vp9_psnrhvs.c 9.96 KB
Newer Older
Jim Bankoski's avatar
Jim Bankoski committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 *
 *  This code was originally written by: Gregory Maxwell, at the Daala
 *  project.
 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/encoder/vp9_ssim.h"

#if !defined(M_PI)
# define M_PI (3.141592653589793238462643)
#endif
#include <string.h>

typedef int16_t od_coeff;
typedef int16_t tran_low_t;
extern void vp9_fdct8x8_c(const int16_t *input, tran_low_t *output, int stride);

void od_bin_fdct8x8(od_coeff *y, int ystride, const od_coeff *x, int xstride) {
  (void) xstride;
  vp9_fdct8x8_c(x, y, ystride);
}

/* Normalized inverse quantization matrix for 8x8 DCT at the point of
 * transparency. This is not the JPEG based matrix from the paper,
 this one gives a slightly higher MOS agreement.*/
float csf_y[8][8] = {{1.6193873005, 2.2901594831, 2.08509755623, 1.48366094411,
    1.00227514334, 0.678296995242, 0.466224900598, 0.3265091542}, {2.2901594831,
    1.94321815382, 2.04793073064, 1.68731108984, 1.2305666963, 0.868920337363,
    0.61280991668, 0.436405793551}, {2.08509755623, 2.04793073064,
    1.34329019223, 1.09205635862, 0.875748795257, 0.670882927016,
    0.501731932449, 0.372504254596}, {1.48366094411, 1.68731108984,
    1.09205635862, 0.772819797575, 0.605636379554, 0.48309405692,
    0.380429446972, 0.295774038565}, {1.00227514334, 1.2305666963,
    0.875748795257, 0.605636379554, 0.448996256676, 0.352889268808,
    0.283006984131, 0.226951348204}, {0.678296995242, 0.868920337363,
    0.670882927016, 0.48309405692, 0.352889268808, 0.27032073436,
    0.215017739696, 0.17408067321}, {0.466224900598, 0.61280991668,
    0.501731932449, 0.380429446972, 0.283006984131, 0.215017739696,
    0.168869545842, 0.136153931001}, {0.3265091542, 0.436405793551,
    0.372504254596, 0.295774038565, 0.226951348204, 0.17408067321,
    0.136153931001, 0.109083846276}};
float csf_cb420[8][8] = {
    {1.91113096927, 2.46074210438, 1.18284184739, 1.14982565193, 1.05017074788,
        0.898018824055, 0.74725392039, 0.615105596242}, {2.46074210438,
        1.58529308355, 1.21363250036, 1.38190029285, 1.33100189972,
        1.17428548929, 0.996404342439, 0.830890433625}, {1.18284184739,
        1.21363250036, 0.978712413627, 1.02624506078, 1.03145147362,
        0.960060382087, 0.849823426169, 0.731221236837}, {1.14982565193,
        1.38190029285, 1.02624506078, 0.861317501629, 0.801821139099,
        0.751437590932, 0.685398513368, 0.608694761374}, {1.05017074788,
        1.33100189972, 1.03145147362, 0.801821139099, 0.676555426187,
        0.605503172737, 0.55002013668, 0.495804539034}, {0.898018824055,
        1.17428548929, 0.960060382087, 0.751437590932, 0.605503172737,
        0.514674450957, 0.454353482512, 0.407050308965}, {0.74725392039,
        0.996404342439, 0.849823426169, 0.685398513368, 0.55002013668,
        0.454353482512, 0.389234902883, 0.342353999733}, {0.615105596242,
        0.830890433625, 0.731221236837, 0.608694761374, 0.495804539034,
        0.407050308965, 0.342353999733, 0.295530605237}};
float csf_cr420[8][8] = {
    {2.03871978502, 2.62502345193, 1.26180942886, 1.11019789803, 1.01397751469,
        0.867069376285, 0.721500455585, 0.593906509971}, {2.62502345193,
        1.69112867013, 1.17180569821, 1.3342742857, 1.28513006198,
        1.13381474809, 0.962064122248, 0.802254508198}, {1.26180942886,
        1.17180569821, 0.944981930573, 0.990876405848, 0.995903384143,
        0.926972725286, 0.820534991409, 0.706020324706}, {1.11019789803,
        1.3342742857, 0.990876405848, 0.831632933426, 0.77418706195,
        0.725539939514, 0.661776842059, 0.587716619023}, {1.01397751469,
        1.28513006198, 0.995903384143, 0.77418706195, 0.653238524286,
        0.584635025748, 0.531064164893, 0.478717061273}, {0.867069376285,
        1.13381474809, 0.926972725286, 0.725539939514, 0.584635025748,
        0.496936637883, 0.438694579826, 0.393021669543}, {0.721500455585,
        0.962064122248, 0.820534991409, 0.661776842059, 0.531064164893,
        0.438694579826, 0.375820256136, 0.330555063063}, {0.593906509971,
        0.802254508198, 0.706020324706, 0.587716619023, 0.478717061273,
        0.393021669543, 0.330555063063, 0.285345396658}};

static double convert_score_db(double _score, double _weight) {
  return 10 * (log10(255 * 255) - log10(_weight * _score));
}

static double calc_psnrhvs(const unsigned char *_src, int _systride,
                           const unsigned char *_dst, int _dystride,
                           double _par, int _w, int _h, int _step,
                           float _csf[8][8]) {
  float ret;
  od_coeff dct_s[8 * 8];
  od_coeff dct_d[8 * 8];
  float mask[8][8];
  int pixels;
  int x;
  int y;
  (void) _par;
  ret = pixels = 0;
  /*In the PSNR-HVS-M paper[1] the authors describe the construction of
   their masking table as "we have used the quantization table for the
   color component Y of JPEG [6] that has been also obtained on the
   basis of CSF. Note that the values in quantization table JPEG have
   been normalized and then squared." Their CSF matrix (from PSNR-HVS)
   was also constructed from the JPEG matrices. I can not find any obvious
   scheme of normalizing to produce their table, but if I multiply their
   CSF by 0.38857 and square the result I get their masking table.
   I have no idea where this constant comes from, but deviating from it
   too greatly hurts MOS agreement.

   [1] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian, Marco Carli,
   Jaakko Astola, Vladimir Lukin, "On between-coefficient contrast masking
   of DCT basis functions", CD-ROM Proceedings of the Third
   International Workshop on Video Processing and Quality Metrics for Consumer
   Electronics VPQM-07, Scottsdale, Arizona, USA, 25-26 January, 2007, 4 p.*/
  for (x = 0; x < 8; x++)
    for (y = 0; y < 8; y++)
      mask[x][y] = (_csf[x][y] * 0.3885746225901003)
          * (_csf[x][y] * 0.3885746225901003);
  for (y = 0; y < _h - 7; y += _step) {
    for (x = 0; x < _w - 7; x += _step) {
      int i;
      int j;
      float s_means[4];
      float d_means[4];
      float s_vars[4];
      float d_vars[4];
      float s_gmean = 0;
      float d_gmean = 0;
      float s_gvar = 0;
      float d_gvar = 0;
      float s_mask = 0;
      float d_mask = 0;
      for (i = 0; i < 4; i++)
        s_means[i] = d_means[i] = s_vars[i] = d_vars[i] = 0;
      for (i = 0; i < 8; i++) {
        for (j = 0; j < 8; j++) {
          int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
          dct_s[i * 8 + j] = _src[(y + i) * _systride + (j + x)];
          dct_d[i * 8 + j] = _dst[(y + i) * _dystride + (j + x)];
          s_gmean += dct_s[i * 8 + j];
          d_gmean += dct_d[i * 8 + j];
          s_means[sub] += dct_s[i * 8 + j];
          d_means[sub] += dct_d[i * 8 + j];
        }
      }
      s_gmean /= 64.f;
      d_gmean /= 64.f;
      for (i = 0; i < 4; i++)
        s_means[i] /= 16.f;
      for (i = 0; i < 4; i++)
        d_means[i] /= 16.f;
      for (i = 0; i < 8; i++) {
        for (j = 0; j < 8; j++) {
          int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
          s_gvar += (dct_s[i * 8 + j] - s_gmean) * (dct_s[i * 8 + j] - s_gmean);
          d_gvar += (dct_d[i * 8 + j] - d_gmean) * (dct_d[i * 8 + j] - d_gmean);
          s_vars[sub] += (dct_s[i * 8 + j] - s_means[sub])
              * (dct_s[i * 8 + j] - s_means[sub]);
          d_vars[sub] += (dct_d[i * 8 + j] - d_means[sub])
              * (dct_d[i * 8 + j] - d_means[sub]);
        }
      }
      s_gvar *= 1 / 63.f * 64;
      d_gvar *= 1 / 63.f * 64;
      for (i = 0; i < 4; i++)
        s_vars[i] *= 1 / 15.f * 16;
      for (i = 0; i < 4; i++)
        d_vars[i] *= 1 / 15.f * 16;
      if (s_gvar > 0)
        s_gvar = (s_vars[0] + s_vars[1] + s_vars[2] + s_vars[3]) / s_gvar;
      if (d_gvar > 0)
        d_gvar = (d_vars[0] + d_vars[1] + d_vars[2] + d_vars[3]) / d_gvar;
      od_bin_fdct8x8(dct_s, 8, dct_s, 8);
      od_bin_fdct8x8(dct_d, 8, dct_d, 8);
      for (i = 0; i < 8; i++)
        for (j = (i == 0); j < 8; j++)
          s_mask += dct_s[i * 8 + j] * dct_s[i * 8 + j] * mask[i][j];
      for (i = 0; i < 8; i++)
        for (j = (i == 0); j < 8; j++)
          d_mask += dct_d[i * 8 + j] * dct_d[i * 8 + j] * mask[i][j];
      s_mask = sqrt(s_mask * s_gvar) / 32.f;
      d_mask = sqrt(d_mask * d_gvar) / 32.f;
      if (d_mask > s_mask)
        s_mask = d_mask;
      for (i = 0; i < 8; i++) {
        for (j = 0; j < 8; j++) {
          float err;
          err = fabs(dct_s[i * 8 + j] - dct_d[i * 8 + j]);
          if (i != 0 || j != 0)
            err = err < s_mask / mask[i][j] ? 0 : err - s_mask / mask[i][j];
          ret += (err * _csf[i][j]) * (err * _csf[i][j]);
          pixels++;
        }
      }
    }
  }
  ret /= pixels;
  return ret;
}
double vp9_psnrhvs(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
                   double *y_psnrhvs, double *u_psnrhvs, double *v_psnrhvs) {
  double psnrhvs;
  double par = 1.0;
  int step = 7;
  vp9_clear_system_state();
  *y_psnrhvs = calc_psnrhvs(source->y_buffer, source->y_stride, dest->y_buffer,
                            dest->y_stride, par, source->y_crop_width,
                            source->y_crop_height, step, csf_y);

  *u_psnrhvs = calc_psnrhvs(source->u_buffer, source->uv_stride, dest->u_buffer,
                            dest->uv_stride, par, source->uv_crop_width,
                            source->uv_crop_height, step, csf_cb420);

  *v_psnrhvs = calc_psnrhvs(source->v_buffer, source->uv_stride, dest->v_buffer,
                            dest->uv_stride, par, source->uv_crop_width,
                            source->uv_crop_height, step, csf_cr420);
  psnrhvs = (*y_psnrhvs) * .8 + .1 * ((*u_psnrhvs) + (*v_psnrhvs));

  return convert_score_db(psnrhvs, 1.0);
}