egge committed
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  int d;
  OD_ASSERT(rng <= 65535U);
  d = 16 - OD_ILOG_NZ(rng);
  dec->cnt -= d;
  dec->dif = dif << d;
  dec->rng = rng << d;
  if (dec->cnt < 0) od_ec_dec_refill(dec);
  return ret;
}

/*Initializes the decoder.
  buf: The input buffer to use.
  Return: 0 on success, or a negative value on error.*/
void od_ec_dec_init(od_ec_dec *dec, const unsigned char *buf,
                    uint32_t storage) {
  dec->buf = buf;
  dec->eptr = buf + storage;
  dec->end_window = 0;
  dec->nend_bits = 0;
  dec->tell_offs = 10 - (OD_EC_WINDOW_SIZE - 8);
  dec->end = buf + storage;
  dec->bptr = buf;
  dec->dif = 0;
  dec->rng = 0x8000;
  dec->cnt = -15;
  dec->error = 0;
  od_ec_dec_refill(dec);
}

/*Decode a bit that has an fz/ft probability of being a zero.
  fz: The probability that the bit is zero, scaled by _ft.
  ft: The total probability.
      This must be at least 16384 and no more than 32768.
  Return: The value decoded (0 or 1).*/
147
int od_ec_decode_bool(od_ec_dec *dec, unsigned fz, unsigned ft) {
Nathan E. Egge's avatar
Nathan E. Egge committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  od_ec_window dif;
  od_ec_window vw;
  unsigned r;
  int s;
  unsigned v;
  int ret;
  OD_ASSERT(0 < fz);
  OD_ASSERT(fz < ft);
  OD_ASSERT(16384 <= ft);
  OD_ASSERT(ft <= 32768U);
  dif = dec->dif;
  r = dec->rng;
  OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
  OD_ASSERT(ft <= r);
  s = r - ft >= ft;
  ft <<= s;
  fz <<= s;
  OD_ASSERT(r - ft < ft);
#if OD_EC_REDUCED_OVERHEAD
  {
    unsigned d;
    unsigned e;
    d = r - ft;
    e = OD_SUBSATU(2 * d, ft);
    v = fz + OD_MINI(fz, e) + OD_MINI(OD_SUBSATU(fz, e) >> 1, d);
  }
#else
  v = fz + OD_MINI(fz, r - ft);
#endif
  vw = (od_ec_window)v << (OD_EC_WINDOW_SIZE - 16);
  ret = dif >= vw;
  if (ret) dif -= vw;
  r = ret ? r - v : v;
181
  return od_ec_dec_normalize(dec, dif, r, ret);
Nathan E. Egge's avatar
Nathan E. Egge committed
182 183 184 185 186 187 188 189 190 191
}

/*Decode a bit that has an fz probability of being a zero in Q15.
  This is a simpler, lower overhead version of od_ec_decode_bool() for use when
   ft == 32768.
  To be decoded properly by this function, symbols cannot have been encoded by
   od_ec_encode(), but must have been encoded with one of the equivalent _q15()
   or _dyadic() functions instead.
  fz: The probability that the bit is zero, scaled by 32768.
  Return: The value decoded (0 or 1).*/
192
int od_ec_decode_bool_q15(od_ec_dec *dec, unsigned fz) {
Nathan E. Egge's avatar
Nathan E. Egge committed
193 194 195
  od_ec_window dif;
  od_ec_window vw;
  unsigned r;
196
  unsigned r_new;
Nathan E. Egge's avatar
Nathan E. Egge committed
197 198 199 200 201 202 203 204 205 206
  unsigned v;
  int ret;
  OD_ASSERT(0 < fz);
  OD_ASSERT(fz < 32768U);
  dif = dec->dif;
  r = dec->rng;
  OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
  OD_ASSERT(32768U <= r);
  v = fz * (uint32_t)r >> 15;
  vw = (od_ec_window)v << (OD_EC_WINDOW_SIZE - 16);
207 208 209 210 211 212 213 214
  ret = 0;
  r_new = v;
  if (dif >= vw) {
    r_new = r - v;
    dif -= vw;
    ret = 1;
  }
  return od_ec_dec_normalize(dec, dif, r_new, ret);
Nathan E. Egge's avatar
Nathan E. Egge committed
215 216 217 218 219 220 221 222 223 224
}

/*Decodes a symbol given a cumulative distribution function (CDF) table.
  cdf: The CDF, such that symbol s falls in the range
        [s > 0 ? cdf[s - 1] : 0, cdf[s]).
       The values must be monotonically non-increasing, and cdf[nsyms - 1]
        must be at least 16384, and no more than 32768.
  nsyms: The number of symbols in the alphabet.
         This should be at most 16.
  Return: The decoded symbol s.*/
225
int od_ec_decode_cdf(od_ec_dec *dec, const uint16_t *cdf, int nsyms) {
Nathan E. Egge's avatar
Nathan E. Egge committed
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  od_ec_window dif;
  unsigned r;
  unsigned c;
  unsigned d;
#if OD_EC_REDUCED_OVERHEAD
  unsigned e;
#endif
  int s;
  unsigned u;
  unsigned v;
  unsigned q;
  unsigned fl;
  unsigned fh;
  unsigned ft;
  int ret;
  dif = dec->dif;
  r = dec->rng;
  OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
  OD_ASSERT(nsyms > 0);
  ft = cdf[nsyms - 1];
  OD_ASSERT(16384 <= ft);
  OD_ASSERT(ft <= 32768U);
  OD_ASSERT(ft <= r);
  s = r - ft >= ft;
  ft <<= s;
  d = r - ft;
  OD_ASSERT(d < ft);
  c = (unsigned)(dif >> (OD_EC_WINDOW_SIZE - 16));
  q = OD_MAXI((int)(c >> 1), (int)(c - d));
#if OD_EC_REDUCED_OVERHEAD
  e = OD_SUBSATU(2 * d, ft);
  /*The correctness of this inverse partition function is not obvious, but it
     was checked exhaustively for all possible values of r, ft, and c.
    TODO: It should be possible to optimize this better than the compiler,
     given that we do not care about the accuracy of negative results (as we
     will not use them).
    It would also be nice to get rid of the 32-bit dividend, as it requires a
     32x32->64 bit multiply to invert.*/
  q = OD_MAXI((int)q, (int)((2 * (int32_t)c + 1 - (int32_t)e) / 3));
#endif
  q >>= s;
  OD_ASSERT(q<ft>> s);
  fl = 0;
  ret = 0;
  for (fh = cdf[ret]; fh <= q; fh = cdf[++ret]) fl = fh;
  OD_ASSERT(fh <= ft >> s);
  fl <<= s;
  fh <<= s;
#if OD_EC_REDUCED_OVERHEAD
  u = fl + OD_MINI(fl, e) + OD_MINI(OD_SUBSATU(fl, e) >> 1, d);
  v = fh + OD_MINI(fh, e) + OD_MINI(OD_SUBSATU(fh, e) >> 1, d);
#else
  u = fl + OD_MINI(fl, d);
  v = fh + OD_MINI(fh, d);
#endif
  r = v - u;
  dif -= (od_ec_window)u << (OD_EC_WINDOW_SIZE - 16);
283
  return od_ec_dec_normalize(dec, dif, r, ret);
Nathan E. Egge's avatar
Nathan E. Egge committed
284 285 286 287 288 289 290 291 292 293
}

/*Decodes a symbol given a cumulative distribution function (CDF) table.
  cdf: The CDF, such that symbol s falls in the range
        [s > 0 ? cdf[s - 1] : 0, cdf[s]).
       The values must be monotonically non-increasing, and cdf[nsyms - 1]
       must be at least 2, and no more than 32768.
  nsyms: The number of symbols in the alphabet.
         This should be at most 16.
  Return: The decoded symbol s.*/
294
int od_ec_decode_cdf_unscaled(od_ec_dec *dec, const uint16_t *cdf, int nsyms) {
Nathan E. Egge's avatar
Nathan E. Egge committed
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  od_ec_window dif;
  unsigned r;
  unsigned c;
  unsigned d;
#if OD_EC_REDUCED_OVERHEAD
  unsigned e;
#endif
  int s;
  unsigned u;
  unsigned v;
  unsigned q;
  unsigned fl;
  unsigned fh;
  unsigned ft;
  int ret;
  dif = dec->dif;
  r = dec->rng;
  OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
  OD_ASSERT(nsyms > 0);
  ft = cdf[nsyms - 1];
  OD_ASSERT(2 <= ft);
  OD_ASSERT(ft <= 32768U);
  s = 15 - OD_ILOG_NZ(ft - 1);
  ft <<= s;
  OD_ASSERT(ft <= r);
  if (r - ft >= ft) {
    ft <<= 1;
    s++;
  }
  d = r - ft;
  OD_ASSERT(d < ft);
  c = (unsigned)(dif >> (OD_EC_WINDOW_SIZE - 16));
  q = OD_MAXI((int)(c >> 1), (int)(c - d));
#if OD_EC_REDUCED_OVERHEAD
  e = OD_SUBSATU(2 * d, ft);
  /*TODO: See TODO above.*/
  q = OD_MAXI((int)q, (int)((2 * (int32_t)c + 1 - (int32_t)e) / 3));
#endif
  q >>= s;
  OD_ASSERT(q<ft>> s);
  fl = 0;
  ret = 0;
  for (fh = cdf[ret]; fh <= q; fh = cdf[++ret]) fl = fh;
  OD_ASSERT(fh <= ft >> s);
  fl <<= s;
  fh <<= s;
#if OD_EC_REDUCED_OVERHEAD
  u = fl + OD_MINI(fl, e) + OD_MINI(OD_SUBSATU(fl, e) >> 1, d);
  v = fh + OD_MINI(fh, e) + OD_MINI(OD_SUBSATU(fh, e) >> 1, d);
#else
  u = fl + OD_MINI(fl, d);
  v = fh + OD_MINI(fh, d);
#endif
  r = v - u;
  dif -= (od_ec_window)u << (OD_EC_WINDOW_SIZE - 16);
350
  return od_ec_dec_normalize(dec, dif, r, ret);
Nathan E. Egge's avatar
Nathan E. Egge committed
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

/*Decodes a symbol given a cumulative distribution function (CDF) table that
   sums to a power of two.
  This is a simpler, lower overhead version of od_ec_decode_cdf() for use when
   cdf[nsyms - 1] is a power of two.
  To be decoded properly by this function, symbols cannot have been encoded by
   od_ec_encode(), but must have been encoded with one of the equivalent _q15()
   functions instead.
  cdf: The CDF, such that symbol s falls in the range
        [s > 0 ? cdf[s - 1] : 0, cdf[s]).
       The values must be monotonically non-increasing, and cdf[nsyms - 1]
       must be exactly 1 << ftb.
  nsyms: The number of symbols in the alphabet.
         This should be at most 16.
  ftb: The number of bits of precision in the cumulative distribution.
       This must be no more than 15.
  Return: The decoded symbol s.*/
369 370
int od_ec_decode_cdf_unscaled_dyadic(od_ec_dec *dec, const uint16_t *cdf,
                                     int nsyms, unsigned ftb) {
Nathan E. Egge's avatar
Nathan E. Egge committed
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  od_ec_window dif;
  unsigned r;
  unsigned c;
  unsigned u;
  unsigned v;
  int ret;
  (void)nsyms;
  dif = dec->dif;
  r = dec->rng;
  OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
  OD_ASSERT(ftb <= 15);
  OD_ASSERT(cdf[nsyms - 1] == 1U << ftb);
  OD_ASSERT(32768U <= r);
  c = (unsigned)(dif >> (OD_EC_WINDOW_SIZE - 16));
  v = 0;
  ret = -1;
  do {
    u = v;
    v = cdf[++ret] * (uint32_t)r >> ftb;
  } while (v <= c);
  OD_ASSERT(v <= r);
  r = v - u;
  dif -= (od_ec_window)u << (OD_EC_WINDOW_SIZE - 16);
394
  return od_ec_dec_normalize(dec, dif, r, ret);
Nathan E. Egge's avatar
Nathan E. Egge committed
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

/*Decodes a symbol given a cumulative distribution function (CDF) table in Q15.
  This is a simpler, lower overhead version of od_ec_decode_cdf() for use when
   cdf[nsyms - 1] == 32768.
  To be decoded properly by this function, symbols cannot have been encoded by
   od_ec_encode(), but must have been encoded with one of the equivalent _q15()
   or dyadic() functions instead.
  cdf: The CDF, such that symbol s falls in the range
        [s > 0 ? cdf[s - 1] : 0, cdf[s]).
       The values must be monotonically non-increasing, and cdf[nsyms - 1]
        must be 32768.
  nsyms: The number of symbols in the alphabet.
         This should be at most 16.
  Return: The decoded symbol s.*/
410 411
int od_ec_decode_cdf_q15(od_ec_dec *dec, const uint16_t *cdf, int nsyms) {
  return od_ec_decode_cdf_unscaled_dyadic(dec, cdf, nsyms, 15);
Nathan E. Egge's avatar
Nathan E. Egge committed
412 413 414 415 416 417 418
}

/*Extracts a raw unsigned integer with a non-power-of-2 range from the stream.
  The integer must have been encoded with od_ec_enc_uint().
  ft: The number of integers that can be decoded (one more than the max).
      This must be at least 2, and no more than 2**29.
  Return: The decoded bits.*/
419
uint32_t od_ec_dec_uint(od_ec_dec *dec, uint32_t ft) {
Nathan E. Egge's avatar
Nathan E. Egge committed
420 421 422 423 424 425 426 427 428
  OD_ASSERT(ft >= 2);
  OD_ASSERT(ft <= (uint32_t)1 << (25 + OD_EC_UINT_BITS));
  if (ft > 1U << OD_EC_UINT_BITS) {
    uint32_t t;
    int ft1;
    int ftb;
    ft--;
    ftb = OD_ILOG_NZ(ft) - OD_EC_UINT_BITS;
    ft1 = (int)(ft >> ftb) + 1;
429
    t = od_ec_decode_cdf_q15(dec, OD_UNIFORM_CDF_Q15(ft1), ft1);
430
    t = t << ftb | od_ec_dec_bits(dec, ftb, "");
Nathan E. Egge's avatar
Nathan E. Egge committed
431 432 433 434
    if (t <= ft) return t;
    dec->error = 1;
    return ft;
  }
435
  return od_ec_decode_cdf_q15(dec, OD_UNIFORM_CDF_Q15(ft), (int)ft);
Nathan E. Egge's avatar
Nathan E. Egge committed
436 437 438 439 440 441 442
}

/*Extracts a sequence of raw bits from the stream.
  The bits must have been encoded with od_ec_enc_bits().
  ftb: The number of bits to extract.
       This must be between 0 and 25, inclusive.
  Return: The decoded bits.*/
443
uint32_t od_ec_dec_bits_(od_ec_dec *dec, unsigned ftb) {
Nathan E. Egge's avatar
Nathan E. Egge committed
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  od_ec_window window;
  int available;
  uint32_t ret;
  OD_ASSERT(ftb <= 25);
  window = dec->end_window;
  available = dec->nend_bits;
  if ((unsigned)available < ftb) {
    const unsigned char *buf;
    const unsigned char *eptr;
    buf = dec->buf;
    eptr = dec->eptr;
    OD_ASSERT(available <= OD_EC_WINDOW_SIZE - 8);
    do {
      if (eptr <= buf) {
        dec->tell_offs += OD_EC_LOTS_OF_BITS - available;
        available = OD_EC_LOTS_OF_BITS;
        break;
      }
      window |= (od_ec_window) * --eptr << available;
      available += 8;
    } while (available <= OD_EC_WINDOW_SIZE - 8);
    dec->eptr = eptr;
  }
  ret = (uint32_t)window & (((uint32_t)1 << ftb) - 1);
  window >>= ftb;
  available -= ftb;
  dec->end_window = window;
  dec->nend_bits = available;
  return ret;
}

/*Returns the number of bits "used" by the decoded symbols so far.
  This same number can be computed in either the encoder or the decoder, and is
   suitable for making coding decisions.
  Return: The number of bits.
          This will always be slightly larger than the exact value (e.g., all
           rounding error is in the positive direction).*/
481
int od_ec_dec_tell(const od_ec_dec *dec) {
Nathan E. Egge's avatar
Nathan E. Egge committed
482 483 484 485 486 487 488 489 490 491
  return ((dec->end - dec->eptr) + (dec->bptr - dec->buf)) * 8 - dec->cnt -
         dec->nend_bits + dec->tell_offs;
}

/*Returns the number of bits "used" by the decoded symbols so far.
  This same number can be computed in either the encoder or the decoder, and is
   suitable for making coding decisions.
  Return: The number of bits scaled by 2**OD_BITRES.
          This will always be slightly larger than the exact value (e.g., all
           rounding error is in the positive direction).*/
492
uint32_t od_ec_dec_tell_frac(const od_ec_dec *dec) {
Nathan E. Egge's avatar
Nathan E. Egge committed
493 494
  return od_ec_tell_frac(od_ec_dec_tell(dec), dec->rng);
}