restoration.c 78.4 KB
Newer Older
1
/*
Yaowu Xu's avatar
Yaowu Xu committed
2
3
4
5
6
7
8
9
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
11
12
13
14
 *
 */

#include <math.h>

Yaowu Xu's avatar
Yaowu Xu committed
15
16
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
17
#include "./aom_scale_rtcd.h"
Yaowu Xu's avatar
Yaowu Xu committed
18
#include "aom_mem/aom_mem.h"
19
#include "av1/common/onyxc_int.h"
20
#if CONFIG_HORZONLY_FRAME_SUPERRES
21
22
#include "av1/common/resize.h"
#endif
23
#include "av1/common/restoration.h"
Yaowu Xu's avatar
Yaowu Xu committed
24
25
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
26

27
#include "aom_ports/mem.h"
28

29
const sgr_params_type sgr_params[SGRPROJ_PARAMS] = {
30
// r1, eps1, r2, eps2
31
#if MAX_RADIUS == 2
32
33
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
34
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 2, 30, 1, 6 },
35
36
  { 2, 50, 1, 12 }, { 2, 60, 1, 13 }, { 2, 70, 1, 14 }, { 2, 80, 1, 15 },
#else
37
38
39
40
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 },
  { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 },
41
#endif  // MAX_RADIUS == 2
42
43
};

44
45
46
47
48
49
50
51
52
53
54
55
56
// Similar to av1_get_tile_rect(), except that we extend the bottommost tile in
// each frame to a multiple of 8 luma pixels.
// This is done to help simplify the implementation of striped-loop-restoration,
// by avoiding nasty edge cases which would otherwise appear when the (cropped)
// frame height is 57 or 63 (mod 64).
static AV1PixelRect get_ext_tile_rect(const TileInfo *tile_info,
                                      const AV1_COMMON *cm, int is_uv) {
  int ss_y = is_uv && cm->subsampling_y;
  AV1PixelRect tile_rect = av1_get_tile_rect(tile_info, cm, is_uv);
  tile_rect.bottom = ALIGN_POWER_OF_TWO(tile_rect.bottom, 3 - ss_y);
  return tile_rect;
}

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// Count horizontal or vertical units per tile (use a width or height for
// tile_size, respectively). We basically want to divide the tile size by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a restoration
// unit.
static int count_units_in_tile(int unit_size, int tile_size) {
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
}

void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
                                  int is_uv) {
#if CONFIG_MAX_TILE
  // We need to allocate enough space for restoration units to cover the
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
73
  // top-left and we can use get_ext_tile_rect(). With CONFIG_MAX_TILE, we have
74
75
  // to do the computation ourselves, iterating over the tiles and keeping
  // track of the largest width and height, then upscaling.
76
77
78
79
80
  TileInfo tile;
  int max_mi_w = 0;
  int max_mi_h = 0;
  int tile_col = 0;
  int tile_row = 0;
81
  for (int i = 0; i < cm->tile_cols; ++i) {
82
83
84
85
86
    av1_tile_set_col(&tile, cm, i);
    if (tile.mi_col_end - tile.mi_col_start > max_mi_w) {
      max_mi_w = tile.mi_col_end - tile.mi_col_start;
      tile_col = i;
    }
87
88
  }
  for (int i = 0; i < cm->tile_rows; ++i) {
89
90
91
92
93
    av1_tile_set_row(&tile, cm, i);
    if (tile.mi_row_end - tile.mi_row_start > max_mi_h) {
      max_mi_h = tile.mi_row_end - tile.mi_row_start;
      tile_row = i;
    }
94
  }
95
96
  TileInfo tile_info;
  av1_tile_init(&tile_info, cm, tile_row, tile_col);
97
98
99
#else
  TileInfo tile_info;
  av1_tile_init(&tile_info, cm, 0, 0);
100
#endif  // CONFIG_MAX_TILE
101

102
  const AV1PixelRect tile_rect = get_ext_tile_rect(&tile_info, cm, is_uv);
103
104
  const int max_tile_w = tile_rect.right - tile_rect.left;
  const int max_tile_h = tile_rect.bottom - tile_rect.top;
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

  // To calculate hpertile and vpertile (horizontal and vertical units per
  // tile), we basically want to divide the largest tile width or height by the
  // size of a restoration unit. Rather than rounding up unconditionally as you
  // might expect, we round to nearest, which models the way a right or bottom
  // restoration unit can extend to up to 150% its normal width or height. The
  // max with 1 is to deal with tiles that are smaller than half of a
  // restoration unit.
  const int unit_size = rsi->restoration_unit_size;
  const int hpertile = count_units_in_tile(unit_size, max_tile_w);
  const int vpertile = count_units_in_tile(unit_size, max_tile_h);

  rsi->units_per_tile = hpertile * vpertile;
  rsi->horz_units_per_tile = hpertile;
  rsi->vert_units_per_tile = vpertile;

  const int ntiles = cm->tile_rows * cm->tile_cols;
  const int nunits = ntiles * rsi->units_per_tile;

  aom_free(rsi->unit_info);
125
126
127
  CHECK_MEM_ERROR(cm, rsi->unit_info,
                  (RestorationUnitInfo *)aom_memalign(
                      16, sizeof(*rsi->unit_info) * nunits));
128
129
130
}

void av1_free_restoration_struct(RestorationInfo *rst_info) {
131
132
  aom_free(rst_info->unit_info);
  rst_info->unit_info = NULL;
133
}
134
135
136

// TODO(debargha): This table can be substantially reduced since only a few
// values are actually used.
David Barker's avatar
David Barker committed
137
int sgrproj_mtable[MAX_EPS][MAX_NELEM];
138
139
140
141
142
143
144
145
146
147

static void GenSgrprojVtable() {
  int e, n;
  for (e = 1; e <= MAX_EPS; ++e)
    for (n = 1; n <= MAX_NELEM; ++n) {
      const int n2e = n * n * e;
      sgrproj_mtable[e - 1][n - 1] =
          (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
    }
}
148
149

void av1_loop_restoration_precal() { GenSgrprojVtable(); }
150

151
152
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
                               int border_horz, int border_vert) {
153
154
155
156
  uint8_t *data_p;
  int i;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
157
158
    memset(data_p - border_horz, data_p[0], border_horz);
    memset(data_p + width, data_p[width - 1], border_horz);
159
  }
160
161
162
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
163
  }
164
  for (i = height; i < height + border_vert; ++i) {
165
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
166
           width + 2 * border_horz);
167
168
169
  }
}

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#if CONFIG_HIGHBITDEPTH
static void extend_frame_highbd(uint16_t *data, int width, int height,
                                int stride, int border_horz, int border_vert) {
  uint16_t *data_p;
  int i, j;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
  }
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
  for (i = height; i < height + border_vert; ++i) {
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
}
#endif

void extend_frame(uint8_t *data, int width, int height, int stride,
                  int border_horz, int border_vert, int highbd) {
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
                        border_horz, border_vert);
  else
#endif
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
}

206
207
208
209
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
                            int src_stride, uint8_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
210
211
212
}

#if CONFIG_HIGHBITDEPTH
213
214
215
216
static void copy_tile_highbd(int width, int height, const uint16_t *src,
                             int src_stride, uint16_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
217
218
219
}
#endif

220
221
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
                      uint8_t *dst, int dst_stride, int highbd) {
222
223
224
225
226
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
227
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
228
229
230
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
  else
#endif
231
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
232
}
233

234
235
236
#if CONFIG_STRIPED_LOOP_RESTORATION
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))

237
238
239
// Helper function: Save one column of left/right context to the appropriate
// column buffers, then extend the edge of the current tile into that column.
//
240
241
242
243
// Note: The height passed in should be the height of this processing unit,
// but we actually save/restore an extra RESTORATION_BORDER pixels above and
// below the stripe.
#if CONFIG_LOOPFILTERING_ACROSS_TILES || CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
244
static void setup_boundary_column(const uint8_t *src8, int src_stride,
245
246
                                  uint8_t *dst8, int dst_stride, uint16_t *buf,
                                  int h, int use_highbd) {
247
248
249
  if (use_highbd) {
    const uint16_t *src16 = CONVERT_TO_SHORTPTR(src8);
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
250
251
    for (int i = -RESTORATION_BORDER; i < h + RESTORATION_BORDER; i++) {
      buf[i + RESTORATION_BORDER] = dst16[i * dst_stride];
252
253
254
      dst16[i * dst_stride] = src16[i * src_stride];
    }
  } else {
255
256
    for (int i = -RESTORATION_BORDER; i < h + RESTORATION_BORDER; i++) {
      buf[i + RESTORATION_BORDER] = dst8[i * dst_stride];
257
258
259
260
      dst8[i * dst_stride] = src8[i * src_stride];
    }
  }
}
261
262
263
264
265
266

static void restore_boundary_column(uint8_t *dst8, int dst_stride,
                                    const uint16_t *buf, int h,
                                    int use_highbd) {
  if (use_highbd) {
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
267
268
    for (int i = -RESTORATION_BORDER; i < h + RESTORATION_BORDER; i++)
      dst16[i * dst_stride] = buf[i + RESTORATION_BORDER];
269
  } else {
270
    for (int i = -RESTORATION_BORDER; i < h + RESTORATION_BORDER; i++)
271
      dst8[i * dst_stride] = (uint8_t)(buf[i + RESTORATION_BORDER]);
272
273
  }
}
274
275
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES

276
// With striped loop restoration, the filtering for each 64-pixel stripe gets
277
278
279
280
// most of its input from the output of CDEF (stored in data8), but we need to
// fill out a border of 3 pixels above/below the stripe according to the
// following
// rules:
281
//
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
//   This extension is done by a call to extend_frame() at the start of the loop
//   restoration process, so the value of copy_above/copy_below doesn't strictly
//   matter.
//   However, by setting *copy_above = *copy_below = 1 whenever loop filtering
//   across tiles is disabled, we can allow
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
//   data has always been copied, simplifying the behaviour at the left and
//   right edges of tiles.
//
// * If we're at a tile boundary and loop filtering across tiles is enabled,
//   then there is a logical stripe which is 64 pixels high, but which is split
//   into an 8px high and a 56px high stripe so that the processing (and
//   coefficient set usage) can be aligned to tiles.
//   In this case, we use the 3 rows of CDEF output across the boundary for
//   context; this corresponds to leaving the frame buffer as-is.
//
// * If we're at a tile boundary and loop filtering across tiles is disabled,
//   then we take the outermost row of CDEF pixels *within the current tile*
//   and copy it three times. Thus we behave exactly as if the tile were a full
//   frame.
//
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
//
// The distinction between the latter two cases is handled by the
// av1_loop_restoration_save_boundary_lines() function, so here we just need
// to decide if we're overwriting the above/below boundary pixels or not.
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
                                     const AV1PixelRect *tile_rect, int ss_y,
#if CONFIG_LOOPFILTERING_ACROSS_TILES
313
314
315
#if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
                                     int loop_filter_across_tiles_h_enabled,
#else
316
                                     int loop_filter_across_tiles_enabled,
317
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
318
319
320
321
322
323
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int *copy_above, int *copy_below) {
  *copy_above = 1;
  *copy_below = 1;

#if CONFIG_LOOPFILTERING_ACROSS_TILES
324
325
326
#if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
  if (loop_filter_across_tiles_h_enabled) {
#else
327
  if (loop_filter_across_tiles_enabled) {
328
329
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
330
331
332
333
334
335
336
337
338
339
340
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
    const int rtile_offset = RESTORATION_TILE_OFFSET >> ss_y;

    const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
    const int this_stripe_height =
        full_stripe_height - (first_stripe_in_tile ? rtile_offset : 0);
    const int last_stripe_in_tile =
        (limits->v_start + this_stripe_height >= tile_rect->bottom);

    if (first_stripe_in_tile) *copy_above = 0;
    if (last_stripe_in_tile) *copy_below = 0;
341
#if CONFIG_LOOPFILTERING_ACROSS_TILES || CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
342
343
344
345
346
347
348
349
350
  }
#endif
}

// Overwrite the border pixels around a processing stripe so that the conditions
// listed above get_stripe_boundary_info() are preserved.
// We save the pixels which get overwritten into a temporary buffer, so that
// they can be restored by restore_processing_stripe_boundary() after we've
// processed the stripe.
351
352
//
// limits gives the rectangular limits of the remaining stripes for the current
353
354
// restoration unit. rsb is the stored stripe boundaries (taken from either
// deblock or CDEF output as necessary).
355
356
357
358
//
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
// the first stripe in this tile (needed to convert the tile-relative stripe
// index we get from limits into something we can look up in rsb).
359
static void setup_processing_stripe_boundary(
360
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
361
    int rsb_row, int use_highbd, int h,
362
#if CONFIG_LOOPFILTERING_ACROSS_TILES
363
364
365
#if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_v_enabled,
#else
366
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
367
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
368
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
369
370
    uint8_t *data8, int data_stride, RestorationLineBuffers *rlbs,
    int copy_above, int copy_below) {
371
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
372

373
374
375
  // Offsets within the line buffers. The buffer logically starts at column
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
  // has column x0 in the buffer.
376
  const int buf_stride = rsb->stripe_boundary_stride;
377
378
379
380
  const int buf_x0_off = limits->h_start;
  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
381

382
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
383

384
385
386
387
388
  // Replace RESTORATION_BORDER pixels above the top of the stripe
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  //
  // Special case: If we're at the top of a tile, which isn't on the topmost
  // tile row, and we're allowed to loop filter across tiles, then we have a
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
  // we want to leave the boundary alone!
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;

    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *buf = rsb->stripe_boundary_above + (buf_off << use_highbd);
      uint8_t *dst8 = data8_tl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_above
      memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
             REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
    }
408
  }
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
  // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
  // The second buffer row is repeated, so src_row gets the values 0, 1, 1
  // for i = 0, 1, 2.
  if (copy_below) {
    const int stripe_end = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;

    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *src = rsb->stripe_boundary_below + (buf_off << use_highbd);

      uint8_t *dst8 = data8_bl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_below
      memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
    }
427
  }
428

429
#if CONFIG_LOOPFILTERING_ACROSS_TILES
430
431
#if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
  if (!loop_filter_across_tiles_v_enabled) {
432
433
434
435
    // If loopfiltering across tiles is disabled, we need to check if we're at
    // the edge of the current tile column. If we are, we need to extend the
    // leftmost/rightmost column within the tile by 3 pixels, so that the output
    // doesn't depend on pixels from the next column over.
436
437
    // This applies to the top and bottom borders too, since those may have
    // been filled out with data from the tile to the top-left (etc.) of us.
438
439
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);
440

441
442
443
444
    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
        setup_boundary_column(dst8, data_stride, dst8 + j, data_stride,
445
446
                              rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                              use_highbd);
447
448
449
450
451
452
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
        setup_boundary_column(dst8 - 1, data_stride, dst8 + j, data_stride,
453
                              rlbs->tmp_save_right[j], h, use_highbd);
454
455
    }
  }
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#else
  if (!loop_filter_across_tiles_enabled) {
    // If loopfiltering across tiles is disabled, we need to extend tile edges
    // by 3 pixels, to ensure that we don't sample from the tiles to our left
    // or right.
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);

    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
        setup_boundary_column(dst8, data_stride, dst8 + j, data_stride,
                              rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                              use_highbd);
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
        setup_boundary_column(dst8 - 1, data_stride, dst8 + j, data_stride,
                              rlbs->tmp_save_right[j], h, use_highbd);
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
480
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
481
482
483
484
}

// This function restores the boundary lines modified by
// setup_processing_stripe_boundary.
485
486
487
488
489
490
491
492
493
494
495
//
// Note: We need to be careful when handling the corners of the processing
// unit, because (eg.) the top-left corner is considered to be part of
// both the left and top borders. This means that, depending on the
// loop_filter_across_tiles_enabled flag, the corner pixels might get
// overwritten twice, once as part of the "top" border and once as part
// of the "left" border (or similar for other corners).
//
// Everything works out fine as long as we make sure to reverse the order
// when restoring, ie. we need to restore the left/right borders followed
// by the top/bottom borders.
496
static void restore_processing_stripe_boundary(
497
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
498
    int use_highbd, int h,
499
#if CONFIG_LOOPFILTERING_ACROSS_TILES
500
501
502
#if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_v_enabled,
#else
503
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
504
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
505
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
506
    uint8_t *data8, int data_stride, int copy_above, int copy_below) {
507
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
508
509
510
511

  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
512

513
514
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;

515
516
517
518
519
520
521
#if CONFIG_LOOPFILTERING_ACROSS_TILES
#if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
  if (!loop_filter_across_tiles_v_enabled) {
    // Restore any pixels we overwrote at the left/right edge of this
    // processing unit.
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);
522

523
524
525
526
527
528
529
    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
        restore_boundary_column(dst8 + j, data_stride,
                                rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                                use_highbd);
    }
530

531
532
533
534
535
    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
        restore_boundary_column(dst8 + j, data_stride, rlbs->tmp_save_right[j],
                                h, use_highbd);
536
    }
537
  }
538
#else
539
540
  if (!loop_filter_across_tiles_enabled) {
    // Restore any pixels we overwrote at the left/right edge of this
541
    // processing unit.
542
543
544
545
546
547
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);

    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
548
549
550
        restore_boundary_column(dst8 + j, data_stride,
                                rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                                use_highbd);
551
552
553
554
555
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
556
557
        restore_boundary_column(dst8 + j, data_stride, rlbs->tmp_save_right[j],
                                h, use_highbd);
558
559
    }
  }
560
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT
561
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      uint8_t *dst8 = data8_tl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8),
             rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
    }
  }

  if (copy_below) {
    const int stripe_bottom = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;

    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;

      uint8_t *dst8 = data8_bl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
    }
  }
583
584
585
}
#endif

586
587
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
#define wiener_convolve8_add_src aom_convolve8_add_src_hip
588
#else
589
#define wiener_convolve8_add_src aom_convolve8_add_src
590
591
#endif

592
593
594
595
596
597
598
599
600
601
602
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
                                 int stripe_width, int stripe_height,
                                 int procunit_width, const uint8_t *src,
                                 int src_stride, uint8_t *dst, int dst_stride,
                                 int32_t *tmpbuf, int bit_depth) {
  (void)tmpbuf;
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
603
604
605
    const uint8_t *src_p = src + j;
    uint8_t *dst_p = dst + j;
    wiener_convolve8_add_src(src_p, src_stride, dst_p, dst_stride,
606
                             rui->wiener_info.hfilter, 16,
607
                             rui->wiener_info.vfilter, 16, w, stripe_height);
608
  }
609
}
610

611
612
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
   over the input. The window is of size (2r + 1)x(2r + 1), and we
613
   specialize to r = 1, 2, 3. A default function is used for r > 3.
614
615
616
617
618
619
620
621
622
623
624
625
626
627

   Each loop follows the same format: We keep a window's worth of input
   in individual variables and select data out of that as appropriate.
*/
static void boxsum1(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c;

  // Vertical sum over 3-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
628

629
630
631
632
633
634
635
636
637
638
639
640
641
642
      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 1) * src_stride + j]
        // b = src[(i    ) * src_stride + j]
        // c = src[(i + 1) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
643
  } else {
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];

      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
  }

  // Horizontal sum over 3-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];

    dst[i * dst_stride] = a + b;
    for (j = 1; j < width - 2; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 1)]
      // b = src[i * src_stride + (j    )]
      // c = src[i * src_stride + (j + 1)]
      dst[i * dst_stride + j] = a + b + c;
      a = b;
      b = c;
      c = dst[i * dst_stride + (j + 2)];
    }
    dst[i * dst_stride + j] = a + b + c;
    dst[i * dst_stride + (j + 1)] = b + c;
  }
}

static void boxsum2(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e;

  // Vertical sum over 5-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 2) * src_stride + j]
        // b = src[(i - 1) * src_stride + j]
        // c = src[(i    ) * src_stride + j]
        // d = src[(i + 1) * src_stride + j]
        // e = src[(i + 2) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  }

  // Horizontal sum over 5-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];

    dst[i * dst_stride] = a + b + c;
    dst[i * dst_stride + 1] = a + b + c + d;
    for (j = 2; j < width - 3; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 2)]
      // b = src[i * src_stride + (j - 1)]
      // c = src[i * src_stride + (j    )]
      // d = src[i * src_stride + (j + 1)]
      // e = src[i * src_stride + (j + 2)]
      dst[i * dst_stride + j] = a + b + c + d + e;
      a = b;
      b = c;
      c = d;
      d = e;
      e = dst[i * dst_stride + (j + 3)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e;
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
    dst[i * dst_stride + (j + 2)] = c + d + e;
  }
}

770
#if MAX_RADIUS > 2
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
static void boxsum3(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e, f, g;

  // Vertical sum over 7-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[1 * src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];
      f = src[5 * src_stride + j];
      g = src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[1 * src_stride + j] * src[1 * src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
      f = src[5 * src_stride + j] * src[5 * src_stride + j];
      g = src[6 * src_stride + j] * src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  }

  // Horizontal sum over 7-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];
    f = dst[i * dst_stride + 5];
    g = dst[i * dst_stride + 6];

    dst[i * dst_stride] = a + b + c + d;
    dst[i * dst_stride + 1] = a + b + c + d + e;
    dst[i * dst_stride + 2] = a + b + c + d + e + f;
    for (j = 3; j < width - 4; ++j) {
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      a = b;
      b = c;
      c = d;
      d = e;
      e = f;
      f = g;
      g = dst[i * dst_stride + (j + 4)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e + f + g;
    dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g;
    dst[i * dst_stride + (j + 2)] = c + d + e + f + g;
    dst[i * dst_stride + (j + 3)] = d + e + f + g;
  }
}

// Generic version for any r. To be removed after experiments are done.
static void boxsumr(int32_t *src, int width, int height, int src_stride, int r,
                    int sqr, int32_t *dst, int dst_stride) {
  int32_t *tmp = aom_malloc(width * height * sizeof(*tmp));
  int tmp_stride = width;
  int i, j;
  if (sqr) {
    for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j];
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] +
            src[i * src_stride + j] * src[i * src_stride + j];
  } else {
    memcpy(tmp, src, sizeof(*tmp) * width);
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j];
  }
  for (i = 0; i <= r; ++i)
    memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride],
           sizeof(*tmp) * width);
  for (i = r + 1; i < height - r; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] =
          tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j];
  for (i = height - r; i < height; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] -
                                tmp[(i - r - 1) * tmp_stride + j];

  for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride];
  for (i = 0; i < height; ++i)
    for (j = 1; j < width; ++j)
      tmp[i * tmp_stride + j] =
          tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j];

  for (j = 0; j <= r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r];
  for (j = r + 1; j < width - r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1];
  for (j = width - r; j < width; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1];
  aom_free(tmp);
}
915
#endif  // MAX_RADIUS > 2
916

917
918
919
920
921
922
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
                   int sqr, int32_t *dst, int dst_stride) {
  if (r == 1)
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
  else if (r == 2)
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
923
#if MAX_RADIUS > 2
924
925
  else if (r == 3)
    boxsum3(src, width, height, src_stride, sqr, dst, dst_stride);
926
  else if (r > 3)
927
    boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride);
928
929
930
#endif  // MAX_RADIUS > 2
  else
    assert(0 && "Invalid value of r in self-guided filter");
931
932
}

933
#if MAX_RADIUS > 2
934
935
static void boxnum(int width, int height, int r, int8_t *num, int num_stride) {
  int i, j;
936
937
938
  for (i = 0; i <= r; ++i) {
    for (j = 0; j <= r; ++j) {
      num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j);
939
940
941
942
943
944
      num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + (width - 1 - j)] =
          num[i * num_stride + j];
    }
  }
945
946
  for (j = 0; j <= r; ++j) {
    const int val = (2 * r + 1) * (r + 1 + j);
947
948
949
950
951
    for (i = r + 1; i < height - r; ++i) {
      num[i * num_stride + j] = val;
      num[i * num_stride + (width - 1 - j)] = val;
    }
  }
952
953
  for (i = 0; i <= r; ++i) {
    const int val = (2 * r + 1) * (r + 1 + i);
954
955
956
957
958
959
960
    for (j = r + 1; j < width - r; ++j) {
      num[i * num_stride + j] = val;
      num[(height - 1 - i) * num_stride + j] = val;
    }
  }
  for (i = r + 1; i < height - r; ++i) {
    for (j = r + 1; j < width - r; ++j) {
961
      num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1);
962
963
964
    }
  }
}
965
#endif  // MAX_RADIUS > 2
966

967
void decode_xq(const int *xqd, int *xq) {
968
  xq[0] = xqd[0];
969
970
971
  xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
}

David Barker's avatar
David Barker committed
972
const int32_t x_by_xplus1[256] = {
973
974
975
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
  // instead of 0. See comments in av1_selfguided_restoration_internal() for why
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  256,
};

David Barker's avatar
David Barker committed
995
const int32_t one_by_x[MAX_NELEM] = {
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
  4096,
  2048,
  1365,
  1024,
  819,
  683,
  585,
  512,
  455,
  410,
  372,
  341,
  315,
  293,
  273,
  256,
  241,
  228,
  216,
  205,
  195,
  186,
  178,
  171,
  164,
1021
#if MAX_RADIUS > 2
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
  158,
  152,
  146,
  141,
  137,
  132,
  128,
  124,
  120,
  117,
  114,
  111,
  108,
  105,
  102,
  100,
  98,
  95,
  93,
  91,
  89,
  87,
  85,
  84
1046
#endif  // MAX_RADIUS > 2
1047
1048
};

1049
static void av1_selfguided_restoration_internal(int32_t *dgd, int width,
1050
1051
                                                int height, int dgd_stride,
                                                int32_t *dst, int dst_stride,
1052
                                                int bit_depth, int r, int eps) {
1053
1054
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
David Barker's avatar
David Barker committed
1055
1056
1057
1058
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
  // leading to a significant speed improvement.
  // We also align the stride to a multiple of 16 bytes, for consistency
  // with the SIMD version of this function.
1059
  int buf_stride = ((width_ext + 3) & ~3) + 16;
1060
1061
1062
1063
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
  int32_t *A = A_;
  int32_t *B = B_;
1064
1065
#if MAX_RADIUS > 2
  const int num_stride = width_ext;
1066
  int8_t num_[RESTORATION_PROC_UNIT_PELS];
1067
  int8_t *num = num_ + SGRPROJ_BORDER_VERT * num_stride + SGRPROJ_BORDER_HORZ;
1068
#endif
1069
  int i, j;
1070

1071
1072
1073
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
         "Need SGRPROJ_BORDER_* >= r+1");
1074

1075
1076
1077
1078
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
1079
#if MAX_RADIUS > 2
1080
  boxnum(width_ext, height_ext, r, num_, num_stride);
1081
#endif
1082
1083
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
1084
1085
1086
1087
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
  for (i = -1; i < height + 1; ++i) {
    for (j = -1; j < width + 1; ++j) {
David Barker's avatar
David Barker committed
1088
      const int k = i * buf_stride + j;
1089
#if MAX_RADIUS > 2
1090
      const int n = num[i * num_stride + j];
1091
1092
1093
#else
      const int n = (2 * r + 1) * (2 * r + 1);
#endif
1094

1095
1096
1097
1098
1099
1100
1101
      // a < 2^16 * n < 2^22 regardless of bit depth
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
      // b < 2^8 * n < 2^14 regardless of bit depth
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);

      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
1102
1103
1104
      // This bound on p is due to:
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
      //
1105
1106
1107
1108
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
      // This is an artefact of rounding, and can only happen if all pixels
      // are (almost) identical, so in this case we saturate to p=0.
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
1109
1110
1111
1112
1113

      // Note: If MAX_RADIUS <= 2, then this 's' is a function only of
      // r and eps. Further, this is the only place we use 'eps', so we could
      // pre-calculate 's' for each parameter set and store that in place of
      // 'eps'.
1114
1115
1116
1117
1118
1119
1120
      uint32_t s = sgrproj_mtable[eps - 1][n - 1];

      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
      // (this holds even after accounting for the rounding in s)
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
      // Note: We have to be quite careful about the value of A[k].
      // This is used as a blend factor between individual pixel values and the
      // local mean. So it logically has a range of [0, 256], including both
      // endpoints.
      //
      // This is a pain for hardware, as we'd like something which can be stored
      // in exactly 8 bits.
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
      // slightly above 2^(8 + bit depth), due to rounding in the value of
      // one_by_x[25-1].
      //
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
      // overflow), without significantly affecting the final result: z == 0
      // implies that the image is essentially "flat", so the local mean and
      // individual pixel values are very similar.
      //
      // Note that saturating on the other side, ie. requring A[k] <= 255,
      // would be a bad idea, as that corresponds to the case where the image
      // is very variable, when we want to preserve the local pixel value as
      // much as possible.
      A[k] = x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]

      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
1146
1147
1148
      // one_by_x[n - 1] = round(2^12 / n)
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
      // and B[k] is set to a value < 2^(8 + bit depth)
1149
1150
      // This holds even with the rounding in one_by_x and in the overall
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
1151
1152
1153
1154
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
                                             (uint32_t)B[k] *
                                             (uint32_t)one_by_x[n - 1],
                                         SGRPROJ_RECIP_BITS);
1155
1156
    }
  }
1157
1158
1159
  // Use the A[] and B[] arrays to calculate the filtered image
  for (i = 0; i < height; ++i) {
    for (j = 0; j < width; ++j) {
David Barker's avatar
David Barker committed
1160
      const int k = i * buf_stride + j;
1161
1162
      const int l = i * dgd_stride + j;
      const int m = i * dst_stride + j;
1163
      const int nb = 5;
1164
      const int32_t a =
David Barker's avatar
David Barker committed
1165
1166
1167
1168
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
              4 +
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
1169
              3;
1170
      const int32_t b =
David Barker's avatar
David Barker committed
1171
1172
1173
1174
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
              4 +
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
1175
              3;
1176
      const int32_t v = a * dgd[l] + b;
1177
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
1178
1179
1180
1181
    }
  }
}

1182
void av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
1183
1184
1185
                                  int dgd_stride, int32_t *flt1, int32_t *flt2,
                                  int flt_stride, const sgr_params_type *params,
                                  int bit_depth, int highbd) {
1186
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
1187
1188
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
  int32_t *dgd32 =
1189
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
1190
1191
1192
1193
1194

  if (highbd) {
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
1195
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
1196
1197
1198
1199
1200
      }
    }
  } else {
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
1201
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
1202
      }
1203
1204
    }
  }
1205

1206
1207
1208
1209
1210
1211
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
                                      flt_stride, bit_depth, params->r1,
                                      params->e1);
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt2,
                                      flt_stride, bit_depth, params->r2,
                                      params->e2);
1212
1213
}

1214
void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height,
1215
                                    int stride, int eps, const int *xqd,
1216
1217
1218
                                    uint8_t *dst8, int dst_stride,
                                    int32_t *tmpbuf, int bit_depth,
                                    int highbd) {
1219
  int xq[2];
1220
  int32_t *flt1 = tmpbuf;
1221
  int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
1222
  assert(width * height <= RESTORATION_TILEPELS_MAX);
1223
1224
  av1_selfguided_restoration_c(dat8, width, height, stride, flt1, flt2, width,
                               &sgr_params[eps], bit_depth, highbd);
1225
  decode_xq(xqd, xq);
1226
1227
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
1228
      const int k = i * width + j;
1229
1230
1231
1232
1233
1234
1235
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
      const uint8_t *dat8ij = dat8 + i * stride + j;

      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
      const int32_t f1 = flt1[k] - u;
      const int32_t f2 = flt2[k] - u;
David Barker's avatar
David Barker committed
1236
      const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
1237
1238
      const int16_t w =
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
1239
1240
1241
1242
1243

      const uint16_t out = clip_pixel_highbd(w, bit_depth);
      if (highbd)
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
      else
Yaowu Xu's avatar
Yaowu Xu committed
1244
        *dst8ij = (uint8_t)out;
1245
1246
1247
1248
    }
  }
}

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
                                  int stripe_width, int stripe_height,
                                  int procunit_width, const uint8_t *src,
                                  int src_stride, uint8_t *dst, int dst_stride,
                                  int32_t *tmpbuf, int bit_depth) {
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, stripe_width - j);
    apply_selfguided_restoration(src + j, w, stripe_height, src_stride,
                                 rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
1261
                                 dst + j, dst_stride, tmpbuf, bit_depth, 0);
1262
1263
1264
  }
}

1265
#if CONFIG_HIGHBITDEPTH
1266
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
1267
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src_hip
1268
#else
1269
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src
Ola Hugosson's avatar