vpx_temporal_svc_encoder.c 25.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

11
//  This is an example demonstrating how to implement a multi-layer VPx
12
13
14
//  encoding scheme based on temporal scalability for video applications
//  that benefit from a scalable bitstream.

15
#include <math.h>
16
17
18
19
20
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define VPX_CODEC_DISABLE_COMPAT 1
21
22
#include "./vpx_config.h"
#include "vpx_ports/vpx_timer.h"
23
24
25
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"

26
27
28
#include "./tools_common.h"
#include "./video_writer.h"

29
30
31
32
33
34
static const char *exec_name;

void usage_exit() {
  exit(EXIT_FAILURE);
}

35
36
37
38
39
40
41
42
// Denoiser states, for temporal denoising.
enum denoiserState {
  kDenoiserOff,
  kDenoiserOnYOnly,
  kDenoiserOnYUV,
  kDenoiserOnYUVAggressive  // Aggressive mode not implemented currently.
};

43
44
static int mode_to_num_layers[12] = {1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3};

45
46
47
48
49
50
51
52
53
// For rate control encoding stats.
struct RateControlMetrics {
  // Number of input frames per layer.
  int layer_input_frames[VPX_TS_MAX_LAYERS];
  // Total (cumulative) number of encoded frames per layer.
  int layer_tot_enc_frames[VPX_TS_MAX_LAYERS];
  // Number of encoded non-key frames per layer.
  int layer_enc_frames[VPX_TS_MAX_LAYERS];
  // Framerate per layer layer (cumulative).
54
  double layer_framerate[VPX_TS_MAX_LAYERS];
55
  // Target average frame size per layer (per-frame-bandwidth per layer).
56
  double layer_pfb[VPX_TS_MAX_LAYERS];
57
  // Actual average frame size per layer.
58
  double layer_avg_frame_size[VPX_TS_MAX_LAYERS];
59
  // Average rate mismatch per layer (|target - actual| / target).
60
  double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS];
61
  // Actual encoding bitrate per layer (cumulative).
62
  double layer_encoding_bitrate[VPX_TS_MAX_LAYERS];
63
64
};

65
66
67
68
69
70
// Note: these rate control metrics assume only 1 key frame in the
// sequence (i.e., first frame only). So for temporal pattern# 7
// (which has key frame for every frame on base layer), the metrics
// computation will be off/wrong.
// TODO(marpan): Update these metrics to account for multiple key frames
// in the stream.
71
72
static void set_rate_control_metrics(struct RateControlMetrics *rc,
                                     vpx_codec_enc_cfg_t *cfg) {
73
  unsigned int i = 0;
74
75
  // Set the layer (cumulative) framerate and the target layer (non-cumulative)
  // per-frame-bandwidth, for the rate control encoding stats below.
76
  const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0];
  rc->layer_pfb[0] = 1000.0 * cfg->ts_target_bitrate[0] /
      rc->layer_framerate[0];
  for (i = 0; i < cfg->ts_number_layers; ++i) {
    if (i > 0) {
      rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i];
      rc->layer_pfb[i] = 1000.0 *
          (cfg->ts_target_bitrate[i] - cfg->ts_target_bitrate[i - 1]) /
          (rc->layer_framerate[i] - rc->layer_framerate[i - 1]);
    }
    rc->layer_input_frames[i] = 0;
    rc->layer_enc_frames[i] = 0;
    rc->layer_tot_enc_frames[i] = 0;
    rc->layer_encoding_bitrate[i] = 0.0;
    rc->layer_avg_frame_size[i] = 0.0;
    rc->layer_avg_rate_mismatch[i] = 0.0;
  }
}

static void printout_rate_control_summary(struct RateControlMetrics *rc,
                                          vpx_codec_enc_cfg_t *cfg,
                                          int frame_cnt) {
99
  unsigned int i = 0;
100
  int tot_num_frames = 0;
101
102
103
104
105
106
107
  printf("Total number of processed frames: %d\n\n", frame_cnt -1);
  printf("Rate control layer stats for %d layer(s):\n\n",
      cfg->ts_number_layers);
  for (i = 0; i < cfg->ts_number_layers; ++i) {
    const int num_dropped = (i > 0) ?
        (rc->layer_input_frames[i] - rc->layer_enc_frames[i]) :
        (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1);
108
    tot_num_frames += rc->layer_input_frames[i];
109
    rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] *
110
        rc->layer_encoding_bitrate[i] / tot_num_frames;
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    rc->layer_avg_frame_size[i] = rc->layer_avg_frame_size[i] /
        rc->layer_enc_frames[i];
    rc->layer_avg_rate_mismatch[i] = 100.0 * rc->layer_avg_rate_mismatch[i] /
        rc->layer_enc_frames[i];
    printf("For layer#: %d \n", i);
    printf("Bitrate (target vs actual): %d %f \n", cfg->ts_target_bitrate[i],
           rc->layer_encoding_bitrate[i]);
    printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i],
           rc->layer_avg_frame_size[i]);
    printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]);
    printf("Number of input frames, encoded (non-key) frames, "
        "and perc dropped frames: %d %d %f \n", rc->layer_input_frames[i],
        rc->layer_enc_frames[i],
        100.0 * num_dropped / rc->layer_input_frames[i]);
    printf("\n");
  }
127
  if ((frame_cnt - 1) != tot_num_frames)
128
129
130
    die("Error: Number of input frames not equal to output! \n");
}

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Temporal scaling parameters:
// NOTE: The 3 prediction frames cannot be used interchangeably due to
// differences in the way they are handled throughout the code. The
// frames should be allocated to layers in the order LAST, GF, ARF.
// Other combinations work, but may produce slightly inferior results.
static void set_temporal_layer_pattern(int layering_mode,
                                       vpx_codec_enc_cfg_t *cfg,
                                       int *layer_flags,
                                       int *flag_periodicity) {
  switch (layering_mode) {
    case 0: {
      // 1-layer.
      int ids[1] = {0};
      cfg->ts_periodicity = 1;
      *flag_periodicity = 1;
      cfg->ts_number_layers = 1;
      cfg->ts_rate_decimator[0] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // Update L only.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF;
      break;
    }
    case 1: {
      // 2-layers, 2-frame period.
      int ids[2] = {0, 1};
      cfg->ts_periodicity = 2;
      *flag_periodicity = 2;
      cfg->ts_number_layers = 2;
      cfg->ts_rate_decimator[0] = 2;
      cfg->ts_rate_decimator[1] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
#if 1
      // 0=L, 1=GF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
      layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_REF_ARF;
#else
       // 0=L, 1=GF, Intra-layer prediction disabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
      layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST;
#endif
      break;
    }
    case 2: {
      // 2-layers, 3-frame period.
      int ids[3] = {0, 1, 1};
      cfg->ts_periodicity = 3;
      *flag_periodicity = 3;
      cfg->ts_number_layers = 2;
      cfg->ts_rate_decimator[0] = 3;
      cfg->ts_rate_decimator[1] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] =
      layer_flags[2] = VP8_EFLAG_NO_REF_GF  | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      break;
    }
    case 3: {
      // 3-layers, 6-frame period.
      int ids[6] = {0, 2, 2, 1, 2, 2};
      cfg->ts_periodicity = 6;
      *flag_periodicity = 6;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 6;
      cfg->ts_rate_decimator[1] = 3;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST;
      layer_flags[1] =
      layer_flags[2] =
      layer_flags[4] =
      layer_flags[5] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST;
      break;
    }
    case 4: {
      // 3-layers, 4-frame period.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 4;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      layer_flags[1] =
      layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      break;
    }
    case 5: {
      // 3-layers, 4-frame period.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 4;
      cfg->ts_number_layers     = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled
      // in layer 2.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] =
      layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      break;
    }
    case 6: {
      // 3-layers, 4-frame period.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 4;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] =
      layer_flags[3] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
      break;
    }
    case 7: {
      // NOTE: Probably of academic interest only.
      // 5-layers, 16-frame period.
      int ids[16] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4};
      cfg->ts_periodicity = 16;
      *flag_periodicity = 16;
      cfg->ts_number_layers = 5;
      cfg->ts_rate_decimator[0] = 16;
      cfg->ts_rate_decimator[1] = 8;
      cfg->ts_rate_decimator[2] = 4;
      cfg->ts_rate_decimator[3] = 2;
      cfg->ts_rate_decimator[4] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      layer_flags[0]  = VPX_EFLAG_FORCE_KF;
      layer_flags[1]  =
      layer_flags[3]  =
      layer_flags[5]  =
      layer_flags[7]  =
      layer_flags[9]  =
      layer_flags[11] =
      layer_flags[13] =
      layer_flags[15] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2]  =
      layer_flags[6]  =
      layer_flags[10] =
      layer_flags[14] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
      layer_flags[4] =
      layer_flags[12] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[8]  = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF;
      break;
    }
    case 8: {
      // 2-layers, with sync point at first frame of layer 1.
      int ids[2] = {0, 1};
      cfg->ts_periodicity = 2;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 2;
      cfg->ts_rate_decimator[0] = 2;
      cfg->ts_rate_decimator[1] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF.
      // ARF is used as predictor for all frames, and is only updated on
      // key frame. Sync point every 8 frames.

      // Layer 0: predict from L and ARF, update L and G.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_UPD_ARF;
      // Layer 1: sync point: predict from L and ARF, and update G.
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      // Layer 0, predict from L and ARF, update L.
      layer_flags[2] = VP8_EFLAG_NO_REF_GF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF;
      // Layer 1: predict from L, G and ARF, and update G.
      layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ENTROPY;
      // Layer 0.
      layer_flags[4] = layer_flags[2];
      // Layer 1.
      layer_flags[5] = layer_flags[3];
      // Layer 0.
      layer_flags[6] = layer_flags[4];
      // Layer 1.
      layer_flags[7] = layer_flags[5];
     break;
    }
    case 9: {
      // 3-layers: Sync points for layer 1 and 2 every 8 frames.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
      layer_flags[2] = VP8_EFLAG_NO_REF_GF   | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[3] =
      layer_flags[5] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
      layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[6] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY;
      break;
    }
    case 10: {
      // 3-layers structure where ARF is used as predictor for all frames,
      // and is only updated on key frame.
      // Sync points for layer 1 and 2 every 8 frames.

      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF.
      // Layer 0: predict from L and ARF; update L and G.
      layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_REF_GF;
      // Layer 2: sync point: predict from L and ARF; update none.
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ENTROPY;
      // Layer 1: sync point: predict from L and ARF; update G.
      layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST;
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
      // Layer 0: predict from L and ARF; update L.
      layer_flags[4] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_REF_GF;
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[5] = layer_flags[3];
      // Layer 1: predict from L, G, ARF; update G.
      layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[7] = layer_flags[3];
      break;
    }
    case 11:
    default: {
      // 3-layers structure as in case 10, but no sync/refresh points for
      // layer 1 and 2.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF.
      // Layer 0: predict from L and ARF; update L.
      layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_REF_GF;
      layer_flags[4] = layer_flags[0];
      // Layer 1: predict from L, G, ARF; update G.
      layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      layer_flags[6] = layer_flags[2];
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
      layer_flags[3] = layer_flags[1];
      layer_flags[5] = layer_flags[1];
      layer_flags[7] = layer_flags[1];
      break;
    }
  }
}

int main(int argc, char **argv) {
440
  VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS];
441
442
443
444
445
446
447
  vpx_codec_ctx_t codec;
  vpx_codec_enc_cfg_t cfg;
  int frame_cnt = 0;
  vpx_image_t raw;
  vpx_codec_err_t res;
  unsigned int width;
  unsigned int height;
448
  int speed;
449
450
451
  int frame_avail;
  int got_data;
  int flags = 0;
452
  unsigned int i;
453
454
455
456
457
458
459
  int pts = 0;  // PTS starts at 0.
  int frame_duration = 1;  // 1 timebase tick per frame.
  int layering_mode = 0;
  int layer_flags[VPX_TS_MAX_PERIODICITY] = {0};
  int flag_periodicity = 1;
  int max_intra_size_pct;
  vpx_svc_layer_id_t layer_id = {0, 0};
460
  const VpxInterface *encoder = NULL;
461
  FILE *infile = NULL;
462
  struct RateControlMetrics rc;
463
  int64_t cx_time = 0;
464
465
466

  exec_name = argv[0];
  // Check usage and arguments.
467
  if (argc < 11) {
468
    die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
469
        "<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> "
470
        "<Rate_0> ... <Rate_nlayers-1> \n", argv[0]);
471
472
  }

473
474
475
476
  encoder = get_vpx_encoder_by_name(argv[3]);
  if (!encoder)
    die("Unsupported codec.");

477
  printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface()));
478
479
480
481
482
483
484

  width = strtol(argv[4], NULL, 0);
  height = strtol(argv[5], NULL, 0);
  if (width < 16 || width % 2 || height < 16 || height % 2) {
    die("Invalid resolution: %d x %d", width, height);
  }

485
  layering_mode = strtol(argv[10], NULL, 0);
486
  if (layering_mode < 0 || layering_mode > 12) {
487
    die("Invalid layering mode (0..12) %s", argv[10]);
488
489
  }

490
  if (argc != 11 + mode_to_num_layers[layering_mode]) {
491
492
493
494
495
496
497
498
    die("Invalid number of arguments");
  }

  if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) {
    die("Failed to allocate image", width, height);
  }

  // Populate encoder configuration.
499
  res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
500
501
502
503
504
505
506
507
508
509
510
511
512
  if (res) {
    printf("Failed to get config: %s\n", vpx_codec_err_to_string(res));
    return EXIT_FAILURE;
  }

  // Update the default configuration with our settings.
  cfg.g_w = width;
  cfg.g_h = height;

  // Timebase format e.g. 30fps: numerator=1, demoninator = 30.
  cfg.g_timebase.num = strtol(argv[6], NULL, 0);
  cfg.g_timebase.den = strtol(argv[7], NULL, 0);

513
514
515
516
517
518
519
  speed = strtol(argv[8], NULL, 0);
  if (speed < 0) {
    die("Invalid speed setting: must be positive");
  }

  for (i = 11; (int)i < 11 + mode_to_num_layers[layering_mode]; ++i) {
    cfg.ts_target_bitrate[i - 11] = strtol(argv[i], NULL, 0);
520
521
522
  }

  // Real time parameters.
523
  cfg.rc_dropframe_thresh = strtol(argv[9], NULL, 0);
524
525
526
527
  cfg.rc_end_usage = VPX_CBR;
  cfg.rc_resize_allowed = 0;
  cfg.rc_min_quantizer = 2;
  cfg.rc_max_quantizer = 56;
528
529
  cfg.rc_undershoot_pct = 50;
  cfg.rc_overshoot_pct = 50;
530
531
532
533
534
535
536
  cfg.rc_buf_initial_sz = 500;
  cfg.rc_buf_optimal_sz = 600;
  cfg.rc_buf_sz = 1000;

  // Enable error resilient mode.
  cfg.g_error_resilient = 1;
  cfg.g_lag_in_frames   = 0;
537
  cfg.kf_mode = VPX_KF_AUTO;
538
539
540
541
542
543
544
545
546

  // Disable automatic keyframe placement.
  cfg.kf_min_dist = cfg.kf_max_dist = 3000;

  set_temporal_layer_pattern(layering_mode,
                             &cfg,
                             layer_flags,
                             &flag_periodicity);

547
548
  set_rate_control_metrics(&rc, &cfg);

549
550
551
552
  // Target bandwidth for the whole stream.
  // Set to ts_target_bitrate for highest layer (total bitrate).
  cfg.rc_target_bitrate = cfg.ts_target_bitrate[cfg.ts_number_layers - 1];

553
  // Open input file.
554
  if (!(infile = fopen(argv[1], "rb"))) {
555
556
557
558
559
    die("Failed to open %s for reading", argv[1]);
  }

  // Open an output file for each stream.
  for (i = 0; i < cfg.ts_number_layers; ++i) {
560
561
    char file_name[PATH_MAX];
    VpxVideoInfo info;
562
    info.codec_fourcc = encoder->fourcc;
563
564
565
566
567
    info.frame_width = cfg.g_w;
    info.frame_height = cfg.g_h;
    info.time_base.numerator = cfg.g_timebase.num;
    info.time_base.denominator = cfg.g_timebase.den;

568
    snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i);
569
570
    outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info);
    if (!outfile[i])
571
572
573
574
575
576
      die("Failed to open %s for writing", file_name);
  }
  // No spatial layers in this encoder.
  cfg.ss_number_layers = 1;

  // Initialize codec.
577
  if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
578
579
    die_codec(&codec, "Failed to initialize encoder");

580
581
  if (strncmp(encoder->name, "vp8", 3) == 0) {
    vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed);
582
    vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kDenoiserOnYOnly);
583
584
585
  } else if (strncmp(encoder->name, "vp9", 3) == 0) {
      vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed);
      vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3);
586
      vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0);
587
588
589
      vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, 0);
      if (vpx_codec_control(&codec, VP9E_SET_SVC, 1)) {
        die_codec(&codec, "Failed to set SVC");
590
591
592
593
    }
  }
  vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
  vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1);
594
595
596
  // This controls the maximum target size of the key frame.
  // For generating smaller key frames, use a smaller max_intra_size_pct
  // value, like 100 or 200.
597
598
  max_intra_size_pct = (int) (((double)cfg.rc_buf_optimal_sz * 0.5)
      * ((double) cfg.g_timebase.den / cfg.g_timebase.num) / 10.0);
599
600
  // For low-quality key frame.
  max_intra_size_pct = 200;
601
602
603
604
  vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT, max_intra_size_pct);

  frame_avail = 1;
  while (frame_avail || got_data) {
605
    struct vpx_usec_timer timer;
606
607
608
609
610
611
    vpx_codec_iter_t iter = NULL;
    const vpx_codec_cx_pkt_t *pkt;
    // Update the temporal layer_id. No spatial layers in this test.
    layer_id.spatial_layer_id = 0;
    layer_id.temporal_layer_id =
        cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
612
613
614
    if (strncmp(encoder->name, "vp9", 3) == 0) {
      vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
    }
615
    flags = layer_flags[frame_cnt % flag_periodicity];
616
    frame_avail = vpx_img_read(&raw, infile);
617
618
    if (frame_avail)
      ++rc.layer_input_frames[layer_id.temporal_layer_id];
619
    vpx_usec_timer_start(&timer);
620
621
622
623
    if (vpx_codec_encode(&codec, frame_avail? &raw : NULL, pts, 1, flags,
        VPX_DL_REALTIME)) {
      die_codec(&codec, "Failed to encode frame");
    }
624
625
    vpx_usec_timer_mark(&timer);
    cx_time += vpx_usec_timer_elapsed(&timer);
626
627
628
629
630
631
632
633
634
635
636
    // Reset KF flag.
    if (layering_mode != 7) {
      layer_flags[0] &= ~VPX_EFLAG_FORCE_KF;
    }
    got_data = 0;
    while ( (pkt = vpx_codec_get_cx_data(&codec, &iter)) ) {
      got_data = 1;
      switch (pkt->kind) {
        case VPX_CODEC_CX_FRAME_PKT:
          for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
              i < cfg.ts_number_layers; ++i) {
637
638
            vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf,
                                         pkt->data.frame.sz, pts);
639
640
641
642
643
644
645
646
647
648
649
            ++rc.layer_tot_enc_frames[i];
            rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz;
            // Keep count of rate control stats per layer (for non-key frames).
            if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] &&
                !(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
              rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz;
              rc.layer_avg_rate_mismatch[i] +=
                  fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) /
                  rc.layer_pfb[i];
              ++rc.layer_enc_frames[i];
            }
650
651
652
653
654
655
656
657
658
          }
          break;
          default:
            break;
      }
    }
    ++frame_cnt;
    pts += frame_duration;
  }
659
  fclose(infile);
660
  printout_rate_control_summary(&rc, &cfg, frame_cnt);
661
662
663
664
665
  printf("\n");
  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
          frame_cnt,
          1000 * (float)cx_time / (double)(frame_cnt * 1000000),
          1000000 * (double)frame_cnt / (double)cx_time);
666

667
  if (vpx_codec_destroy(&codec))
668
    die_codec(&codec, "Failed to destroy codec");
669

670
  // Try to rewrite the output file headers with the actual frame count.
671
672
673
  for (i = 0; i < cfg.ts_number_layers; ++i)
    vpx_video_writer_close(outfile[i]);

674
  vpx_img_free(&raw);
675
676
  return EXIT_SUCCESS;
}