pickrst.c 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>
12
#include <float.h>
13
14
15
16
17
#include <limits.h>
#include <math.h>

#include "./vpx_scale_rtcd.h"

18
#include "vpx_dsp/psnr.h"
19
20
21
22
23
24
25
26
27
28
29
30
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"

#include "vp10/common/onyxc_int.h"
#include "vp10/common/quant_common.h"

#include "vp10/encoder/encoder.h"
#include "vp10/encoder/quantize.h"
#include "vp10/encoder/picklpf.h"
#include "vp10/encoder/pickrst.h"

31
32
33
34
static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *sd,
                                     VP10_COMP *const cpi,
                                     RestorationInfo *rsi,
                                     int partial_frame) {
35
  VP10_COMMON *const cm = &cpi->common;
36
  int64_t filt_err;
37
38
39
40
  vp10_loop_restoration_frame(cm->frame_to_show, cm,
                              rsi, 1, partial_frame);
#if CONFIG_VP9_HIGHBITDEPTH
  if (cm->use_highbitdepth) {
41
    filt_err = vpx_highbd_get_y_sse(sd, cm->frame_to_show);
42
  } else {
43
    filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
44
45
  }
#else
46
  filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
47
48
49
50
51
52
53
54
55
56
57
58
#endif  // CONFIG_VP9_HIGHBITDEPTH

  // Re-instate the unfiltered frame
  vpx_yv12_copy_y(&cpi->last_frame_db, cm->frame_to_show);
  return filt_err;
}

static int search_bilateral_level(const YV12_BUFFER_CONFIG *sd,
                                  VP10_COMP *cpi,
                                  int filter_level, int partial_frame,
                                  double *best_cost_ret) {
  VP10_COMMON *const cm = &cpi->common;
59
60
  int i, restoration_best;
  int64_t err;
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  double best_cost;
  double cost;
  const int restoration_level_bits = vp10_restoration_level_bits(&cpi->common);
  const int restoration_levels = 1 << restoration_level_bits;
  MACROBLOCK *x = &cpi->td.mb;
  int bits;
  RestorationInfo rsi;

  //  Make a copy of the unfiltered / processed recon buffer
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
  vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
                         1, partial_frame);
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);

  restoration_best = -1;
  rsi.restoration_type = RESTORE_NONE;
  err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
  bits = 0;
Aamir Anis's avatar
Aamir Anis committed
79
  best_cost = RDCOST_DBL(x->rdmult, x->rddiv,
80
                         (bits << (VP9_PROB_COST_SHIFT - 4)), err);
81
82
83
84
85
86
87
88
  for (i = 0; i < restoration_levels; ++i) {
    rsi.restoration_type = RESTORE_BILATERAL;
    rsi.restoration_level = i;
    err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
    // Normally the rate is rate in bits * 256 and dist is sum sq err * 64
    // when RDCOST is used.  However below we just scale both in the correct
    // ratios appropriately but not exactly by these values.
    bits = restoration_level_bits;
Aamir Anis's avatar
Aamir Anis committed
89
    cost = RDCOST_DBL(x->rdmult, x->rddiv,
90
                      (bits << (VP9_PROB_COST_SHIFT - 4)), err);
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    if (cost < best_cost) {
      restoration_best = i;
      best_cost = cost;
    }
  }
  if (best_cost_ret) *best_cost_ret = best_cost;
  vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
  return restoration_best;
}

static int search_filter_bilateral_level(const YV12_BUFFER_CONFIG *sd,
                                         VP10_COMP *cpi,
                                         int partial_frame,
                                         int *restoration_level,
                                         double *best_cost_ret) {
  const VP10_COMMON *const cm = &cpi->common;
  const struct loopfilter *const lf = &cm->lf;
  const int min_filter_level = 0;
  const int max_filter_level = vp10_get_max_filter_level(cpi);
  int filt_direction = 0;
  int filt_best, restoration_best;
  double best_err;
  int i;
  int bilateral_lev;

  // Start the search at the previous frame filter level unless it is now out of
  // range.
  int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
  int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
  double ss_err[MAX_LOOP_FILTER + 1];

  // Set each entry to -1
  for (i = 0; i <= MAX_LOOP_FILTER; ++i)
    ss_err[i] = -1.0;

  bilateral_lev = search_bilateral_level(sd, cpi, filt_mid,
                                         partial_frame, &best_err);
  filt_best = filt_mid;
  restoration_best = bilateral_lev;
  ss_err[filt_mid] = best_err;

  while (filter_step > 0) {
    const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level);
    const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level);

    // Bias against raising loop filter in favor of lowering it.
    double bias = (best_err / (1 << (15 - (filt_mid / 8)))) * filter_step;

    if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
      bias = (bias * cpi->twopass.section_intra_rating) / 20;

    // yx, bias less for large block size
    if (cm->tx_mode != ONLY_4X4)
      bias /= 2;

    if (filt_direction <= 0 && filt_low != filt_mid) {
      // Get Low filter error score
      if (ss_err[filt_low] < 0) {
149
150
        bilateral_lev = search_bilateral_level(
            sd, cpi, filt_low, partial_frame, &ss_err[filt_low]);
151
152
153
      }
      // If value is close to the best so far then bias towards a lower loop
      // filter value.
154
      if (ss_err[filt_low] < (best_err + bias)) {
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        // Was it actually better than the previous best?
        if (ss_err[filt_low] < best_err) {
          best_err = ss_err[filt_low];
        }
        filt_best = filt_low;
        restoration_best = bilateral_lev;
      }
    }

    // Now look at filt_high
    if (filt_direction >= 0 && filt_high != filt_mid) {
      if (ss_err[filt_high] < 0) {
        bilateral_lev = search_bilateral_level(
            sd, cpi, filt_high, partial_frame, &ss_err[filt_high]);
      }
170
171
      // If value is significantly better than previous best, bias added against
      // raising filter value
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
      if (ss_err[filt_high] < (best_err - bias)) {
        best_err = ss_err[filt_high];
        filt_best = filt_high;
        restoration_best = bilateral_lev;
      }
    }

    // Half the step distance if the best filter value was the same as last time
    if (filt_best == filt_mid) {
      filter_step /= 2;
      filt_direction = 0;
    } else {
      filt_direction = (filt_best < filt_mid) ? -1 : 1;
      filt_mid = filt_best;
    }
  }
188
189
190
191

  // Update best error
  best_err = ss_err[filt_best];

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
  *restoration_level = restoration_best;
  if (best_cost_ret) *best_cost_ret = best_err;
  return filt_best;
}

static double find_average(uint8_t *src, int width, int height, int stride) {
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
  for (i = 0; i < height; i++)
    for (j = 0; j < width; j++)
      sum += src[i * stride + j];
  avg = (double)sum / (height * width);
  return avg;
}

static void compute_stats(uint8_t *dgd, uint8_t *src, int width, int height,
                          int dgd_stride, int src_stride,
                          double *M, double *H) {
  int i, j, k, l;
  double Y[RESTORATION_WIN2];
  const double avg = find_average(dgd, width, height, dgd_stride);

  memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
  memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
  for (i = RESTORATION_HALFWIN; i < height - RESTORATION_HALFWIN; i++) {
    for (j = RESTORATION_HALFWIN; j < width - RESTORATION_HALFWIN; j++) {
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
        for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      for (k = 0; k < RESTORATION_WIN2; ++k) {
        M[k] += Y[k] * X;
        H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
        for (l = k + 1; l < RESTORATION_WIN2; ++l) {
          double value = Y[k] * Y[l];
          H[k * RESTORATION_WIN2 + l] += value;
          H[l * RESTORATION_WIN2 + k] += value;
        }
      }
    }
  }
}

#if CONFIG_VP9_HIGHBITDEPTH
static double find_average_highbd(uint16_t *src,
                                  int width, int height, int stride) {
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
  for (i = 0; i < height; i++)
    for (j = 0; j < width; j++)
      sum += src[i * stride + j];
  avg = (double)sum / (height * width);
  return avg;
}

static void compute_stats_highbd(
    uint8_t *dgd8, uint8_t *src8, int width, int height,
    int dgd_stride, int src_stride, double *M, double *H) {
  int i, j, k, l;
  double Y[RESTORATION_WIN2];
  uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
  const double avg = find_average_highbd(dgd, width, height, dgd_stride);

  memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
  memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
  for (i = RESTORATION_HALFWIN; i < height - RESTORATION_HALFWIN; i++) {
    for (j = RESTORATION_HALFWIN; j < width - RESTORATION_HALFWIN; j++) {
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
        for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      for (k = 0; k < RESTORATION_WIN2; ++k) {
        M[k] += Y[k] * X;
        H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
        for (l = k + 1; l < RESTORATION_WIN2; ++l) {
          double value = Y[k] * Y[l];
          H[k * RESTORATION_WIN2 + l] += value;
          H[l * RESTORATION_WIN2 + k] += value;
        }
      }
    }
  }
}
#endif  // CONFIG_VP9_HIGHBITDEPTH

// Solves Ax = b, where x and b are column vectors
static int linsolve(int n, double *A, int stride, double *b, double *x) {
  int i, j, k;
  double c;
  // Partial pivoting
  for (i = n - 1; i > 0; i--) {
    if (A[(i - 1) * stride] < A[i * stride]) {
      for (j = 0; j < n; j++) {
        c = A[i * stride + j];
        A[i * stride + j] = A[(i - 1) * stride + j];
        A[(i - 1) * stride + j] = c;
      }
      c = b[i];
      b[i] = b[i - 1];
      b[i - 1] = c;
    }
  }
  // Forward elimination
  for (k = 0; k < n - 1; k++) {
    for (i = k; i < n - 1; i++) {
      c = A[(i + 1) * stride + k] / A[k * stride + k];
      for (j = 0; j < n; j++)
        A[(i + 1) * stride + j] -= c * A[k * stride + j];
      b[i + 1] -= c * b[k];
    }
  }
  // Backward substitution
  for (i = n - 1; i >= 0; i--) {
    if (fabs(A[i * stride + i]) < 1e-10)
      return 0;
    c = 0;
    for (j = i + 1; j <= n - 1; j++)
      c += A[i * stride + j] * x[j];
    x[i] = (b[i] - c) / A[i * stride + i];
  }
  return 1;
}

static INLINE int wrap_index(int i) {
  return (i >= RESTORATION_HALFWIN1 ? RESTORATION_WIN - 1 - i : i);
}

// Fix vector b, update vector a
static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) {
  int i, j;
  double S[RESTORATION_WIN];
  double A[RESTORATION_WIN], B[RESTORATION_WIN2];
Aamir Anis's avatar
Aamir Anis committed
335
  int w, w2;
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
  for (i = 0; i < RESTORATION_WIN; i ++) {
    int j;
    for (j = 0; j < RESTORATION_WIN; ++j) {
      const int jj = wrap_index(j);
      A[jj] += Mc[i][j] * b[i];
    }
  }
  for (i = 0; i < RESTORATION_WIN; i ++) {
    for (j = 0; j < RESTORATION_WIN; j ++) {
      int k, l;
      for (k = 0; k < RESTORATION_WIN; ++k)
        for (l = 0; l < RESTORATION_WIN; ++l) {
          const int kk = wrap_index(k);
          const int ll = wrap_index(l);
          B[ll * RESTORATION_HALFWIN1 + kk] +=
              Hc[j * RESTORATION_WIN + i][k * RESTORATION_WIN2 + l] *
              b[i] * b[j];
        }
    }
  }
Aamir Anis's avatar
Aamir Anis committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  // Normalization enforcement in the system of equations itself
  w = RESTORATION_WIN;
  w2 = (w >> 1) + 1;
  for (i = 0; i < w2 - 1; ++i)
    A[i] -= A[w2 - 1] * 2 + B[i * w2 + w2 - 1]
              - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
  for (i = 0; i < w2 - 1; ++i)
    for (j = 0; j < w2 - 1; ++j)
      B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
                            2 * B[(w2 - 1) * w2 + (w2 - 1)]);
  if (linsolve(w2 - 1, B, w2, A, S)) {
    S[w2 - 1] = 1.0;
    for (i = w2; i < w; ++i) {
      S[i] = S[w - 1 - i];
      S[w2 - 1] -= 2 * S[i];
373
    }
Aamir Anis's avatar
Aamir Anis committed
374
    memcpy(a, S, w * sizeof(*a));
375
376
377
378
379
380
381
382
  }
}

// Fix vector a, update vector b
static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) {
  int i, j;
  double S[RESTORATION_WIN];
  double A[RESTORATION_WIN], B[RESTORATION_WIN2];
Aamir Anis's avatar
Aamir Anis committed
383
  int w, w2;
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
  for (i = 0; i < RESTORATION_WIN; i ++) {
    int j;
    const int ii = wrap_index(i);
    for (j = 0; j < RESTORATION_WIN; j ++)
      A[ii] += Mc[i][j] * a[j];
  }

  for (i = 0; i < RESTORATION_WIN; i++) {
    for (j = 0; j < RESTORATION_WIN; j++) {
      const int ii = wrap_index(i);
      const int jj = wrap_index(j);
      int k, l;
      for (k = 0; k < RESTORATION_WIN; ++k)
        for (l = 0; l < RESTORATION_WIN; ++l)
          B[jj * RESTORATION_HALFWIN1 + ii] +=
              Hc[i * RESTORATION_WIN + j][k * RESTORATION_WIN2 + l] *
              a[k] * a[l];
    }
  }
Aamir Anis's avatar
Aamir Anis committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
  // Normalization enforcement in the system of equations itself
  w = RESTORATION_WIN;
  w2 = RESTORATION_HALFWIN1;
  for (i = 0; i < w2 - 1; ++i)
    A[i] -= A[w2 - 1] * 2 + B[i * w2 + w2 - 1]
              - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
  for (i = 0; i < w2 - 1; ++i)
    for (j = 0; j < w2 - 1; ++j)
      B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
                            2 * B[(w2 - 1) * w2 + (w2 - 1)]);
  if (linsolve(w2 - 1, B, w2, A, S)) {
    S[w2 - 1] = 1.0;
    for (i = w2; i < w; ++i) {
      S[i] = S[w - 1 - i];
      S[w2 - 1] -= 2 * S[i];
420
    }
Aamir Anis's avatar
Aamir Anis committed
421
    memcpy(b, S, w * sizeof(*b));
422
423
424
  }
}

425
426
static int wiener_decompose_sep_sym(double *M, double *H,
                                    double *a, double *b) {
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
  static const double init_filt[RESTORATION_WIN] = {
    0.035623, -0.127154,  0.211436,  0.760190,  0.211436, -0.127154,  0.035623,
  };
  int i, j, iter;
  double *Hc[RESTORATION_WIN2];
  double *Mc[RESTORATION_WIN];
  for (i = 0; i < RESTORATION_WIN; i++) {
    Mc[i] = M + i * RESTORATION_WIN;
    for (j = 0; j < RESTORATION_WIN; j++) {
      Hc[i * RESTORATION_WIN + j] =
          H + i * RESTORATION_WIN * RESTORATION_WIN2 + j * RESTORATION_WIN;
    }
  }
  memcpy(a, init_filt, sizeof(*a) * RESTORATION_WIN);
  memcpy(b, init_filt, sizeof(*b) * RESTORATION_WIN);

  iter = 1;
  while (iter < 10) {
    update_a_sep_sym(Mc, Hc, a, b);
    update_b_sep_sym(Mc, Hc, a, b);
    iter++;
  }
449
  return 1;
450
451
}

Aamir Anis's avatar
Aamir Anis committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// Computes the function x'*A*x - x'*b for the learned filters, and compares
// against identity filters; Final score is defined as the difference between
// the function values
  static double compute_score(double *M, double *H, int *vfilt, int *hfilt) {
  double ab[RESTORATION_WIN * RESTORATION_WIN];
  int i, k, l;
  double P = 0, Q = 0;
  double iP = 0, iQ = 0;
  double Score, iScore;
  int w;
  double a[RESTORATION_WIN], b[RESTORATION_WIN];
  w = RESTORATION_WIN;
  a[RESTORATION_HALFWIN] = b[RESTORATION_HALFWIN] = 1.0;
  for (i = 0; i < RESTORATION_HALFWIN; ++i) {
    a[i] = a[RESTORATION_WIN - i - 1 ] =
        (double) vfilt[i] / RESTORATION_FILT_STEP;
    b[i] = b[RESTORATION_WIN - i - 1 ] =
        (double) hfilt[i] / RESTORATION_FILT_STEP;
    a[RESTORATION_HALFWIN] -= 2 * a[i];
    b[RESTORATION_HALFWIN] -= 2 * b[i];
  }
  for (k = 0; k < w; ++k) {
    for (l = 0; l < w; ++l) {
      ab[k * w + l] = a[l] * b[k];
    }
  }
  for (k = 0; k < w * w; ++k) {
    P += ab[k] * M[k];
    for (l = 0; l < w * w; ++l)
      Q += ab[k] * H[k * w * w + l] * ab[l];
  }
  Score = Q - 2 * P;

  iP = M[(w * w) >> 1];
  iQ = H[((w * w) >> 1) * w * w + ((w * w) >> 1)];
  iScore = iQ - 2 * iP;

  return Score - iScore;
}

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#define CLIP(x, lo, hi) ((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x))
#define RINT(x) ((x) < 0 ? (int)((x) - 0.5) : (int)((x) + 0.5))

static void quantize_sym_filter(double *f, int *fi) {
  int i;
  for (i = 0; i < RESTORATION_HALFWIN; ++i) {
    fi[i] = RINT(f[i] * RESTORATION_FILT_STEP);
  }
  // Specialize for 7-tap filter
  fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
  fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
  fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
}

static int search_wiener_filter(const YV12_BUFFER_CONFIG *src,
                                VP10_COMP *cpi,
                                int filter_level,
                                int partial_frame,
                                int *vfilter, int *hfilter,
                                double *best_cost_ret) {
  VP10_COMMON *const cm = &cpi->common;
  RestorationInfo rsi;
514
515
  int64_t err;
  int bits;
516
517
518
519
520
521
522
523
524
525
  double cost_wiener, cost_norestore;
  MACROBLOCK *x = &cpi->td.mb;
  double M[RESTORATION_WIN2];
  double H[RESTORATION_WIN2 * RESTORATION_WIN2];
  double vfilterd[RESTORATION_WIN], hfilterd[RESTORATION_WIN];
  const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
  const int width = cm->width;
  const int height = cm->height;
  const int src_stride = src->y_stride;
  const int dgd_stride = dgd->y_stride;
Aamir Anis's avatar
Aamir Anis committed
526
  double score;
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

  assert(width == dgd->y_crop_width);
  assert(height == dgd->y_crop_height);
  assert(width == src->y_crop_width);
  assert(height == src->y_crop_height);

  //  Make a copy of the unfiltered / processed recon buffer
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
  vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
                         1, partial_frame);
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);

  rsi.restoration_type = RESTORE_NONE;
  err = try_restoration_frame(src, cpi, &rsi, partial_frame);
  bits = 0;
Aamir Anis's avatar
Aamir Anis committed
542
  cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv,
543
                              (bits << (VP9_PROB_COST_SHIFT - 4)), err);
544
545
546
547
548
549
550
551
552
553

#if CONFIG_VP9_HIGHBITDEPTH
  if (cm->use_highbitdepth)
    compute_stats_highbd(dgd->y_buffer, src->y_buffer, width, height,
                         dgd_stride, src_stride, M, H);
  else
#endif  // CONFIG_VP9_HIGHBITDEPTH
    compute_stats(dgd->y_buffer, src->y_buffer, width, height,
                  dgd_stride, src_stride, M, H);

554
555
556
557
  if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) {
    *best_cost_ret = DBL_MAX;
    return 0;
  }
558
559
560
  quantize_sym_filter(vfilterd, vfilter);
  quantize_sym_filter(hfilterd, hfilter);

Aamir Anis's avatar
Aamir Anis committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
  // Filter score computes the value of the function x'*A*x - x'*b for the
  // learned filter and compares it against identity filer. If there is no
  // reduction in the function, the filter is reverted back to identity
  score = compute_score(M, H, vfilter, hfilter);
  if (score > 0.0) {
    int i;
    for (i = 0; i < RESTORATION_HALFWIN; ++i)
      vfilter[i] = hfilter[i] = 0;
    rsi.restoration_type = RESTORE_NONE;
    if (best_cost_ret) *best_cost_ret = cost_norestore;
    vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
    return 0;
  }

575
576
577
578
  rsi.restoration_type = RESTORE_WIENER;
  memcpy(rsi.vfilter, vfilter, sizeof(rsi.vfilter));
  memcpy(rsi.hfilter, hfilter, sizeof(rsi.hfilter));
  err = try_restoration_frame(src, cpi, &rsi, partial_frame);
579
  bits = WIENER_FILT_BITS;
Aamir Anis's avatar
Aamir Anis committed
580
  cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv,
581
                           (bits << (VP9_PROB_COST_SHIFT - 4)), err);
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

  vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);

  if (cost_wiener < cost_norestore) {
    if (best_cost_ret) *best_cost_ret = cost_wiener;
    return 1;
  } else {
    if (best_cost_ret) *best_cost_ret = cost_norestore;
    return 0;
  }
}

void vp10_pick_filter_restoration(
    const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi, LPF_PICK_METHOD method) {
  VP10_COMMON *const cm = &cpi->common;
  struct loopfilter *const lf = &cm->lf;
598
599
600
601
  int wiener_success = 0;
  double cost_bilateral = DBL_MAX;
  double cost_wiener = DBL_MAX;
  double cost_norestore = DBL_MAX;
602
603
604
605
606
607

  lf->sharpness_level =
      cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;

  if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
      lf->filter_level = 0;
608
      cm->rst_info.restoration_type = RESTORE_NONE;
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
  } else if (method >= LPF_PICK_FROM_Q) {
    const int min_filter_level = 0;
    const int max_filter_level = vp10_get_max_filter_level(cpi);
    const int q = vp10_ac_quant(cm->base_qindex, 0, cm->bit_depth);
    // These values were determined by linear fitting the result of the
    // searched level, filt_guess = q * 0.316206 + 3.87252
#if CONFIG_VP9_HIGHBITDEPTH
    int filt_guess;
    switch (cm->bit_depth) {
      case VPX_BITS_8:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
        break;
      case VPX_BITS_10:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
        break;
      case VPX_BITS_12:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
        break;
      default:
        assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 "
                    "or VPX_BITS_12");
        return;
    }
#else
    int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
#endif  // CONFIG_VP9_HIGHBITDEPTH
    if (cm->frame_type == KEY_FRAME)
      filt_guess -= 4;
    lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
    cm->rst_info.restoration_level = search_bilateral_level(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
        &cost_bilateral);
    wiener_success = search_wiener_filter(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
        cm->rst_info.vfilter, cm->rst_info.hfilter, &cost_wiener);
    if (cost_bilateral < cost_wiener) {
      if (cm->rst_info.restoration_level != -1)
        cm->rst_info.restoration_type = RESTORE_BILATERAL;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    } else {
      if (wiener_success)
        cm->rst_info.restoration_type = RESTORE_WIENER;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    }
  } else {
    int blf_filter_level = -1;
    blf_filter_level = search_filter_bilateral_level(
        sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
        &cm->rst_info.restoration_level, &cost_bilateral);
    lf->filter_level = vp10_search_filter_level(
        sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, &cost_norestore);
    wiener_success = search_wiener_filter(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
        cm->rst_info.vfilter, cm->rst_info.hfilter, &cost_wiener);
    if (cost_bilateral < cost_wiener) {
      lf->filter_level = blf_filter_level;
      if (cm->rst_info.restoration_level != -1)
        cm->rst_info.restoration_type = RESTORE_BILATERAL;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    } else {
      if (wiener_success)
        cm->rst_info.restoration_type = RESTORE_WIENER;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    }
677
    // printf("[%d] Costs %g %g (%d) %g (%d)\n", cm->rst_info.restoration_type,
Aamir Anis's avatar
Aamir Anis committed
678
679
    //         cost_norestore, cost_bilateral, lf->filter_level, cost_wiener,
    //         wiener_success);
680
681
  }
}