restoration.c 75.8 KB
Newer Older
1
/*
Yaowu Xu's avatar
Yaowu Xu committed
2
3
4
5
6
7
8
9
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
11
12
13
14
 *
 */

#include <math.h>

Yaowu Xu's avatar
Yaowu Xu committed
15
16
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
17
#include "./aom_scale_rtcd.h"
Yaowu Xu's avatar
Yaowu Xu committed
18
#include "aom_mem/aom_mem.h"
19
#include "av1/common/onyxc_int.h"
20
21
22
#if CONFIG_FRAME_SUPERRES
#include "av1/common/resize.h"
#endif
23
#include "av1/common/restoration.h"
Yaowu Xu's avatar
Yaowu Xu committed
24
25
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
26

27
#include "aom_ports/mem.h"
28

29
const sgr_params_type sgr_params[SGRPROJ_PARAMS] = {
30
// r1, eps1, r2, eps2
31
#if MAX_RADIUS == 2
32
33
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
34
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 2, 30, 1, 6 },
35
36
  { 2, 50, 1, 12 }, { 2, 60, 1, 13 }, { 2, 70, 1, 14 }, { 2, 80, 1, 15 },
#else
37
38
39
40
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 },
  { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 },
41
#endif  // MAX_RADIUS == 2
42
43
};

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#if CONFIG_MAX_TILE
static void tile_width_and_height(const AV1_COMMON *cm, int is_uv, int sb_w,
                                  int sb_h, int *px_w, int *px_h) {
  const int scaled_sb_w = sb_w << MAX_MIB_SIZE_LOG2;
  const int scaled_sb_h = sb_h << MAX_MIB_SIZE_LOG2;

  const int ss_x = is_uv && cm->subsampling_x;
  const int ss_y = is_uv && cm->subsampling_y;

  *px_w = (scaled_sb_w + ss_x) >> ss_x;
  *px_h = (scaled_sb_h + ss_y) >> ss_y;
#if CONFIG_FRAME_SUPERRES
  if (!av1_superres_unscaled(cm)) {
    av1_calculate_unscaled_superres_size(px_w, px_h,
                                         cm->superres_scale_denominator);
  }
#endif  // CONFIG_FRAME_SUPERRES
}
#endif  // CONFIG_MAX_TILE

64
65
66
67
68
69
70
71
72
73
74
75
76
// Similar to av1_get_tile_rect(), except that we extend the bottommost tile in
// each frame to a multiple of 8 luma pixels.
// This is done to help simplify the implementation of striped-loop-restoration,
// by avoiding nasty edge cases which would otherwise appear when the (cropped)
// frame height is 57 or 63 (mod 64).
static AV1PixelRect get_ext_tile_rect(const TileInfo *tile_info,
                                      const AV1_COMMON *cm, int is_uv) {
  int ss_y = is_uv && cm->subsampling_y;
  AV1PixelRect tile_rect = av1_get_tile_rect(tile_info, cm, is_uv);
  tile_rect.bottom = ALIGN_POWER_OF_TWO(tile_rect.bottom, 3 - ss_y);
  return tile_rect;
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Count horizontal or vertical units per tile (use a width or height for
// tile_size, respectively). We basically want to divide the tile size by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a restoration
// unit.
static int count_units_in_tile(int unit_size, int tile_size) {
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
}

void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
                                  int is_uv) {
#if CONFIG_MAX_TILE
  // We need to allocate enough space for restoration units to cover the
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
93
  // top-left and we can use get_ext_tile_rect(). With CONFIG_MAX_TILE, we have
94
95
  // to do the computation ourselves, iterating over the tiles and keeping
  // track of the largest width and height, then upscaling.
96
97
  int max_sb_w = 0;
  int max_sb_h = 0;
98
  for (int i = 0; i < cm->tile_cols; ++i) {
99
100
    const int sb_w = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
    max_sb_w = AOMMAX(max_sb_w, sb_w);
101
102
  }
  for (int i = 0; i < cm->tile_rows; ++i) {
103
104
    const int sb_h = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i];
    max_sb_h = AOMMAX(max_sb_h, sb_h);
105
  }
106
107
108
109

  int max_tile_w, max_tile_h;
  tile_width_and_height(cm, is_uv, max_sb_w, max_sb_h, &max_tile_w,
                        &max_tile_h);
110
111
112
113
#else
  TileInfo tile_info;
  av1_tile_init(&tile_info, cm, 0, 0);

114
  const AV1PixelRect tile_rect = get_ext_tile_rect(&tile_info, cm, is_uv);
115
116
117
118
  assert(tile_rect.left == 0 && tile_rect.top == 0);

  const int max_tile_w = tile_rect.right;
  const int max_tile_h = tile_rect.bottom;
119
#endif  // CONFIG_MAX_TILE
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

  // To calculate hpertile and vpertile (horizontal and vertical units per
  // tile), we basically want to divide the largest tile width or height by the
  // size of a restoration unit. Rather than rounding up unconditionally as you
  // might expect, we round to nearest, which models the way a right or bottom
  // restoration unit can extend to up to 150% its normal width or height. The
  // max with 1 is to deal with tiles that are smaller than half of a
  // restoration unit.
  const int unit_size = rsi->restoration_unit_size;
  const int hpertile = count_units_in_tile(unit_size, max_tile_w);
  const int vpertile = count_units_in_tile(unit_size, max_tile_h);

  rsi->units_per_tile = hpertile * vpertile;
  rsi->horz_units_per_tile = hpertile;
  rsi->vert_units_per_tile = vpertile;

  const int ntiles = cm->tile_rows * cm->tile_cols;
  const int nunits = ntiles * rsi->units_per_tile;

  aom_free(rsi->unit_info);
140
141
142
  CHECK_MEM_ERROR(cm, rsi->unit_info,
                  (RestorationUnitInfo *)aom_memalign(
                      16, sizeof(*rsi->unit_info) * nunits));
143
144
145
}

void av1_free_restoration_struct(RestorationInfo *rst_info) {
146
147
  aom_free(rst_info->unit_info);
  rst_info->unit_info = NULL;
148
}
149
150
151

// TODO(debargha): This table can be substantially reduced since only a few
// values are actually used.
David Barker's avatar
David Barker committed
152
int sgrproj_mtable[MAX_EPS][MAX_NELEM];
153
154
155
156
157
158
159
160
161
162

static void GenSgrprojVtable() {
  int e, n;
  for (e = 1; e <= MAX_EPS; ++e)
    for (n = 1; n <= MAX_NELEM; ++n) {
      const int n2e = n * n * e;
      sgrproj_mtable[e - 1][n - 1] =
          (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
    }
}
163
164

void av1_loop_restoration_precal() { GenSgrprojVtable(); }
165

166
167
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
                               int border_horz, int border_vert) {
168
169
170
171
  uint8_t *data_p;
  int i;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
172
173
    memset(data_p - border_horz, data_p[0], border_horz);
    memset(data_p + width, data_p[width - 1], border_horz);
174
  }
175
176
177
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
178
  }
179
  for (i = height; i < height + border_vert; ++i) {
180
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
181
           width + 2 * border_horz);
182
183
184
  }
}

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#if CONFIG_HIGHBITDEPTH
static void extend_frame_highbd(uint16_t *data, int width, int height,
                                int stride, int border_horz, int border_vert) {
  uint16_t *data_p;
  int i, j;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
  }
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
  for (i = height; i < height + border_vert; ++i) {
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
}
#endif

void extend_frame(uint8_t *data, int width, int height, int stride,
                  int border_horz, int border_vert, int highbd) {
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
                        border_horz, border_vert);
  else
#endif
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
}

221
222
223
224
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
                            int src_stride, uint8_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
225
226
227
}

#if CONFIG_HIGHBITDEPTH
228
229
230
231
static void copy_tile_highbd(int width, int height, const uint16_t *src,
                             int src_stride, uint16_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
232
233
234
}
#endif

235
236
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
                      uint8_t *dst, int dst_stride, int highbd) {
237
238
239
240
241
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
242
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
243
244
245
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
  else
#endif
246
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
247
}
248

249
250
251
#if CONFIG_STRIPED_LOOP_RESTORATION
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))

252
253
254
255
256
257
258
259
260
261
262
263
// Helper function: Save one column of left/right context to the appropriate
// column buffers, then extend the edge of the current tile into that column.
//
// Note: The code to deal with above/below boundaries may have filled out
// the corners of the border with data from the tiles to our left or right,
// which isn't allowed. To fix that up, we need to include the top and
// bottom context regions in the area which we extend.
// But note that we don't need to store the pixels we overwrite in the
// corners of the context area - those have already been overwritten once,
// so their original values are already in rlbs->tmp_save_{above,below}.
#if CONFIG_LOOPFILTERING_ACROSS_TILES
static void setup_boundary_column(const uint8_t *src8, int src_stride,
264
265
                                  uint8_t *dst8, int dst_stride, uint16_t *buf,
                                  int h, int use_highbd) {
266
267
268
269
270
  if (use_highbd) {
    const uint16_t *src16 = CONVERT_TO_SHORTPTR(src8);
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst16[i * dst_stride] = src16[i * src_stride];
271
272
    for (int i = 0; i < h; i++) {
      buf[i] = dst16[i * dst_stride];
273
274
      dst16[i * dst_stride] = src16[i * src_stride];
    }
275
    for (int i = h; i < h + RESTORATION_BORDER; i++)
276
277
278
279
      dst16[i * dst_stride] = src16[i * src_stride];
  } else {
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst8[i * dst_stride] = src8[i * src_stride];
280
281
    for (int i = 0; i < h; i++) {
      buf[i] = dst8[i * dst_stride];
282
283
      dst8[i * dst_stride] = src8[i * src_stride];
    }
284
    for (int i = h; i < h + RESTORATION_BORDER; i++)
285
286
287
      dst8[i * dst_stride] = src8[i * src_stride];
  }
}
288
289
290
291
292
293
294
295
296
297
298

static void restore_boundary_column(uint8_t *dst8, int dst_stride,
                                    const uint16_t *buf, int h,
                                    int use_highbd) {
  if (use_highbd) {
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = 0; i < h; i++) dst16[i * dst_stride] = buf[i];
  } else {
    for (int i = 0; i < h; i++) dst8[i * dst_stride] = buf[i];
  }
}
299
300
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES

301
// With striped loop restoration, the filtering for each 64-pixel stripe gets
302
303
304
305
// most of its input from the output of CDEF (stored in data8), but we need to
// fill out a border of 3 pixels above/below the stripe according to the
// following
// rules:
306
//
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
//   This extension is done by a call to extend_frame() at the start of the loop
//   restoration process, so the value of copy_above/copy_below doesn't strictly
//   matter.
//   However, by setting *copy_above = *copy_below = 1 whenever loop filtering
//   across tiles is disabled, we can allow
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
//   data has always been copied, simplifying the behaviour at the left and
//   right edges of tiles.
//
// * If we're at a tile boundary and loop filtering across tiles is enabled,
//   then there is a logical stripe which is 64 pixels high, but which is split
//   into an 8px high and a 56px high stripe so that the processing (and
//   coefficient set usage) can be aligned to tiles.
//   In this case, we use the 3 rows of CDEF output across the boundary for
//   context; this corresponds to leaving the frame buffer as-is.
//
// * If we're at a tile boundary and loop filtering across tiles is disabled,
//   then we take the outermost row of CDEF pixels *within the current tile*
//   and copy it three times. Thus we behave exactly as if the tile were a full
//   frame.
//
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
//
// The distinction between the latter two cases is handled by the
// av1_loop_restoration_save_boundary_lines() function, so here we just need
// to decide if we're overwriting the above/below boundary pixels or not.
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
                                     const AV1PixelRect *tile_rect, int ss_y,
#if CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int *copy_above, int *copy_below) {
  *copy_above = 1;
  *copy_below = 1;

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (loop_filter_across_tiles_enabled) {
#endif
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
    const int rtile_offset = RESTORATION_TILE_OFFSET >> ss_y;

    const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
    const int this_stripe_height =
        full_stripe_height - (first_stripe_in_tile ? rtile_offset : 0);
    const int last_stripe_in_tile =
        (limits->v_start + this_stripe_height >= tile_rect->bottom);

    if (first_stripe_in_tile) *copy_above = 0;
    if (last_stripe_in_tile) *copy_below = 0;
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  }
#endif
}

// Overwrite the border pixels around a processing stripe so that the conditions
// listed above get_stripe_boundary_info() are preserved.
// We save the pixels which get overwritten into a temporary buffer, so that
// they can be restored by restore_processing_stripe_boundary() after we've
// processed the stripe.
368
369
//
// limits gives the rectangular limits of the remaining stripes for the current
370
371
// restoration unit. rsb is the stored stripe boundaries (taken from either
// deblock or CDEF output as necessary).
372
373
374
375
//
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
// the first stripe in this tile (needed to convert the tile-relative stripe
// index we get from limits into something we can look up in rsb).
376
static void setup_processing_stripe_boundary(
377
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
378
    int rsb_row, int use_highbd, int h,
379
#if CONFIG_LOOPFILTERING_ACROSS_TILES
380
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
381
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
382
383
    uint8_t *data8, int data_stride, RestorationLineBuffers *rlbs,
    int copy_above, int copy_below) {
384
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
385

386
387
388
  // Offsets within the line buffers. The buffer logically starts at column
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
  // has column x0 in the buffer.
389
  const int buf_stride = rsb->stripe_boundary_stride;
390
391
392
393
  const int buf_x0_off = limits->h_start;
  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
394

395
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
396

397
398
399
400
401
  // Replace RESTORATION_BORDER pixels above the top of the stripe
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  //
  // Special case: If we're at the top of a tile, which isn't on the topmost
  // tile row, and we're allowed to loop filter across tiles, then we have a
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
  // we want to leave the boundary alone!
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;

    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *buf = rsb->stripe_boundary_above + (buf_off << use_highbd);
      uint8_t *dst8 = data8_tl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_above
      memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
             REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
    }
421
  }
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
  // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
  // The second buffer row is repeated, so src_row gets the values 0, 1, 1
  // for i = 0, 1, 2.
  if (copy_below) {
    const int stripe_end = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;

    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *src = rsb->stripe_boundary_below + (buf_off << use_highbd);

      uint8_t *dst8 = data8_bl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_below
      memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
    }
440
  }
441

442
443
444
445
446
447
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // If loopfiltering across tiles is disabled, we need to check if we're at
    // the edge of the current tile column. If we are, we need to extend the
    // leftmost/rightmost column within the tile by 3 pixels, so that the output
    // doesn't depend on pixels from the next column over.
448
449
    // This applies to the top and bottom borders too, since those may have
    // been filled out with data from the tile to the top-left (etc.) of us.
450
451
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);
452

453
454
455
456
    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
        setup_boundary_column(dst8, data_stride, dst8 + j, data_stride,
457
458
                              rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                              use_highbd);
459
460
461
462
463
464
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
        setup_boundary_column(dst8 - 1, data_stride, dst8 + j, data_stride,
465
                              rlbs->tmp_save_right[j], h, use_highbd);
466
467
468
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
469
470
471
472
}

// This function restores the boundary lines modified by
// setup_processing_stripe_boundary.
473
static void restore_processing_stripe_boundary(
474
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
475
    int use_highbd, int h,
476
477
478
#if CONFIG_LOOPFILTERING_ACROSS_TILES
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
479
    uint8_t *data8, int data_stride, int copy_above, int copy_below) {
480
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
481
482
483
484

  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
485

486
487
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;

488
489
490
491
492
493
494
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      uint8_t *dst8 = data8_tl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8),
             rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
    }
495
  }
496

497
498
499
  if (copy_below) {
    const int stripe_bottom = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
500

501
502
    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
503

504
505
506
      uint8_t *dst8 = data8_bl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
    }
507
  }
508
509
510
511
512
513

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // Restore any pixels we overwrote at the left/right edge of this
    // processing unit
    // Note: We don't need to restore the corner pixels, even if we overwrote
514
515
516
    // them in the equivalent place in setup_processing_stripe_boundary:
    // Because !loop_filter_across_tiles_enabled => copy_above = copy_below = 1,
    // the corner pixels will already have been restored before we get here.
517
518
519
520
521
522
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);

    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
523
524
525
        restore_boundary_column(dst8 + j, data_stride,
                                rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                                use_highbd);
526
527
528
529
530
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
531
532
        restore_boundary_column(dst8 + j, data_stride, rlbs->tmp_save_right[j],
                                h, use_highbd);
533
534
535
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
536
537
538
}
#endif

539
540
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
#define wiener_convolve8_add_src aom_convolve8_add_src_hip
541
#else
542
#define wiener_convolve8_add_src aom_convolve8_add_src
543
544
#endif

545
546
547
548
549
550
551
552
553
554
555
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
                                 int stripe_width, int stripe_height,
                                 int procunit_width, const uint8_t *src,
                                 int src_stride, uint8_t *dst, int dst_stride,
                                 int32_t *tmpbuf, int bit_depth) {
  (void)tmpbuf;
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
556
557
558
    const uint8_t *src_p = src + j;
    uint8_t *dst_p = dst + j;
    wiener_convolve8_add_src(src_p, src_stride, dst_p, dst_stride,
559
                             rui->wiener_info.hfilter, 16,
560
                             rui->wiener_info.vfilter, 16, w, stripe_height);
561
  }
562
}
563

564
565
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
   over the input. The window is of size (2r + 1)x(2r + 1), and we
566
   specialize to r = 1, 2, 3. A default function is used for r > 3.
567
568
569
570
571
572
573
574
575
576
577
578
579
580

   Each loop follows the same format: We keep a window's worth of input
   in individual variables and select data out of that as appropriate.
*/
static void boxsum1(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c;

  // Vertical sum over 3-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
581

582
583
584
585
586
587
588
589
590
591
592
593
594
595
      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 1) * src_stride + j]
        // b = src[(i    ) * src_stride + j]
        // c = src[(i + 1) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
596
  } else {
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];

      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
  }

  // Horizontal sum over 3-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];

    dst[i * dst_stride] = a + b;
    for (j = 1; j < width - 2; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 1)]
      // b = src[i * src_stride + (j    )]
      // c = src[i * src_stride + (j + 1)]
      dst[i * dst_stride + j] = a + b + c;
      a = b;
      b = c;
      c = dst[i * dst_stride + (j + 2)];
    }
    dst[i * dst_stride + j] = a + b + c;
    dst[i * dst_stride + (j + 1)] = b + c;
  }
}

static void boxsum2(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e;

  // Vertical sum over 5-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 2) * src_stride + j]
        // b = src[(i - 1) * src_stride + j]
        // c = src[(i    ) * src_stride + j]
        // d = src[(i + 1) * src_stride + j]
        // e = src[(i + 2) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  }

  // Horizontal sum over 5-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];

    dst[i * dst_stride] = a + b + c;
    dst[i * dst_stride + 1] = a + b + c + d;
    for (j = 2; j < width - 3; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 2)]
      // b = src[i * src_stride + (j - 1)]
      // c = src[i * src_stride + (j    )]
      // d = src[i * src_stride + (j + 1)]
      // e = src[i * src_stride + (j + 2)]
      dst[i * dst_stride + j] = a + b + c + d + e;
      a = b;
      b = c;
      c = d;
      d = e;
      e = dst[i * dst_stride + (j + 3)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e;
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
    dst[i * dst_stride + (j + 2)] = c + d + e;
  }
}

723
#if MAX_RADIUS > 2
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
static void boxsum3(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e, f, g;

  // Vertical sum over 7-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[1 * src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];
      f = src[5 * src_stride + j];
      g = src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[1 * src_stride + j] * src[1 * src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
      f = src[5 * src_stride + j] * src[5 * src_stride + j];
      g = src[6 * src_stride + j] * src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  }

  // Horizontal sum over 7-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];
    f = dst[i * dst_stride + 5];
    g = dst[i * dst_stride + 6];

    dst[i * dst_stride] = a + b + c + d;
    dst[i * dst_stride + 1] = a + b + c + d + e;
    dst[i * dst_stride + 2] = a + b + c + d + e + f;
    for (j = 3; j < width - 4; ++j) {
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      a = b;
      b = c;
      c = d;
      d = e;
      e = f;
      f = g;
      g = dst[i * dst_stride + (j + 4)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e + f + g;
    dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g;
    dst[i * dst_stride + (j + 2)] = c + d + e + f + g;
    dst[i * dst_stride + (j + 3)] = d + e + f + g;
  }
}

// Generic version for any r. To be removed after experiments are done.
static void boxsumr(int32_t *src, int width, int height, int src_stride, int r,
                    int sqr, int32_t *dst, int dst_stride) {
  int32_t *tmp = aom_malloc(width * height * sizeof(*tmp));
  int tmp_stride = width;
  int i, j;
  if (sqr) {
    for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j];
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] +
            src[i * src_stride + j] * src[i * src_stride + j];
  } else {
    memcpy(tmp, src, sizeof(*tmp) * width);
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j];
  }
  for (i = 0; i <= r; ++i)
    memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride],
           sizeof(*tmp) * width);
  for (i = r + 1; i < height - r; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] =
          tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j];
  for (i = height - r; i < height; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] -
                                tmp[(i - r - 1) * tmp_stride + j];

  for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride];
  for (i = 0; i < height; ++i)
    for (j = 1; j < width; ++j)
      tmp[i * tmp_stride + j] =
          tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j];

  for (j = 0; j <= r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r];
  for (j = r + 1; j < width - r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1];
  for (j = width - r; j < width; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1];
  aom_free(tmp);
}
868
#endif  // MAX_RADIUS > 2
869

870
871
872
873
874
875
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
                   int sqr, int32_t *dst, int dst_stride) {
  if (r == 1)
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
  else if (r == 2)
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
876
#if MAX_RADIUS > 2
877
878
  else if (r == 3)
    boxsum3(src, width, height, src_stride, sqr, dst, dst_stride);
879
  else if (r > 3)
880
    boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride);
881
882
883
#endif  // MAX_RADIUS > 2
  else
    assert(0 && "Invalid value of r in self-guided filter");
884
885
}

886
#if MAX_RADIUS > 2
887
888
static void boxnum(int width, int height, int r, int8_t *num, int num_stride) {
  int i, j;
889
890
891
  for (i = 0; i <= r; ++i) {
    for (j = 0; j <= r; ++j) {
      num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j);
892
893
894
895
896
897
      num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + (width - 1 - j)] =
          num[i * num_stride + j];
    }
  }
898
899
  for (j = 0; j <= r; ++j) {
    const int val = (2 * r + 1) * (r + 1 + j);
900
901
902
903
904
    for (i = r + 1; i < height - r; ++i) {
      num[i * num_stride + j] = val;
      num[i * num_stride + (width - 1 - j)] = val;
    }
  }
905
906
  for (i = 0; i <= r; ++i) {
    const int val = (2 * r + 1) * (r + 1 + i);
907
908
909
910
911
912
913
    for (j = r + 1; j < width - r; ++j) {
      num[i * num_stride + j] = val;
      num[(height - 1 - i) * num_stride + j] = val;
    }
  }
  for (i = r + 1; i < height - r; ++i) {
    for (j = r + 1; j < width - r; ++j) {
914
      num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1);
915
916
917
    }
  }
}
918
#endif  // MAX_RADIUS > 2
919

920
void decode_xq(const int *xqd, int *xq) {
921
  xq[0] = xqd[0];
922
923
924
  xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
}

David Barker's avatar
David Barker committed
925
const int32_t x_by_xplus1[256] = {
926
927
928
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
  // instead of 0. See comments in av1_selfguided_restoration_internal() for why
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  256,
};

David Barker's avatar
David Barker committed
948
const int32_t one_by_x[MAX_NELEM] = {
949
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
950
951
952
953
954
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
#if MAX_RADIUS > 2
  158,  152,  146,  141,  137, 132, 128, 124, 120, 117, 114, 111, 108,
  105,  102,  100,  98,   95,  93,  91,  89,  87,  85,  84
#endif  // MAX_RADIUS > 2
955
956
};

957
static void av1_selfguided_restoration_internal(int32_t *dgd, int width,
958
959
                                                int height, int dgd_stride,
                                                int32_t *dst, int dst_stride,
960
                                                int bit_depth, int r, int eps) {
961
962
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
David Barker's avatar
David Barker committed
963
964
965
966
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
  // leading to a significant speed improvement.
  // We also align the stride to a multiple of 16 bytes, for consistency
  // with the SIMD version of this function.
967
  int buf_stride = ((width_ext + 3) & ~3) + 16;
968
969
970
971
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
  int32_t *A = A_;
  int32_t *B = B_;
972
973
#if MAX_RADIUS > 2
  const int num_stride = width_ext;
974
  int8_t num_[RESTORATION_PROC_UNIT_PELS];
975
  int8_t *num = num_ + SGRPROJ_BORDER_VERT * num_stride + SGRPROJ_BORDER_HORZ;
976
#endif
977
  int i, j;
978

979
980
981
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
         "Need SGRPROJ_BORDER_* >= r+1");
982

983
984
985
986
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
987
#if MAX_RADIUS > 2
988
  boxnum(width_ext, height_ext, r, num_, num_stride);
989
#endif
990
991
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
992
993
994
995
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
  for (i = -1; i < height + 1; ++i) {
    for (j = -1; j < width + 1; ++j) {
David Barker's avatar
David Barker committed
996
      const int k = i * buf_stride + j;
997
#if MAX_RADIUS > 2
998
      const int n = num[i * num_stride + j];
999
1000
1001
#else
      const int n = (2 * r + 1) * (2 * r + 1);
#endif
1002

1003
1004
1005
1006
1007
1008
1009
      // a < 2^16 * n < 2^22 regardless of bit depth
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
      // b < 2^8 * n < 2^14 regardless of bit depth
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);

      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
1010
1011
1012
      // This bound on p is due to:
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
      //
1013
1014
1015
1016
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
      // This is an artefact of rounding, and can only happen if all pixels
      // are (almost) identical, so in this case we saturate to p=0.
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
1017
1018
1019
1020
1021

      // Note: If MAX_RADIUS <= 2, then this 's' is a function only of
      // r and eps. Further, this is the only place we use 'eps', so we could
      // pre-calculate 's' for each parameter set and store that in place of
      // 'eps'.
1022
1023
1024
1025
1026
1027
1028
      uint32_t s = sgrproj_mtable[eps - 1][n - 1];

      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
      // (this holds even after accounting for the rounding in s)
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
      // Note: We have to be quite careful about the value of A[k].
      // This is used as a blend factor between individual pixel values and the
      // local mean. So it logically has a range of [0, 256], including both
      // endpoints.
      //
      // This is a pain for hardware, as we'd like something which can be stored
      // in exactly 8 bits.
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
      // slightly above 2^(8 + bit depth), due to rounding in the value of
      // one_by_x[25-1].
      //
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
      // overflow), without significantly affecting the final result: z == 0
      // implies that the image is essentially "flat", so the local mean and
      // individual pixel values are very similar.
      //
      // Note that saturating on the other side, ie. requring A[k] <= 255,
      // would be a bad idea, as that corresponds to the case where the image
      // is very variable, when we want to preserve the local pixel value as
      // much as possible.
      A[k] = x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]

      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
1054
1055
1056
      // one_by_x[n - 1] = round(2^12 / n)
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
      // and B[k] is set to a value < 2^(8 + bit depth)
1057
1058
      // This holds even with the rounding in one_by_x and in the overall
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
1059
1060
1061
1062
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
                                             (uint32_t)B[k] *
                                             (uint32_t)one_by_x[n - 1],
                                         SGRPROJ_RECIP_BITS);
1063
1064
    }
  }
1065
1066
1067
  // Use the A[] and B[] arrays to calculate the filtered image
  for (i = 0; i < height; ++i) {
    for (j = 0; j < width; ++j) {
David Barker's avatar
David Barker committed
1068
      const int k = i * buf_stride + j;
1069
1070
      const int l = i * dgd_stride + j;
      const int m = i * dst_stride + j;
1071
      const int nb = 5;
1072
      const int32_t a =
David Barker's avatar
David Barker committed
1073
1074
1075
1076
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
              4 +
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
1077
              3;
1078
      const int32_t b =
David Barker's avatar
David Barker committed
1079
1080
1081
1082
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
              4 +
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
1083
              3;
1084
      const int32_t v = a * dgd[l] + b;
1085
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
1086
1087
1088
1089
    }
  }
}

1090
void av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
1091
1092
1093
                                  int dgd_stride, int32_t *flt1, int32_t *flt2,
                                  int flt_stride, const sgr_params_type *params,
                                  int bit_depth, int highbd) {
1094
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
1095
1096
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
  int32_t *dgd32 =
1097
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
1098
1099
1100
1101
1102

  if (highbd) {
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
1103
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
1104
1105
1106
1107
1108
      }
    }
  } else {
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
1109
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
1110
      }
1111
1112
    }
  }
1113

1114
1115
1116
1117
1118
1119
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
                                      flt_stride, bit_depth, params->r1,
                                      params->e1);
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt2,
                                      flt_stride, bit_depth, params->r2,
                                      params->e2);
1120
1121
}

1122
void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height,
1123
                                    int stride, int eps, const int *xqd,
1124
1125
1126
                                    uint8_t *dst8, int dst_stride,
                                    int32_t *tmpbuf, int bit_depth,
                                    int highbd) {
1127
  int xq[2];
1128
  int32_t *flt1 = tmpbuf;
1129
  int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
1130
  assert(width * height <= RESTORATION_TILEPELS_MAX);
1131
1132
  av1_selfguided_restoration_c(dat8, width, height, stride, flt1, flt2, width,
                               &sgr_params[eps], bit_depth, highbd);
1133
  decode_xq(xqd, xq);
1134
1135
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
1136
      const int k = i * width + j;
1137
1138
1139
1140
1141
1142
1143
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
      const uint8_t *dat8ij = dat8 + i * stride + j;

      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
      const int32_t f1 = flt1[k] - u;
      const int32_t f2 = flt2[k] - u;
David Barker's avatar
David Barker committed
1144
      const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
1145
1146
      const int16_t w =
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
1147
1148
1149
1150
1151
1152

      const uint16_t out = clip_pixel_highbd(w, bit_depth);
      if (highbd)
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
      else
        *dst8ij = out;
1153
1154
1155
1156
    }
  }
}

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
                                  int stripe_width, int stripe_height,
                                  int procunit_width, const uint8_t *src,
                                  int src_stride, uint8_t *dst, int dst_stride,
                                  int32_t *tmpbuf, int bit_depth) {
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, stripe_width - j);
    apply_selfguided_restoration(src + j, w, stripe_height, src_stride,
                                 rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
1169
                                 dst + j, dst_stride, tmpbuf, bit_depth, 0);
1170
1171
1172
  }
}

1173
#if CONFIG_HIGHBITDEPTH
1174
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
1175
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src_hip
1176
#else
1177
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src
1178
#endif
1179

1180
1181
1182
static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
                                        int stripe_width, int stripe_height,
                                        int procunit_width, const uint8_t *src8,
1183
                                        int src_stride, uint8_t *dst8,
1184
1185
1186
1187
1188
1189
                                        int dst_stride, int32_t *tmpbuf,
                                        int bit_depth) {
  (void)tmpbuf;

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
1190
1191
    const uint8_t *src8_p = src8 + j;
    uint8_t *dst8_p = dst8 + j;
1192
1193
    wiener_highbd_convolve8_add_src(
        src8_p, src_stride, dst8_p, dst_stride, rui->wiener_info.hfilter, 16,
1194
        rui->wiener_info.vfilter, 16, w, stripe_height, bit_depth);
1195
  }
1196
1197
}

1198
1199
1200
1201
1202
1203
1204
1205
static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui,
                                         int stripe_width, int stripe_height,
                                         int procunit_width,
                                         const uint8_t *src8, int src_stride,
                                         uint8_t *dst8, int dst_stride,
                                         int32_t *tmpbuf, int bit_depth) {
  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, stripe_width - j);
1206
1207
1208
    apply_selfguided_restoration(src8 + j, w, stripe_height, src_stride,
                                 rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
                                 dst8 + j, dst_stride, tmpbuf, bit_depth, 1);
1209
1210
1211
1212
  }
}
#endif  // CONFIG_HIGHBITDEPTH

1213
1214
1215
1216
1217
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
                                  int stripe_width, int stripe_height,
                                  int procunit_width, const uint8_t *src,
                                  int src_stride, uint8_t *dst, int dst_stride,
                                  int32_t *tmpbuf, int bit_depth);
1218
1219
1220

#if CONFIG_HIGHBITDEPTH
#define NUM_STRIPE_FILTERS 4
1221
#else
1222
#define NUM_STRIPE_FILTERS 2
1223
#endif
1224
1225
1226
1227
1228
1229
1230
1231

static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
  wiener_filter_stripe, sgrproj_filter_stripe,
#if CONFIG_HIGHBITDEPTH
  wiener_filter_stripe_highbd, sgrproj_filter_stripe_highbd
#endif  // CONFIG_HIGHBITDEPTH
};

1232
// Filter one restoration unit
1233
1234
void av1_loop_restoration_filter_unit(
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
1235
#if CONFIG_STRIPED_LOOP_RESTORATION
1236
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
1237
    const AV1PixelRect *tile_rect, int tile_stripe0,
1238
1239
1240
1241
#if CONFIG_LOOPFILTERING_ACROSS_TILES
    int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
#endif  // CONFIG_STRIPED_LOOP_RESTORATION
1242
1243
    int ss_x, int ss_y, int highbd, int bit_depth, uint8_t *data8, int stride,
    uint8_t *dst8, int dst_stride, int32_t *tmpbuf) {
1244
1245
1246
1247
1248
1249
1250
1251
1252
  RestorationType unit_rtype = rui->restoration_type;

  int unit_h = limits->v_end - limits->v_start;
  int unit_w = limits->h_end - limits->h_start;
  uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
  uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->