vp9_loopfilter.c 38 KB
Newer Older
John Koleszar's avatar
John Koleszar committed
1
/*
2
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
John Koleszar's avatar
John Koleszar committed
3
 *
4
 *  Use of this source code is governed by a BSD-style license
5 6
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
7
 *  in the file PATENTS.  All contributing project authors may
8
 *  be found in the AUTHORS file in the root of the source tree.
John Koleszar's avatar
John Koleszar committed
9 10
 */

Attila Nagy's avatar
Attila Nagy committed
11
#include "vpx_config.h"
12 13
#include "vp9/common/vp9_loopfilter.h"
#include "vp9/common/vp9_onyxc_int.h"
14
#include "vp9/common/vp9_reconinter.h"
Attila Nagy's avatar
Attila Nagy committed
15
#include "vpx_mem/vpx_mem.h"
John Koleszar's avatar
John Koleszar committed
16

17
#include "vp9/common/vp9_seg_common.h"
18

19 20 21 22 23 24
struct loop_filter_info {
  const uint8_t *mblim;
  const uint8_t *lim;
  const uint8_t *hev_thr;
};

Jim Bankoski's avatar
Jim Bankoski committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
// This structure holds bit masks for all 8x8 blocks in a 64x64 region.
// Each 1 bit represents a position in which we want to apply the loop filter.
// Left_ entries refer to whether we apply a filter on the border to the
// left of the block.   Above_ entries refer to whether or not to apply a
// filter on the above border.   Int_ entries refer to whether or not to
// apply borders on the 4x4 edges within the 8x8 block that each bit
// represents.
// Since each transform is accompanied by a potentially different type of
// loop filter there is a different entry in the array for each transform size.
typedef struct {
  uint64_t left_y[TX_SIZES];
  uint64_t above_y[TX_SIZES];
  uint64_t int_4x4_y;
  uint16_t left_uv[TX_SIZES];
  uint16_t above_uv[TX_SIZES];
  uint16_t int_4x4_uv;
} LOOP_FILTER_MASK;

// 64 bit masks for left transform size.  Each 1 represents a position where
// we should apply a loop filter across the left border of an 8x8 block
// boundary.
//
// In the case of TX_16X16->  ( in low order byte first we end up with
// a mask that looks like this
//
//    10101010
//    10101010
//    10101010
//    10101010
//    10101010
//    10101010
//    10101010
//    10101010
//
// A loopfilter should be applied to every other 8x8 horizontally.
static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
    0xffffffffffffffff,  // TX_4X4
    0xffffffffffffffff,  // TX_8x8
    0x5555555555555555,  // TX_16x16
    0x1111111111111111,  // TX_32x32
};

// 64 bit masks for above transform size.  Each 1 represents a position where
// we should apply a loop filter across the top border of an 8x8 block
// boundary.
//
// In the case of TX_32x32 ->  ( in low order byte first we end up with
// a mask that looks like this
//
//    11111111
//    00000000
//    00000000
//    00000000
//    11111111
//    00000000
//    00000000
//    00000000
//
// A loopfilter should be applied to every other 4 the row vertically.
static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
    0xffffffffffffffff,  // TX_4X4
    0xffffffffffffffff,  // TX_8x8
    0x00ff00ff00ff00ff,  // TX_16x16
    0x000000ff000000ff,  // TX_32x32
};

// 64 bit masks for prediction sizes (left).  Each 1 represents a position
// where left border of an 8x8 block.  These are aligned to the right most
// appropriate bit,  and then shifted into place.
//
// In the case of TX_16x32 ->  ( low order byte first ) we end up with
// a mask that looks like this :
//
//  10000000
//  10000000
//  10000000
//  10000000
//  00000000
//  00000000
//  00000000
//  00000000
static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
    0x0000000000000001,  // BLOCK_4X4,
    0x0000000000000001,  // BLOCK_4X8,
    0x0000000000000001,  // BLOCK_8X4,
    0x0000000000000001,  // BLOCK_8X8,
    0x0000000000000101,  // BLOCK_8X16,
    0x0000000000000001,  // BLOCK_16X8,
    0x0000000000000101,  // BLOCK_16X16,
    0x0000000001010101,  // BLOCK_16X32,
    0x0000000000000101,  // BLOCK_32X16,
    0x0000000001010101,  // BLOCK_32X32,
    0x0101010101010101,  // BLOCK_32X64,
    0x0000000001010101,  // BLOCK_64X32,
    0x0101010101010101,  // BLOCK_64X64
};

// 64 bit mask to shift and set for each prediction size.
static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
    0x0000000000000001,  // BLOCK_4X4
    0x0000000000000001,  // BLOCK_4X8
    0x0000000000000001,  // BLOCK_8X4
    0x0000000000000001,  // BLOCK_8X8
    0x0000000000000001,  // BLOCK_8X16,
    0x0000000000000003,  // BLOCK_16X8
    0x0000000000000003,  // BLOCK_16X16
    0x0000000000000003,  // BLOCK_16X32,
    0x000000000000000f,  // BLOCK_32X16,
    0x000000000000000f,  // BLOCK_32X32,
    0x000000000000000f,  // BLOCK_32X64,
    0x00000000000000ff,  // BLOCK_64X32,
    0x00000000000000ff,  // BLOCK_64X64
};
// 64 bit mask to shift and set for each prediction size.  A bit is set for
// each 8x8 block that would be in the left most block of the given block
// size in the 64x64 block.
static const uint64_t size_mask[BLOCK_SIZES] = {
    0x0000000000000001,  // BLOCK_4X4
    0x0000000000000001,  // BLOCK_4X8
    0x0000000000000001,  // BLOCK_8X4
    0x0000000000000001,  // BLOCK_8X8
    0x0000000000000101,  // BLOCK_8X16,
    0x0000000000000003,  // BLOCK_16X8
    0x0000000000000303,  // BLOCK_16X16
    0x0000000003030303,  // BLOCK_16X32,
    0x0000000000000f0f,  // BLOCK_32X16,
    0x000000000f0f0f0f,  // BLOCK_32X32,
    0x0f0f0f0f0f0f0f0f,  // BLOCK_32X64,
    0x00000000ffffffff,  // BLOCK_64X32,
    0xffffffffffffffff,  // BLOCK_64X64
};

// These are used for masking the left and above borders.
static const uint64_t left_border =  0x1111111111111111;
static const uint64_t above_border = 0x000000ff000000ff;

// 16 bit masks for uv transform sizes.
static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
    0xffff,  // TX_4X4
    0xffff,  // TX_8x8
    0x5555,  // TX_16x16
    0x1111,  // TX_32x32
};

static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
    0xffff,  // TX_4X4
    0xffff,  // TX_8x8
    0x0f0f,  // TX_16x16
    0x000f,  // TX_32x32
};

// 16 bit left mask to shift and set for each uv prediction size.
static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
    0x0001,  // BLOCK_4X4,
    0x0001,  // BLOCK_4X8,
    0x0001,  // BLOCK_8X4,
    0x0001,  // BLOCK_8X8,
    0x0001,  // BLOCK_8X16,
    0x0001,  // BLOCK_16X8,
    0x0001,  // BLOCK_16X16,
    0x0011,  // BLOCK_16X32,
    0x0001,  // BLOCK_32X16,
    0x0011,  // BLOCK_32X32,
    0x1111,  // BLOCK_32X64
    0x0011,  // BLOCK_64X32,
    0x1111,  // BLOCK_64X64
};
// 16 bit above mask to shift and set for uv each prediction size.
static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
    0x0001,  // BLOCK_4X4
    0x0001,  // BLOCK_4X8
    0x0001,  // BLOCK_8X4
    0x0001,  // BLOCK_8X8
    0x0001,  // BLOCK_8X16,
    0x0001,  // BLOCK_16X8
    0x0001,  // BLOCK_16X16
    0x0001,  // BLOCK_16X32,
    0x0003,  // BLOCK_32X16,
    0x0003,  // BLOCK_32X32,
    0x0003,  // BLOCK_32X64,
    0x000f,  // BLOCK_64X32,
    0x000f,  // BLOCK_64X64
};

// 64 bit mask to shift and set for each uv prediction size
static const uint16_t size_mask_uv[BLOCK_SIZES] = {
    0x0001,  // BLOCK_4X4
    0x0001,  // BLOCK_4X8
    0x0001,  // BLOCK_8X4
    0x0001,  // BLOCK_8X8
    0x0001,  // BLOCK_8X16,
    0x0001,  // BLOCK_16X8
    0x0001,  // BLOCK_16X16
    0x0011,  // BLOCK_16X32,
    0x0003,  // BLOCK_32X16,
    0x0033,  // BLOCK_32X32,
    0x3333,  // BLOCK_32X64,
    0x00ff,  // BLOCK_64X32,
    0xffff,  // BLOCK_64X64
};
static const uint16_t left_border_uv =  0x1111;
static const uint16_t above_border_uv = 0x000f;


John Koleszar's avatar
John Koleszar committed
229
static void lf_init_lut(loop_filter_info_n *lfi) {
230 231 232 233 234
  lfi->mode_lf_lut[DC_PRED] = 0;
  lfi->mode_lf_lut[D45_PRED] = 0;
  lfi->mode_lf_lut[D135_PRED] = 0;
  lfi->mode_lf_lut[D117_PRED] = 0;
  lfi->mode_lf_lut[D153_PRED] = 0;
Dmitry Kovalev's avatar
Dmitry Kovalev committed
235
  lfi->mode_lf_lut[D207_PRED] = 0;
236 237 238 239 240 241 242 243
  lfi->mode_lf_lut[D63_PRED] = 0;
  lfi->mode_lf_lut[V_PRED] = 0;
  lfi->mode_lf_lut[H_PRED] = 0;
  lfi->mode_lf_lut[TM_PRED] = 0;
  lfi->mode_lf_lut[ZEROMV]  = 0;
  lfi->mode_lf_lut[NEARESTMV] = 1;
  lfi->mode_lf_lut[NEARMV] = 1;
  lfi->mode_lf_lut[NEWMV] = 1;
Attila Nagy's avatar
Attila Nagy committed
244 245
}

Frank Galligan's avatar
Frank Galligan committed
246
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
Dmitry Kovalev's avatar
Dmitry Kovalev committed
247
  int lvl;
John Koleszar's avatar
John Koleszar committed
248

Dmitry Kovalev's avatar
Dmitry Kovalev committed
249 250 251 252
  // For each possible value for the loop filter fill out limits
  for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
    // Set loop filter paramaeters that control sharpness.
    int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
John Koleszar's avatar
John Koleszar committed
253

John Koleszar's avatar
John Koleszar committed
254 255 256
    if (sharpness_lvl > 0) {
      if (block_inside_limit > (9 - sharpness_lvl))
        block_inside_limit = (9 - sharpness_lvl);
John Koleszar's avatar
John Koleszar committed
257
    }
John Koleszar's avatar
John Koleszar committed
258 259 260 261

    if (block_inside_limit < 1)
      block_inside_limit = 1;

Dmitry Kovalev's avatar
Dmitry Kovalev committed
262 263
    vpx_memset(lfi->lim[lvl], block_inside_limit, SIMD_WIDTH);
    vpx_memset(lfi->mblim[lvl], (2 * (lvl + 2) + block_inside_limit),
John Koleszar's avatar
John Koleszar committed
264 265
               SIMD_WIDTH);
  }
Attila Nagy's avatar
Attila Nagy committed
266
}
John Koleszar's avatar
John Koleszar committed
267

268
void vp9_loop_filter_init(VP9_COMMON *cm) {
John Koleszar's avatar
John Koleszar committed
269
  loop_filter_info_n *lfi = &cm->lf_info;
270
  struct loopfilter *lf = &cm->lf;
John Koleszar's avatar
John Koleszar committed
271
  int i;
Attila Nagy's avatar
Attila Nagy committed
272

273
  // init limits for given sharpness
274 275
  update_sharpness(lfi, lf->sharpness_level);
  lf->last_sharpness_level = lf->sharpness_level;
Attila Nagy's avatar
Attila Nagy committed
276

277
  // init LUT for lvl  and hev thr picking
John Koleszar's avatar
John Koleszar committed
278
  lf_init_lut(lfi);
Attila Nagy's avatar
Attila Nagy committed
279

280 281
  // init hev threshold const vectors
  for (i = 0; i < 4; i++)
John Koleszar's avatar
John Koleszar committed
282
    vpx_memset(lfi->hev_thr[i], i, SIMD_WIDTH);
John Koleszar's avatar
John Koleszar committed
283 284
}

Frank Galligan's avatar
Frank Galligan committed
285
void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
286
  int seg_id;
287 288 289
  // n_shift is the a multiplier for lf_deltas
  // the multiplier is 1 for when filter_lvl is between 0 and 31;
  // 2 when filter_lvl is between 32 and 63
Dmitry Kovalev's avatar
Dmitry Kovalev committed
290 291
  const int n_shift = default_filt_lvl >> 5;
  loop_filter_info_n *const lfi = &cm->lf_info;
292
  struct loopfilter *const lf = &cm->lf;
293
  struct segmentation *const seg = &cm->seg;
John Koleszar's avatar
John Koleszar committed
294

Dmitry Kovalev's avatar
Dmitry Kovalev committed
295
  // update limits if sharpness has changed
296 297 298
  if (lf->last_sharpness_level != lf->sharpness_level) {
    update_sharpness(lfi, lf->sharpness_level);
    lf->last_sharpness_level = lf->sharpness_level;
John Koleszar's avatar
John Koleszar committed
299 300
  }

301
  for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
Dmitry Kovalev's avatar
Dmitry Kovalev committed
302
    int lvl_seg = default_filt_lvl, ref, mode, intra_lvl;
John Koleszar's avatar
John Koleszar committed
303 304

    // Set the baseline filter values for each segment
305
    if (vp9_segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
306 307
      const int data = vp9_get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
      lvl_seg = seg->abs_delta == SEGMENT_ABSDATA
Dmitry Kovalev's avatar
Dmitry Kovalev committed
308 309
                  ? data
                  : clamp(default_filt_lvl + data, 0, MAX_LOOP_FILTER);
John Koleszar's avatar
John Koleszar committed
310
    }
John Koleszar's avatar
John Koleszar committed
311

312
    if (!lf->mode_ref_delta_enabled) {
Dmitry Kovalev's avatar
Dmitry Kovalev committed
313 314
      // we could get rid of this if we assume that deltas are set to
      // zero when not in use; encoder always uses deltas
315
      vpx_memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
John Koleszar's avatar
John Koleszar committed
316 317
      continue;
    }
John Koleszar's avatar
John Koleszar committed
318

319
    intra_lvl = lvl_seg + (lf->ref_deltas[INTRA_FRAME] << n_shift);
320
    lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
John Koleszar's avatar
John Koleszar committed
321

Dmitry Kovalev's avatar
Dmitry Kovalev committed
322 323
    for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref)
      for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
324 325
        const int inter_lvl = lvl_seg + (lf->ref_deltas[ref] << n_shift)
                                      + (lf->mode_deltas[mode] << n_shift);
326
        lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
John Koleszar's avatar
John Koleszar committed
327 328
      }
  }
John Koleszar's avatar
John Koleszar committed
329 330
}

Frank Galligan's avatar
Frank Galligan committed
331 332 333
static int build_lfi(const loop_filter_info_n *lfi_n,
                     const MB_MODE_INFO *mbmi,
                     struct loop_filter_info *lfi) {
Dmitry Kovalev's avatar
Dmitry Kovalev committed
334 335 336 337 338 339
  const int seg = mbmi->segment_id;
  const int ref = mbmi->ref_frame[0];
  const int mode = lfi_n->mode_lf_lut[mbmi->mode];
  const int filter_level = lfi_n->lvl[seg][ref][mode];

  if (filter_level > 0) {
340 341
    lfi->mblim = lfi_n->mblim[filter_level];
    lfi->lim = lfi_n->lim[filter_level];
Dmitry Kovalev's avatar
Dmitry Kovalev committed
342
    lfi->hev_thr = lfi_n->hev_thr[filter_level >> 4];
343
    return 1;
Dmitry Kovalev's avatar
Dmitry Kovalev committed
344 345
  } else {
    return 0;
346 347 348 349 350 351 352
  }
}

static void filter_selectively_vert(uint8_t *s, int pitch,
                                    unsigned int mask_16x16,
                                    unsigned int mask_8x8,
                                    unsigned int mask_4x4,
353
                                    unsigned int mask_4x4_int,
354 355 356
                                    const struct loop_filter_info *lfi) {
  unsigned int mask;

John Koleszar's avatar
John Koleszar committed
357 358
  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
       mask; mask >>= 1) {
359 360 361
    if (mask & 1) {
      if (mask_16x16 & 1) {
        vp9_mb_lpf_vertical_edge_w(s, pitch, lfi->mblim, lfi->lim,
362
                                   lfi->hev_thr);
363 364
        assert(!(mask_8x8 & 1));
        assert(!(mask_4x4 & 1));
365
        assert(!(mask_4x4_int & 1));
366 367 368 369 370 371 372 373 374 375 376 377
      } else if (mask_8x8 & 1) {
        vp9_mbloop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim,
                                        lfi->hev_thr, 1);
        assert(!(mask_16x16 & 1));
        assert(!(mask_4x4 & 1));
      } else if (mask_4x4 & 1) {
        vp9_loop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim,
                                      lfi->hev_thr, 1);
        assert(!(mask_16x16 & 1));
        assert(!(mask_8x8 & 1));
      }
    }
378 379 380
    if (mask_4x4_int & 1)
      vp9_loop_filter_vertical_edge(s + 4, pitch, lfi->mblim, lfi->lim,
                                    lfi->hev_thr, 1);
381 382 383 384 385
    s += 8;
    lfi++;
    mask_16x16 >>= 1;
    mask_8x8 >>= 1;
    mask_4x4 >>= 1;
386
    mask_4x4_int >>= 1;
387 388 389 390 391 392 393
  }
}

static void filter_selectively_horiz(uint8_t *s, int pitch,
                                     unsigned int mask_16x16,
                                     unsigned int mask_8x8,
                                     unsigned int mask_4x4,
394
                                     unsigned int mask_4x4_int,
395 396 397
                                     int only_4x4_1,
                                     const struct loop_filter_info *lfi) {
  unsigned int mask;
398
  int count;
399

John Koleszar's avatar
John Koleszar committed
400
  for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
401
       mask; mask >>= count) {
Dmitry Kovalev's avatar
Dmitry Kovalev committed
402
    count = 1;
403 404 405
    if (mask & 1) {
      if (!only_4x4_1) {
        if (mask_16x16 & 1) {
406 407 408 409 410 411 412 413
          if ((mask_16x16 & 3) == 3) {
            vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim,
                                         lfi->hev_thr, 2);
            count = 2;
          } else {
            vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim,
                                         lfi->hev_thr, 1);
          }
414 415
          assert(!(mask_8x8 & 1));
          assert(!(mask_4x4 & 1));
416
          assert(!(mask_4x4_int & 1));
417 418 419 420 421 422 423 424 425 426 427 428 429
        } else if (mask_8x8 & 1) {
          vp9_mbloop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
                                            lfi->hev_thr, 1);
          assert(!(mask_16x16 & 1));
          assert(!(mask_4x4 & 1));
        } else if (mask_4x4 & 1) {
          vp9_loop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
                                          lfi->hev_thr, 1);
          assert(!(mask_16x16 & 1));
          assert(!(mask_8x8 & 1));
        }
      }

430
      if (mask_4x4_int & 1)
431 432 433
        vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
                                        lfi->lim, lfi->hev_thr, 1);
    }
434 435 436 437 438 439
    s += 8 * count;
    lfi += count;
    mask_16x16 >>= count;
    mask_8x8 >>= count;
    mask_4x4 >>= count;
    mask_4x4_int >>= count;
440 441 442
  }
}

Jim Bankoski's avatar
Jim Bankoski committed
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
// This function ors into the current lfm structure, where to do loop
// filters for the specific mi we are looking at.   It uses information
// including the block_size_type (32x16, 32x32, etc),  the transform size,
// whether there were any coefficients encoded, and the loop filter strength
// block we are currently looking at. Shift is used to position the
// 1's we produce.
// TODO(JBB) Need another function for different resolution color..
static void build_masks(const loop_filter_info_n *const lfi_n,
                        const MODE_INFO *mi, const int shift_y,
                        const int shift_uv,
                        LOOP_FILTER_MASK *lfm) {
  const BLOCK_SIZE block_size = mi->mbmi.sb_type;
  const TX_SIZE tx_size_y = mi->mbmi.tx_size;
  const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi);
  const int skip = mi->mbmi.skip_coeff;
  const int seg = mi->mbmi.segment_id;
  const int ref = mi->mbmi.ref_frame[0];
  const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
  const int filter_level = lfi_n->lvl[seg][ref][mode];
  uint64_t *left_y = &lfm->left_y[tx_size_y];
  uint64_t *above_y = &lfm->above_y[tx_size_y];
  uint64_t *int_4x4_y = &lfm->int_4x4_y;
  uint16_t *left_uv = &lfm->left_uv[tx_size_uv];
  uint16_t *above_uv = &lfm->above_uv[tx_size_uv];
  uint16_t *int_4x4_uv = &lfm->int_4x4_uv;

  // If filter level is 0 we don't loop filter.
  if (!filter_level)
    return;

  // These set 1 in the current block size for the block size edges.
  // For instance if the block size is 32x16,   we'll set :
  //    above =   1111
  //              0000
  //    and
  //    left  =   1000
  //          =   1000
  // NOTE : In this example the low bit is left most ( 1000 ) is stored as
  //        1,  not 8...
  //
  // U and v set things on a 16 bit scale.
  //
  *above_y |= above_prediction_mask[block_size] << shift_y;
  *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
  *left_y |= left_prediction_mask[block_size] << shift_y;
  *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;

  // If the block has no coefficients and is not intra we skip applying
  // the loop filter on block edges.
  if (skip && ref > INTRA_FRAME)
    return;

  // Here we are adding a mask for the transform size.  The transform
  // size mask is set to be correct for a 64x64 prediction block size. We
  // mask to match the size of the block we are working on and then shift it
  // into place..
  *above_y |= (size_mask[block_size] &
               above_64x64_txform_mask[tx_size_y]) << shift_y;
  *above_uv |= (size_mask_uv[block_size] &
                above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;

  *left_y |= (size_mask[block_size] &
              left_64x64_txform_mask[tx_size_y]) << shift_y;
  *left_uv |= (size_mask_uv[block_size] &
               left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;

  // Here we are trying to determine what to do with the internal 4x4 block
  // boundaries.  These differ from the 4x4 boundaries on the outside edge of
  // an 8x8 in that the internal ones can be skipped and don't depend on
  // the prediction block size.
  if (tx_size_y == TX_4X4) {
    *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
  }
  if (tx_size_uv == TX_4X4) {
    *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
  }
}

// This function does the same thing as the one above with the exception that
// it only affects the y masks.   It exists because for blocks < 16x16 in size,
// we only update u and v masks on the first block.
static void build_y_mask(const loop_filter_info_n *const lfi_n,
                         const MODE_INFO *mi, const int shift_y,
                         LOOP_FILTER_MASK *lfm) {
  const BLOCK_SIZE block_size = mi->mbmi.sb_type;
  const TX_SIZE tx_size_y = mi->mbmi.tx_size;
  const int skip = mi->mbmi.skip_coeff;
  const int seg = mi->mbmi.segment_id;
  const int ref = mi->mbmi.ref_frame[0];
  const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
  const int filter_level = lfi_n->lvl[seg][ref][mode];
  uint64_t *left_y = &lfm->left_y[tx_size_y];
  uint64_t *above_y = &lfm->above_y[tx_size_y];
  uint64_t *int_4x4_y = &lfm->int_4x4_y;

  if (!filter_level)
    return;

  *above_y |= above_prediction_mask[block_size] << shift_y;
  *left_y |= left_prediction_mask[block_size] << shift_y;

  if (skip && ref > INTRA_FRAME)
    return;

  *above_y |= (size_mask[block_size] &
               above_64x64_txform_mask[tx_size_y]) << shift_y;

  *left_y |= (size_mask[block_size] &
              left_64x64_txform_mask[tx_size_y]) << shift_y;

  if (tx_size_y == TX_4X4) {
    *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
  }
}

// This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col.
// TODO(JBB): This function only works for yv12.
static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
                       const MODE_INFO *mi, const int mode_info_stride,
                       LOOP_FILTER_MASK *lfm) {
  int idx_32, idx_16, idx_8;
  const loop_filter_info_n *const lfi_n = &cm->lf_info;
  const MODE_INFO *mip = mi;
  const MODE_INFO *mip2 = mi;

  // These are offsets to the next mi in the 64x64 block. It is what gets
  // added to the mi ptr as we go through each loop.  It helps us to avoids
  // setting up special row and column counters for each index.  The last step
  // brings us out back to the starting position.
  const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
                           -(mode_info_stride << 2) - 4};
  const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
                           -(mode_info_stride << 1) - 2};
  const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};

  // Following variables represent shifts to position the current block
  // mask over the appropriate block.   A shift of 36 to the left will move
  // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
  // 4 rows to the appropriate spot.
  const int shift_32_y[] = {0, 4, 32, 36};
  const int shift_16_y[] = {0, 2, 16, 18};
  const int shift_8_y[] = {0, 1, 8, 9};
  const int shift_32_uv[] = {0, 2, 8, 10};
  const int shift_16_uv[] = {0, 1, 4, 5};
  int i;
  const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
                        cm->mi_rows - mi_row : MI_BLOCK_SIZE);
  const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
                        cm->mi_cols - mi_col : MI_BLOCK_SIZE);

  vp9_zero(*lfm);

  // TODO(jimbankoski): Try moving most of the following code into decode
  // loop and storing lfm in the mbmi structure so that we don't have to go
  // through the recursive loop structure multiple times.
  switch (mip->mbmi.sb_type) {
    case BLOCK_64X64:
      build_masks(lfi_n, mip , 0, 0, lfm);
      break;
    case BLOCK_64X32:
      build_masks(lfi_n, mip, 0, 0, lfm);
      mip2 = mip + mode_info_stride * 4;
      build_masks(lfi_n, mip2 , 32, 8, lfm);
      break;
    case BLOCK_32X64:
      build_masks(lfi_n, mip, 0, 0, lfm);
      mip2 = mip + 4;
      build_masks(lfi_n, mip2, 4, 2, lfm);
      break;
    default:
      for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
        const int shift_y = shift_32_y[idx_32];
        const int shift_uv = shift_32_uv[idx_32];
        const int mi_32_col_offset = ((idx_32 & 1) << 2);
        const int mi_32_row_offset = ((idx_32 >> 1) << 2);
        if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
          continue;
        switch (mip->mbmi.sb_type) {
          case BLOCK_32X32:
            build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
            break;
          case BLOCK_32X16:
            build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
            mip2 = mip + mode_info_stride * 2;
            build_masks(lfi_n, mip2, shift_y + 16, shift_uv + 4, lfm);
            break;
          case BLOCK_16X32:
            build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
            mip2 = mip + 2;
            build_masks(lfi_n, mip2, shift_y + 2, shift_uv + 1, lfm);
            break;
          default:
            for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
              const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
              const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
              const int mi_16_col_offset = mi_32_col_offset +
                  ((idx_16 & 1) << 1);
              const int mi_16_row_offset = mi_32_row_offset +
                  ((idx_16 >> 1) << 1);

              if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
                continue;

              switch (mip->mbmi.sb_type) {
                case BLOCK_16X16:
                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
                  break;
                case BLOCK_16X8:
                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
                  mip2 = mip + mode_info_stride;
                  build_y_mask(lfi_n, mip2, shift_y+8, lfm);
                  break;
                case BLOCK_8X16:
                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
                  mip2 = mip + 1;
                  build_y_mask(lfi_n, mip2, shift_y+1, lfm);
                  break;
                default: {
                  const int shift_y = shift_32_y[idx_32] +
                                      shift_16_y[idx_16] +
                                      shift_8_y[0];
                  build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
                  mip += offset[0];
                  for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
                    const int shift_y = shift_32_y[idx_32] +
                                        shift_16_y[idx_16] +
                                        shift_8_y[idx_8];
                    const int mi_8_col_offset = mi_16_col_offset +
                        ((idx_8 & 1));
                    const int mi_8_row_offset = mi_16_row_offset +
                        ((idx_8 >> 1));

                    if (mi_8_col_offset >= max_cols ||
                        mi_8_row_offset >= max_rows)
                      continue;
                    build_y_mask(lfi_n, mip, shift_y, lfm);
                  }
                  break;
                }
              }
            }
            break;
        }
      }
      break;
  }
  // The largest loopfilter we have is 16x16 so we use the 16x16 mask
  // for 32x32 transforms also also.
  lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
  lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
  lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
  lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];

  // We do at least 8 tap filter on every 32x32 even if the transform size
  // is 4x4.  So if the 4x4 is set on a border pixel add it to the 8x8 and
  // remove it from the 4x4.
  lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
  lfm->left_y[TX_4X4] &= ~left_border;
  lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
  lfm->above_y[TX_4X4] &= ~above_border;
  lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
  lfm->left_uv[TX_4X4] &= ~left_border_uv;
  lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
  lfm->above_uv[TX_4X4] &= ~above_border_uv;

  // We do some special edge handling.
  if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
    const uint64_t rows = cm->mi_rows - mi_row;

    // Each pixel inside the border gets a 1,
    const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
    const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);

    // Remove values completely outside our border.
    for (i = 0; i < TX_32X32; i++) {
      lfm->left_y[i] &= mask_y;
      lfm->above_y[i] &= mask_y;
      lfm->left_uv[i] &= mask_uv;
      lfm->above_uv[i] &= mask_uv;
    }
    lfm->int_4x4_y &= mask_y;
    lfm->int_4x4_uv &= mask_uv;

    // We don't apply a wide loop filter on the last uv block row.  If set
    // apply the shorter one instead.
    if (rows == 1) {
      lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
      lfm->above_uv[TX_16X16] = 0;
    }
    if (rows == 5) {
      lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
      lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
    }
  }

  if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
    const uint64_t columns = cm->mi_cols - mi_col;

    // Each pixel inside the border gets a 1, the multiply copies the border
    // to where we need it.
    const uint64_t mask_y  = (((1 << columns) - 1)) * 0x0101010101010101;
    const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;

    // Internal edges are not applied on the last column of the image so
    // we mask 1 more for the internal edges
    const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;

    // Remove the bits outside the image edge.
    for (i = 0; i < TX_32X32; i++) {
      lfm->left_y[i] &= mask_y;
      lfm->above_y[i] &= mask_y;
      lfm->left_uv[i] &= mask_uv;
      lfm->above_uv[i] &= mask_uv;
    }
    lfm->int_4x4_y &= mask_y;
    lfm->int_4x4_uv &= mask_uv_int;

    // We don't apply a wide loop filter on the last uv column.  If set
    // apply the shorter one instead.
    if (columns == 1) {
      lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
      lfm->left_uv[TX_16X16] = 0;
    }
    if (columns == 5) {
      lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
      lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
    }
  }
  // We don't a loop filter on the first column in the image.  Mask that out.
  if (mi_col == 0) {
    for (i = 0; i < TX_32X32; i++) {
      lfm->left_y[i] &= 0xfefefefefefefefe;
      lfm->left_uv[i] &= 0xeeee;
    }
  }
}
static void filter_block_plane_non420(VP9_COMMON *cm,
                                      struct macroblockd_plane *plane,
                                      const MODE_INFO *mi,
                                      int mi_row, int mi_col) {
784 785
  const int ss_x = plane->subsampling_x;
  const int ss_y = plane->subsampling_y;
786 787
  const int row_step = 1 << ss_x;
  const int col_step = 1 << ss_y;
788 789
  const int row_step_stride = cm->mode_info_stride * row_step;
  struct buf_2d *const dst = &plane->dst;
790
  uint8_t* const dst0 = dst->buf;
791 792 793 794 795
  unsigned int mask_16x16[MI_BLOCK_SIZE] = {0};
  unsigned int mask_8x8[MI_BLOCK_SIZE] = {0};
  unsigned int mask_4x4[MI_BLOCK_SIZE] = {0};
  unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
  struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE];
796
  int r, c;
Dmitry Kovalev's avatar
Dmitry Kovalev committed
797

798
  for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
799 800 801 802 803 804
    unsigned int mask_16x16_c = 0;
    unsigned int mask_8x8_c = 0;
    unsigned int mask_4x4_c = 0;
    unsigned int border_mask;

    // Determine the vertical edges that need filtering
805
    for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
Paul Wilkins's avatar
Paul Wilkins committed
806
      const int skip_this = mi[c].mbmi.skip_coeff
807
                            && is_inter_block(&mi[c].mbmi);
808
      // left edge of current unit is block/partition edge -> no skip
809 810
      const int block_edge_left = b_width_log2(mi[c].mbmi.sb_type) ?
          !(c & ((1 << (b_width_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
811
      const int skip_this_c = skip_this && !block_edge_left;
812
      // top edge of current unit is block/partition edge -> no skip
813 814
      const int block_edge_above = b_height_log2(mi[c].mbmi.sb_type) ?
          !(r & ((1 << (b_height_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
815
      const int skip_this_r = skip_this && !block_edge_above;
816 817
      const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
                            ? get_uv_tx_size(&mi[c].mbmi)
818
                            : mi[c].mbmi.tx_size;
819
      const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
820
      const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
821 822

      // Filter level can vary per MI
823
      if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x)))
824 825 826 827
        continue;

      // Build masks based on the transform size of each block
      if (tx_size == TX_32X32) {
828 829 830 831 832 833 834 835 836 837 838 839
        if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
          if (!skip_border_4x4_c)
            mask_16x16_c |= 1 << (c >> ss_x);
          else
            mask_8x8_c |= 1 << (c >> ss_x);
        }
        if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
          if (!skip_border_4x4_r)
            mask_16x16[r] |= 1 << (c >> ss_x);
          else
            mask_8x8[r] |= 1 << (c >> ss_x);
        }
840
      } else if (tx_size == TX_16X16) {
841 842 843 844 845 846 847 848 849 850 851 852
        if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
          if (!skip_border_4x4_c)
            mask_16x16_c |= 1 << (c >> ss_x);
          else
            mask_8x8_c |= 1 << (c >> ss_x);
        }
        if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
          if (!skip_border_4x4_r)
            mask_16x16[r] |= 1 << (c >> ss_x);
          else
            mask_8x8[r] |= 1 << (c >> ss_x);
        }
853 854 855
      } else {
        // force 8x8 filtering on 32x32 boundaries
        if (!skip_this_c) {
856
          if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
857 858 859 860 861 862
            mask_8x8_c |= 1 << (c >> ss_x);
          else
            mask_4x4_c |= 1 << (c >> ss_x);
        }

        if (!skip_this_r) {
863
          if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
864 865 866 867 868
            mask_8x8[r] |= 1 << (c >> ss_x);
          else
            mask_4x4[r] |= 1 << (c >> ss_x);
        }

869 870
        if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
          mask_4x4_int[r] |= 1 << (c >> ss_x);
871 872 873 874 875 876 877 878 879
      }
    }

    // Disable filtering on the leftmost column
    border_mask = ~(mi_col == 0);
    filter_selectively_vert(dst->buf, dst->stride,
                            mask_16x16_c & border_mask,
                            mask_8x8_c & border_mask,
                            mask_4x4_c & border_mask,
880
                            mask_4x4_int[r], lfi[r]);
881
    dst->buf += 8 * dst->stride;
882
    mi += row_step_stride;
883 884 885 886
  }

  // Now do horizontal pass
  dst->buf = dst0;
887
  for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
888 889 890
    const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
    const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];

891 892 893 894
    filter_selectively_horiz(dst->buf, dst->stride,
                             mask_16x16[r],
                             mask_8x8[r],
                             mask_4x4[r],
895
                             mask_4x4_int_r, mi_row + r == 0, lfi[r]);
896 897 898 899
    dst->buf += 8 * dst->stride;
  }
}

Jim Bankoski's avatar
Jim Bankoski committed
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
static void filter_block_plane(VP9_COMMON *const cm,
                               struct macroblockd_plane *const plane,
                               const MODE_INFO *mi,
                               int mi_row, int mi_col,
                               LOOP_FILTER_MASK *lfm) {
  const int ss_x = plane->subsampling_x;
  const int ss_y = plane->subsampling_y;
  const int row_step = 1 << ss_x;
  const int col_step = 1 << ss_y;
  const int row_step_stride = cm->mode_info_stride * row_step;
  struct buf_2d *const dst = &plane->dst;
  uint8_t* const dst0 = dst->buf;
  unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
  struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE];
  int r, c;
  int row_shift = 3 - ss_x;
  int row_mask = 0xff >> (ss_x << 2);

#define MASK_ROW(value) ((value >> (r_sampled << row_shift)) & row_mask)

  for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
    int r_sampled = r >> ss_x;

    // Determine the vertical edges that need filtering
    for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
      if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x)))
        continue;
    }
    if (!plane->plane_type) {
      mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_y);
      // Disable filtering on the leftmost column
      filter_selectively_vert(dst->buf, dst->stride,
                              MASK_ROW(lfm->left_y[TX_16X16]),
                              MASK_ROW(lfm->left_y[TX_8X8]),
                              MASK_ROW(lfm->left_y[TX_4X4]),
                              MASK_ROW(lfm->int_4x4_y),
                              lfi[r]);
    } else {
      mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_uv);
      // Disable filtering on the leftmost column
      filter_selectively_vert(dst->buf, dst->stride,
                              MASK_ROW(lfm->left_uv[TX_16X16]),
                              MASK_ROW(lfm->left_uv[TX_8X8]),
                              MASK_ROW(lfm->left_uv[TX_4X4]),
                              MASK_ROW(lfm->int_4x4_uv),
                              lfi[r]);
    }
    dst->buf += 8 * dst->stride;
    mi += row_step_stride;
  }

  // Now do horizontal pass
  dst->buf = dst0;
  for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
    const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
    const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
    int r_sampled = r >> ss_x;

    if (!plane->plane_type) {
      filter_selectively_horiz(dst->buf, dst->stride,
                               MASK_ROW(lfm->above_y[TX_16X16]),
                               MASK_ROW(lfm->above_y[TX_8X8]),
                               MASK_ROW(lfm->above_y[TX_4X4]),
                               MASK_ROW(lfm->int_4x4_y),
                               mi_row + r == 0, lfi[r]);
    } else {
      filter_selectively_horiz(dst->buf, dst->stride,
                               MASK_ROW(lfm->above_uv[TX_16X16]),
                               MASK_ROW(lfm->above_uv[TX_8X8]),
                               MASK_ROW(lfm->above_uv[TX_4X4]),
                               mask_4x4_int_r,
                               mi_row + r == 0, lfi[r]);
    }
    dst->buf += 8 * dst->stride;
  }
#undef MASK_ROW
}

978 979 980
void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
                          VP9_COMMON *cm, MACROBLOCKD *xd,
                          int start, int stop, int y_only) {
981
  const int num_planes = y_only ? 1 : MAX_MB_PLANE;
982
  int mi_row, mi_col;
Jim Bankoski's avatar
Jim Bankoski committed
983 984 985
  LOOP_FILTER_MASK lfm;
  int use_420 = y_only || (xd->plane[1].subsampling_y == 1 &&
      xd->plane[1].subsampling_x == 1);
986

987
  for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
988 989
    MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride;

990
    for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
991 992
      int plane;

993
      setup_dst_planes(xd, frame_buffer, mi_row, mi_col);
Jim Bankoski's avatar
Jim Bankoski committed
994 995 996 997 998

      // TODO(JBB): Make setup_mask work for non 420.
      if (use_420)
        setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mode_info_stride, &lfm);

999
      for (plane = 0; plane < num_planes; ++plane) {
Jim Bankoski's avatar
Jim Bankoski committed
1000 1001 1002 1003 1004 1005
        if (use_420)
          filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col,
                             &lfm);
        else
          filter_block_plane_non420(cm, &xd->plane[plane], mi + mi_col,
                                    mi_row, mi_col);
1006 1007 1008 1009
      }
    }
  }
}
1010 1011

void vp9_loop_filter_frame(VP9_COMMON *cm, MACROBLOCKD *xd,
1012 1013 1014
                           int frame_filter_level,
                           int y_only, int partial) {
  int start_mi_row, end_mi_row, mi_rows_to_filter;
1015
  if (!frame_filter_level) return;
1016 1017 1018 1019 1020 1021 1022 1023 1024

  start_mi_row = 0;
  mi_rows_to_filter = cm->mi_rows;
  if (partial && cm->mi_rows > 8) {
    start_mi_row = cm->mi_rows >> 1;
    start_mi_row &= 0xfffffff8;
    mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
  }
  end_mi_row = start_mi_row + mi_rows_to_filter;
1025
  vp9_loop_filter_frame_init(cm, frame_filter_level);
1026
  vp9_loop_filter_rows(cm->frame_to_show, cm, xd,
1027 1028
                       start_mi_row, end_mi_row,
                       y_only);
1029
}
1030 1031 1032 1033 1034 1035 1036 1037

int vp9_loop_filter_worker(void *arg1, void *arg2) {
  LFWorkerData *const lf_data = (LFWorkerData*)arg1;
  (void)arg2;
  vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, &lf_data->xd,
                       lf_data->start, lf_data->stop, lf_data->y_only);
  return 1;
}