vp9_entropy.c 31.6 KB
Newer Older
1
/*
2
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
John Koleszar's avatar
John Koleszar committed
3
 *
4
 *  Use of this source code is governed by a BSD-style license
5
6
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
7
 *  in the file PATENTS.  All contributing project authors may
8
 *  be found in the AUTHORS file in the root of the source tree.
John Koleszar's avatar
John Koleszar committed
9
10
 */

11
12
13
14
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_entropymode.h"
15
#include "vpx_mem/vpx_mem.h"
16
#include "vpx/vpx_integer.h"
John Koleszar's avatar
John Koleszar committed
17

18
19
#define MODEL_NODES (ENTROPY_NODES - UNCONSTRAINED_NODES)

20
DECLARE_ALIGNED(16, const uint8_t, vp9_norm[256]) = {
John Koleszar's avatar
John Koleszar committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
37
38
};

Paul Wilkins's avatar
Paul Wilkins committed
39
40
41
42
43
44
45
46
DECLARE_ALIGNED(16, const uint8_t,
                vp9_coefband_trans_8x8plus[MAXBAND_INDEX + 1]) = {
  0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
  4, 4, 4, 4, 4, 5
};

DECLARE_ALIGNED(16, const uint8_t,
                vp9_coefband_trans_4x4[MAXBAND_INDEX + 1]) = {
Paul Wilkins's avatar
Paul Wilkins committed
47
48
  0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
  5, 5, 5, 5, 5, 5
Paul Wilkins's avatar
Paul Wilkins committed
49
50
};

51
52
DECLARE_ALIGNED(16, const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]) = {
  0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
Deb Mukherjee's avatar
Deb Mukherjee committed
53
};
54

55
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_4x4[16]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
56
57
58
59
60
61
  0,  4,  1,  5,
  8,  2, 12,  9,
  3,  6, 13, 10,
  7, 14, 11, 15,
};

62
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_4x4[16]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
63
64
65
66
67
68
  0,  4,  8,  1,
  12,  5,  9,  2,
  13,  6, 10,  3,
  7, 14, 11, 15,
};

69
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_4x4[16]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
70
71
72
73
74
75
  0,  1,  4,  2,
  5,  3,  6,  8,
  9,  7, 12, 10,
  13, 11, 14, 15,
};

76
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_8x8[64]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
77
78
79
80
81
82
83
84
85
86
  0,  8,  1, 16,  9,  2, 17, 24,
  10,  3, 18, 25, 32, 11,  4, 26,
  33, 19, 40, 12, 34, 27,  5, 41,
  20, 48, 13, 35, 42, 28, 21,  6,
  49, 56, 36, 43, 29,  7, 14, 50,
  57, 44, 22, 37, 15, 51, 58, 30,
  45, 23, 52, 59, 38, 31, 60, 53,
  46, 39, 61, 54, 47, 62, 55, 63,
};

87
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_8x8[64]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
88
89
90
91
92
93
94
95
96
97
  0,  8, 16,  1, 24,  9, 32, 17,
  2, 40, 25, 10, 33, 18, 48,  3,
  26, 41, 11, 56, 19, 34,  4, 49,
  27, 42, 12, 35, 20, 57, 50, 28,
  5, 43, 13, 36, 58, 51, 21, 44,
  6, 29, 59, 37, 14, 52, 22,  7,
  45, 60, 30, 15, 38, 53, 23, 46,
  31, 61, 39, 54, 47, 62, 55, 63,
};

98
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_8x8[64]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
99
100
101
102
103
104
105
106
107
108
  0,  1,  2,  8,  9,  3, 16, 10,
  4, 17, 11, 24,  5, 18, 25, 12,
  19, 26, 32,  6, 13, 20, 33, 27,
  7, 34, 40, 21, 28, 41, 14, 35,
  48, 42, 29, 36, 49, 22, 43, 15,
  56, 37, 50, 44, 30, 57, 23, 51,
  58, 45, 38, 52, 31, 59, 53, 46,
  60, 39, 61, 47, 54, 55, 62, 63,
};

109
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_16x16[256]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  0,  16,   1,  32,  17,   2,  48,  33,  18,   3,  64,  34,  49,  19,  65,  80,
  50,   4,  35,  66,  20,  81,  96,  51,   5,  36,  82,  97,  67, 112,  21,  52,
  98,  37,  83, 113,   6,  68, 128,  53,  22,  99, 114,  84,   7, 129,  38,  69,
  100, 115, 144, 130,  85,  54,  23,   8, 145,  39,  70, 116, 101, 131, 160, 146,
  55,  86,  24,  71, 132, 117, 161,  40,   9, 102, 147, 176, 162,  87,  56,  25,
  133, 118, 177, 148,  72, 103,  41, 163,  10, 192, 178,  88,  57, 134, 149, 119,
  26, 164,  73, 104, 193,  42, 179, 208,  11, 135,  89, 165, 120, 150,  58, 194,
  180,  27,  74, 209, 105, 151, 136,  43,  90, 224, 166, 195, 181, 121, 210,  59,
  12, 152, 106, 167, 196,  75, 137, 225, 211, 240, 182, 122,  91,  28, 197,  13,
  226, 168, 183, 153,  44, 212, 138, 107, 241,  60,  29, 123, 198, 184, 227, 169,
  242,  76, 213, 154,  45,  92,  14, 199, 139,  61, 228, 214, 170, 185, 243, 108,
  77, 155,  30,  15, 200, 229, 124, 215, 244,  93,  46, 186, 171, 201, 109, 140,
  230,  62, 216, 245,  31, 125,  78, 156, 231,  47, 187, 202, 217,  94, 246, 141,
  63, 232, 172, 110, 247, 157,  79, 218, 203, 126, 233, 188, 248,  95, 173, 142,
  219, 111, 249, 234, 158, 127, 189, 204, 250, 235, 143, 174, 220, 205, 159, 251,
  190, 221, 175, 236, 237, 191, 206, 252, 222, 253, 207, 238, 223, 254, 239, 255,
};

128
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_16x16[256]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  0,  16,  32,  48,   1,  64,  17,  80,  33,  96,  49,   2,  65, 112,  18,  81,
  34, 128,  50,  97,   3,  66, 144,  19, 113,  35,  82, 160,  98,  51, 129,   4,
  67, 176,  20, 114, 145,  83,  36,  99, 130,  52, 192,   5, 161,  68, 115,  21,
  146,  84, 208, 177,  37, 131, 100,  53, 162, 224,  69,   6, 116, 193, 147,  85,
  22, 240, 132,  38, 178, 101, 163,  54, 209, 117,  70,   7, 148, 194,  86, 179,
  225,  23, 133,  39, 164,   8, 102, 210, 241,  55, 195, 118, 149,  71, 180,  24,
  87, 226, 134, 165, 211,  40, 103,  56,  72, 150, 196, 242, 119,   9, 181, 227,
  88, 166,  25, 135,  41, 104, 212,  57, 151, 197, 120,  73, 243, 182, 136, 167,
  213,  89,  10, 228, 105, 152, 198,  26,  42, 121, 183, 244, 168,  58, 137, 229,
  74, 214,  90, 153, 199, 184,  11, 106, 245,  27, 122, 230, 169,  43, 215,  59,
  200, 138, 185, 246,  75,  12,  91, 154, 216, 231, 107,  28,  44, 201, 123, 170,
  60, 247, 232,  76, 139,  13,  92, 217, 186, 248, 155, 108,  29, 124,  45, 202,
  233, 171,  61,  14,  77, 140,  15, 249,  93,  30, 187, 156, 218,  46, 109, 125,
  62, 172,  78, 203,  31, 141, 234,  94,  47, 188,  63, 157, 110, 250, 219,  79,
  126, 204, 173, 142,  95, 189, 111, 235, 158, 220, 251, 127, 174, 143, 205, 236,
  159, 190, 221, 252, 175, 206, 237, 191, 253, 222, 238, 207, 254, 223, 239, 255,
};

147
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_16x16[256]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
  0,   1,   2,  16,   3,  17,   4,  18,  32,   5,  33,  19,   6,  34,  48,  20,
  49,   7,  35,  21,  50,  64,   8,  36,  65,  22,  51,  37,  80,   9,  66,  52,
  23,  38,  81,  67,  10,  53,  24,  82,  68,  96,  39,  11,  54,  83,  97,  69,
  25,  98,  84,  40, 112,  55,  12,  70,  99, 113,  85,  26,  41,  56, 114, 100,
  13,  71, 128,  86,  27, 115, 101, 129,  42,  57,  72, 116,  14,  87, 130, 102,
  144,  73, 131, 117,  28,  58,  15,  88,  43, 145, 103, 132, 146, 118,  74, 160,
  89, 133, 104,  29,  59, 147, 119,  44, 161, 148,  90, 105, 134, 162, 120, 176,
  75, 135, 149,  30,  60, 163, 177,  45, 121,  91, 106, 164, 178, 150, 192, 136,
  165, 179,  31, 151, 193,  76, 122,  61, 137, 194, 107, 152, 180, 208,  46, 166,
  167, 195,  92, 181, 138, 209, 123, 153, 224, 196,  77, 168, 210, 182, 240, 108,
  197,  62, 154, 225, 183, 169, 211,  47, 139,  93, 184, 226, 212, 241, 198, 170,
  124, 155, 199,  78, 213, 185, 109, 227, 200,  63, 228, 242, 140, 214, 171, 186,
  156, 229, 243, 125,  94, 201, 244, 215, 216, 230, 141, 187, 202,  79, 172, 110,
  157, 245, 217, 231,  95, 246, 232, 126, 203, 247, 233, 173, 218, 142, 111, 158,
  188, 248, 127, 234, 219, 249, 189, 204, 143, 174, 159, 250, 235, 205, 220, 175,
  190, 251, 221, 191, 206, 236, 207, 237, 252, 222, 253, 223, 238, 239, 254, 255,
};

166
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_32x32[1024]) = {
Ronald S. Bultje's avatar
Ronald S. Bultje committed
167
168
169
170
171
  0,   32,    1,   64,   33,    2,   96,   65,   34,  128,    3,   97,   66,  160,  129,   35,   98,    4,   67,  130,  161,  192,   36,   99,  224,    5,  162,  193,   68,  131,   37,  100,
  225,  194,  256,  163,   69,  132,    6,  226,  257,  288,  195,  101,  164,   38,  258,    7,  227,  289,  133,  320,   70,  196,  165,  290,  259,  228,   39,  321,  102,  352,    8,  197,
  71,  134,  322,  291,  260,  353,  384,  229,  166,  103,   40,  354,  323,  292,  135,  385,  198,  261,   72,    9,  416,  167,  386,  355,  230,  324,  104,  293,   41,  417,  199,  136,
  262,  387,  448,  325,  356,   10,   73,  418,  231,  168,  449,  294,  388,  105,  419,  263,   42,  200,  357,  450,  137,  480,   74,  326,  232,   11,  389,  169,  295,  420,  106,  451,
  481,  358,  264,  327,  201,   43,  138,  512,  482,  390,  296,  233,  170,  421,   75,  452,  359,   12,  513,  265,  483,  328,  107,  202,  514,  544,  422,  391,  453,  139,   44,  234,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  484,  297,  360,  171,   76,  515,  545,  266,  329,  454,   13,  423,  203,  108,  546,  485,  576,  298,  235,  140,  361,  330,  172,  547,   45,  455,  267,  577,  486,   77,  204,  362,
  608,   14,  299,  578,  109,  236,  487,  609,  331,  141,  579,   46,   15,  173,  610,  363,   78,  205,   16,  110,  237,  611,  142,   47,  174,   79,  206,   17,  111,  238,   48,  143,
  80,  175,  112,  207,   49,   18,  239,   81,  113,   19,   50,   82,  114,   51,   83,  115,  640,  516,  392,  268,  144,   20,  672,  641,  548,  517,  424,  393,  300,  269,  176,  145,
  52,   21,  704,  673,  642,  580,  549,  518,  456,  425,  394,  332,  301,  270,  208,  177,  146,   84,   53,   22,  736,  705,  674,  643,  612,  581,  550,  519,  488,  457,  426,  395,
  364,  333,  302,  271,  240,  209,  178,  147,  116,   85,   54,   23,  737,  706,  675,  613,  582,  551,  489,  458,  427,  365,  334,  303,  241,  210,  179,  117,   86,   55,  738,  707,
  614,  583,  490,  459,  366,  335,  242,  211,  118,   87,  739,  615,  491,  367,  243,  119,  768,  644,  520,  396,  272,  148,   24,  800,  769,  676,  645,  552,  521,  428,  397,  304,
  273,  180,  149,   56,   25,  832,  801,  770,  708,  677,  646,  584,  553,  522,  460,  429,  398,  336,  305,  274,  212,  181,  150,   88,   57,   26,  864,  833,  802,  771,  740,  709,
  678,  647,  616,  585,  554,  523,  492,  461,  430,  399,  368,  337,  306,  275,  244,  213,  182,  151,  120,   89,   58,   27,  865,  834,  803,  741,  710,  679,  617,  586,  555,  493,
  462,  431,  369,  338,  307,  245,  214,  183,  121,   90,   59,  866,  835,  742,  711,  618,  587,  494,  463,  370,  339,  246,  215,  122,   91,  867,  743,  619,  495,  371,  247,  123,
  896,  772,  648,  524,  400,  276,  152,   28,  928,  897,  804,  773,  680,  649,  556,  525,  432,  401,  308,  277,  184,  153,   60,   29,  960,  929,  898,  836,  805,  774,  712,  681,
  650,  588,  557,  526,  464,  433,  402,  340,  309,  278,  216,  185,  154,   92,   61,   30,  992,  961,  930,  899,  868,  837,  806,  775,  744,  713,  682,  651,  620,  589,  558,  527,
  496,  465,  434,  403,  372,  341,  310,  279,  248,  217,  186,  155,  124,   93,   62,   31,  993,  962,  931,  869,  838,  807,  745,  714,  683,  621,  590,  559,  497,  466,  435,  373,
  342,  311,  249,  218,  187,  125,   94,   63,  994,  963,  870,  839,  746,  715,  622,  591,  498,  467,  374,  343,  250,  219,  126,   95,  995,  871,  747,  623,  499,  375,  251,  127,
  900,  776,  652,  528,  404,  280,  156,  932,  901,  808,  777,  684,  653,  560,  529,  436,  405,  312,  281,  188,  157,  964,  933,  902,  840,  809,  778,  716,  685,  654,  592,  561,
  530,  468,  437,  406,  344,  313,  282,  220,  189,  158,  996,  965,  934,  903,  872,  841,  810,  779,  748,  717,  686,  655,  624,  593,  562,  531,  500,  469,  438,  407,  376,  345,
  314,  283,  252,  221,  190,  159,  997,  966,  935,  873,  842,  811,  749,  718,  687,  625,  594,  563,  501,  470,  439,  377,  346,  315,  253,  222,  191,  998,  967,  874,  843,  750,
  719,  626,  595,  502,  471,  378,  347,  254,  223,  999,  875,  751,  627,  503,  379,  255,  904,  780,  656,  532,  408,  284,  936,  905,  812,  781,  688,  657,  564,  533,  440,  409,
  316,  285,  968,  937,  906,  844,  813,  782,  720,  689,  658,  596,  565,  534,  472,  441,  410,  348,  317,  286, 1000,  969,  938,  907,  876,  845,  814,  783,  752,  721,  690,  659,
  628,  597,  566,  535,  504,  473,  442,  411,  380,  349,  318,  287, 1001,  970,  939,  877,  846,  815,  753,  722,  691,  629,  598,  567,  505,  474,  443,  381,  350,  319, 1002,  971,
  878,  847,  754,  723,  630,  599,  506,  475,  382,  351, 1003,  879,  755,  631,  507,  383,  908,  784,  660,  536,  412,  940,  909,  816,  785,  692,  661,  568,  537,  444,  413,  972,
  941,  910,  848,  817,  786,  724,  693,  662,  600,  569,  538,  476,  445,  414, 1004,  973,  942,  911,  880,  849,  818,  787,  756,  725,  694,  663,  632,  601,  570,  539,  508,  477,
  446,  415, 1005,  974,  943,  881,  850,  819,  757,  726,  695,  633,  602,  571,  509,  478,  447, 1006,  975,  882,  851,  758,  727,  634,  603,  510,  479, 1007,  883,  759,  635,  511,
  912,  788,  664,  540,  944,  913,  820,  789,  696,  665,  572,  541,  976,  945,  914,  852,  821,  790,  728,  697,  666,  604,  573,  542, 1008,  977,  946,  915,  884,  853,  822,  791,
  760,  729,  698,  667,  636,  605,  574,  543, 1009,  978,  947,  885,  854,  823,  761,  730,  699,  637,  606,  575, 1010,  979,  886,  855,  762,  731,  638,  607, 1011,  887,  763,  639,
  916,  792,  668,  948,  917,  824,  793,  700,  669,  980,  949,  918,  856,  825,  794,  732,  701,  670, 1012,  981,  950,  919,  888,  857,  826,  795,  764,  733,  702,  671, 1013,  982,
  951,  889,  858,  827,  765,  734,  703, 1014,  983,  890,  859,  766,  735, 1015,  891,  767,  920,  796,  952,  921,  828,  797,  984,  953,  922,  860,  829,  798, 1016,  985,  954,  923,
  892,  861,  830,  799, 1017,  986,  955,  893,  862,  831, 1018,  987,  894,  863, 1019,  895,  924,  956,  925,  988,  957,  926, 1020,  989,  958,  927, 1021,  990,  959, 1022,  991, 1023,
Ronald S. Bultje's avatar
Ronald S. Bultje committed
199
};
John Koleszar's avatar
John Koleszar committed
200
201
202

/* Array indices are identical to previously-existing CONTEXT_NODE indices */

203
const vp9_tree_index vp9_coef_tree[ 22] =     /* corresponding _CONTEXT_NODEs */
John Koleszar's avatar
John Koleszar committed
204
{
205
206
207
208
209
  -DCT_EOB_TOKEN, 2,                          /* 0 = EOB */
  -ZERO_TOKEN, 4,                             /* 1 = ZERO */
  -ONE_TOKEN, 6,                              /* 2 = ONE */
  8, 12,                                      /* 3 = LOW_VAL */
  -TWO_TOKEN, 10,                            /* 4 = TWO */
John Koleszar's avatar
John Koleszar committed
210
  -THREE_TOKEN, -FOUR_TOKEN,                /* 5 = THREE */
211
  14, 16,                                   /* 6 = HIGH_LOW */
John Koleszar's avatar
John Koleszar committed
212
213
  -DCT_VAL_CATEGORY1, -DCT_VAL_CATEGORY2,   /* 7 = CAT_ONE */
  18, 20,                                   /* 8 = CAT_THREEFOUR */
214
215
  -DCT_VAL_CATEGORY3, -DCT_VAL_CATEGORY4,   /* 9 = CAT_THREE */
  -DCT_VAL_CATEGORY5, -DCT_VAL_CATEGORY6    /* 10 = CAT_FIVE */
John Koleszar's avatar
John Koleszar committed
216
217
};

218
struct vp9_token vp9_coef_encodings[MAX_ENTROPY_TOKENS];
John Koleszar's avatar
John Koleszar committed
219
220
221
222

/* Trees for extra bits.  Probabilities are constant and
   do not depend on previously encoded bits */

223
224
225
226
227
228
static const vp9_prob Pcat1[] = { 159};
static const vp9_prob Pcat2[] = { 165, 145};
static const vp9_prob Pcat3[] = { 173, 148, 140};
static const vp9_prob Pcat4[] = { 176, 155, 140, 135};
static const vp9_prob Pcat5[] = { 180, 157, 141, 134, 130};
static const vp9_prob Pcat6[] = {
229
230
  254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
};
John Koleszar's avatar
John Koleszar committed
231

232
233
234
const vp9_tree_index vp9_coefmodel_tree[6] = {
  -DCT_EOB_MODEL_TOKEN, 2,                      /* 0 = EOB */
  -ZERO_TOKEN, 4,                               /* 1 = ZERO */
235
  -ONE_TOKEN, -TWO_TOKEN,
236
237
};

238
239
240
241
242
243
244
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
245
246

// beta = 8
247
static const vp9_prob modelcoefprobs_pareto8[COEFPROB_MODELS][MODEL_NODES] = {
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  {  3,  86, 128,   6,  86,  23,  88,  29},
  {  9,  86, 129,  17,  88,  61,  94,  76},
  { 15,  87, 129,  28,  89,  93, 100, 110},
  { 20,  88, 130,  38,  91, 118, 106, 136},
  { 26,  89, 131,  48,  92, 139, 111, 156},
  { 31,  90, 131,  58,  94, 156, 117, 171},
  { 37,  90, 132,  66,  95, 171, 122, 184},
  { 42,  91, 132,  75,  97, 183, 127, 194},
  { 47,  92, 133,  83,  98, 193, 132, 202},
  { 52,  93, 133,  90, 100, 201, 137, 208},
  { 57,  94, 134,  98, 101, 208, 142, 214},
  { 62,  94, 135, 105, 103, 214, 146, 218},
  { 66,  95, 135, 111, 104, 219, 151, 222},
  { 71,  96, 136, 117, 106, 224, 155, 225},
  { 76,  97, 136, 123, 107, 227, 159, 228},
  { 80,  98, 137, 129, 109, 231, 162, 231},
  { 84,  98, 138, 134, 110, 234, 166, 233},
  { 89,  99, 138, 140, 112, 236, 170, 235},
  { 93, 100, 139, 145, 113, 238, 173, 236},
  { 97, 101, 140, 149, 115, 240, 176, 238},
  {101, 102, 140, 154, 116, 242, 179, 239},
  {105, 103, 141, 158, 118, 243, 182, 240},
  {109, 104, 141, 162, 119, 244, 185, 241},
  {113, 104, 142, 166, 120, 245, 187, 242},
  {116, 105, 143, 170, 122, 246, 190, 243},
  {120, 106, 143, 173, 123, 247, 192, 244},
  {123, 107, 144, 177, 125, 248, 195, 244},
  {127, 108, 145, 180, 126, 249, 197, 245},
  {130, 109, 145, 183, 128, 249, 199, 245},
  {134, 110, 146, 186, 129, 250, 201, 246},
  {137, 111, 147, 189, 131, 251, 203, 246},
  {140, 112, 147, 192, 132, 251, 205, 247},
  {143, 113, 148, 194, 133, 251, 207, 247},
  {146, 114, 149, 197, 135, 252, 208, 248},
  {149, 115, 149, 199, 136, 252, 210, 248},
  {152, 115, 150, 201, 138, 252, 211, 248},
  {155, 116, 151, 204, 139, 253, 213, 249},
  {158, 117, 151, 206, 140, 253, 214, 249},
  {161, 118, 152, 208, 142, 253, 216, 249},
  {163, 119, 153, 210, 143, 253, 217, 249},
  {166, 120, 153, 212, 144, 254, 218, 250},
  {168, 121, 154, 213, 146, 254, 220, 250},
  {171, 122, 155, 215, 147, 254, 221, 250},
  {173, 123, 155, 217, 148, 254, 222, 250},
  {176, 124, 156, 218, 150, 254, 223, 250},
  {178, 125, 157, 220, 151, 254, 224, 251},
  {180, 126, 157, 221, 152, 254, 225, 251},
  {183, 127, 158, 222, 153, 254, 226, 251},
  {185, 128, 159, 224, 155, 255, 227, 251},
  {187, 129, 160, 225, 156, 255, 228, 251},
  {189, 131, 160, 226, 157, 255, 228, 251},
  {191, 132, 161, 227, 159, 255, 229, 251},
  {193, 133, 162, 228, 160, 255, 230, 252},
  {195, 134, 163, 230, 161, 255, 231, 252},
  {197, 135, 163, 231, 162, 255, 231, 252},
  {199, 136, 164, 232, 163, 255, 232, 252},
  {201, 137, 165, 233, 165, 255, 233, 252},
  {202, 138, 166, 233, 166, 255, 233, 252},
  {204, 139, 166, 234, 167, 255, 234, 252},
  {206, 140, 167, 235, 168, 255, 235, 252},
  {207, 141, 168, 236, 169, 255, 235, 252},
  {209, 142, 169, 237, 171, 255, 236, 252},
  {210, 144, 169, 237, 172, 255, 236, 252},
  {212, 145, 170, 238, 173, 255, 237, 252},
  {214, 146, 171, 239, 174, 255, 237, 253},
  {215, 147, 172, 240, 175, 255, 238, 253},
  {216, 148, 173, 240, 176, 255, 238, 253},
  {218, 149, 173, 241, 177, 255, 239, 253},
  {219, 150, 174, 241, 179, 255, 239, 253},
  {220, 152, 175, 242, 180, 255, 240, 253},
  {222, 153, 176, 242, 181, 255, 240, 253},
  {223, 154, 177, 243, 182, 255, 240, 253},
  {224, 155, 178, 244, 183, 255, 241, 253},
  {225, 156, 178, 244, 184, 255, 241, 253},
  {226, 158, 179, 244, 185, 255, 242, 253},
  {228, 159, 180, 245, 186, 255, 242, 253},
  {229, 160, 181, 245, 187, 255, 242, 253},
  {230, 161, 182, 246, 188, 255, 243, 253},
  {231, 163, 183, 246, 189, 255, 243, 253},
  {232, 164, 184, 247, 190, 255, 243, 253},
  {233, 165, 185, 247, 191, 255, 244, 253},
  {234, 166, 185, 247, 192, 255, 244, 253},
  {235, 168, 186, 248, 193, 255, 244, 253},
  {236, 169, 187, 248, 194, 255, 244, 253},
  {236, 170, 188, 248, 195, 255, 245, 253},
  {237, 171, 189, 249, 196, 255, 245, 254},
  {238, 173, 190, 249, 197, 255, 245, 254},
  {239, 174, 191, 249, 198, 255, 245, 254},
  {240, 175, 192, 249, 199, 255, 246, 254},
  {240, 177, 193, 250, 200, 255, 246, 254},
  {241, 178, 194, 250, 201, 255, 246, 254},
  {242, 179, 195, 250, 202, 255, 246, 254},
  {242, 181, 196, 250, 203, 255, 247, 254},
  {243, 182, 197, 251, 204, 255, 247, 254},
  {244, 184, 198, 251, 205, 255, 247, 254},
  {244, 185, 199, 251, 206, 255, 247, 254},
  {245, 186, 200, 251, 207, 255, 247, 254},
  {246, 188, 201, 252, 207, 255, 248, 254},
  {246, 189, 202, 252, 208, 255, 248, 254},
  {247, 191, 203, 252, 209, 255, 248, 254},
  {247, 192, 204, 252, 210, 255, 248, 254},
  {248, 194, 205, 252, 211, 255, 248, 254},
  {248, 195, 206, 252, 212, 255, 249, 254},
  {249, 197, 207, 253, 213, 255, 249, 254},
  {249, 198, 208, 253, 214, 255, 249, 254},
  {250, 200, 210, 253, 215, 255, 249, 254},
  {250, 201, 211, 253, 215, 255, 249, 254},
  {250, 203, 212, 253, 216, 255, 249, 254},
  {251, 204, 213, 253, 217, 255, 250, 254},
  {251, 206, 214, 254, 218, 255, 250, 254},
  {252, 207, 216, 254, 219, 255, 250, 254},
  {252, 209, 217, 254, 220, 255, 250, 254},
  {252, 211, 218, 254, 221, 255, 250, 254},
  {253, 213, 219, 254, 222, 255, 250, 254},
  {253, 214, 221, 254, 223, 255, 250, 254},
  {253, 216, 222, 254, 224, 255, 251, 254},
  {253, 218, 224, 254, 225, 255, 251, 254},
  {254, 220, 225, 254, 225, 255, 251, 254},
  {254, 222, 227, 255, 226, 255, 251, 254},
  {254, 224, 228, 255, 227, 255, 251, 254},
  {254, 226, 230, 255, 228, 255, 251, 254},
  {255, 228, 231, 255, 230, 255, 251, 254},
  {255, 230, 233, 255, 231, 255, 252, 254},
  {255, 232, 235, 255, 232, 255, 252, 254},
  {255, 235, 237, 255, 233, 255, 252, 254},
  {255, 238, 240, 255, 235, 255, 252, 255},
  {255, 241, 243, 255, 236, 255, 252, 254},
  {255, 246, 247, 255, 239, 255, 253, 255}
376
377
};

378
379
380
static void extend_model_to_full_distribution(vp9_prob p,
                                              vp9_prob *tree_probs) {
  const int l = ((p - 1) / 2);
381
  const vp9_prob (*model)[MODEL_NODES] = modelcoefprobs_pareto8;
382
  if (p & 1) {
383
    vpx_memcpy(tree_probs + UNCONSTRAINED_NODES,
384
385
               model[l], MODEL_NODES * sizeof(vp9_prob));
  } else {
386
387
388
    // interpolate
    int i;
    for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i)
389
390
      tree_probs[i] = (model[l][i - UNCONSTRAINED_NODES] +
                       model[l + 1][i - UNCONSTRAINED_NODES]) >> 1;
391
  }
392
}
393

394
395
396
397
void vp9_model_to_full_probs(const vp9_prob *model, vp9_prob *full) {
  if (full != model)
    vpx_memcpy(full, model, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
  extend_model_to_full_distribution(model[PIVOT_NODE], full);
398
399
}

400
static vp9_tree_index cat1[2], cat2[4], cat3[6], cat4[8], cat5[10], cat6[28];
John Koleszar's avatar
John Koleszar committed
401

402
static void init_bit_tree(vp9_tree_index *p, int n) {
John Koleszar's avatar
John Koleszar committed
403
  int i = 0;
John Koleszar's avatar
John Koleszar committed
404

John Koleszar's avatar
John Koleszar committed
405
406
407
408
  while (++i < n) {
    p[0] = p[1] = i << 1;
    p += 2;
  }
John Koleszar's avatar
John Koleszar committed
409

John Koleszar's avatar
John Koleszar committed
410
  p[0] = p[1] = 0;
John Koleszar's avatar
John Koleszar committed
411
412
}

John Koleszar's avatar
John Koleszar committed
413
414
415
416
417
418
static void init_bit_trees() {
  init_bit_tree(cat1, 1);
  init_bit_tree(cat2, 2);
  init_bit_tree(cat3, 3);
  init_bit_tree(cat4, 4);
  init_bit_tree(cat5, 5);
419
  init_bit_tree(cat6, 14);
John Koleszar's avatar
John Koleszar committed
420
421
}

422
vp9_extra_bit vp9_extra_bits[12] = {
John Koleszar's avatar
John Koleszar committed
423
424
425
426
427
428
429
430
431
432
  { 0, 0, 0, 0},
  { 0, 0, 0, 1},
  { 0, 0, 0, 2},
  { 0, 0, 0, 3},
  { 0, 0, 0, 4},
  { cat1, Pcat1, 1, 5},
  { cat2, Pcat2, 2, 7},
  { cat3, Pcat3, 3, 11},
  { cat4, Pcat4, 4, 19},
  { cat5, Pcat5, 5, 35},
433
  { cat6, Pcat6, 14, 67},
John Koleszar's avatar
John Koleszar committed
434
  { 0, 0, 0, 0}
John Koleszar's avatar
John Koleszar committed
435
};
436

437
#include "vp9/common/vp9_default_coef_probs.h"
John Koleszar's avatar
John Koleszar committed
438

439
void vp9_default_coef_probs(VP9_COMMON *pc) {
Dmitry Kovalev's avatar
Dmitry Kovalev committed
440
441
442
443
  vp9_copy(pc->fc.coef_probs[TX_4X4], default_coef_probs_4x4);
  vp9_copy(pc->fc.coef_probs[TX_8X8], default_coef_probs_8x8);
  vp9_copy(pc->fc.coef_probs[TX_16X16], default_coef_probs_16x16);
  vp9_copy(pc->fc.coef_probs[TX_32X32], default_coef_probs_32x32);
444
}
John Koleszar's avatar
John Koleszar committed
445

446
447
448
449
// Neighborhood 5-tuples for various scans and blocksizes,
// in {top, left, topleft, topright, bottomleft} order
// for each position in raster scan order.
// -1 indicates the neighbor does not exist.
450
DECLARE_ALIGNED(16, int16_t,
451
                vp9_default_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
452
DECLARE_ALIGNED(16, int16_t,
453
                vp9_col_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
454
DECLARE_ALIGNED(16, int16_t,
455
                vp9_row_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
456
DECLARE_ALIGNED(16, int16_t,
457
                vp9_col_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
458
DECLARE_ALIGNED(16, int16_t,
459
                vp9_row_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
460
DECLARE_ALIGNED(16, int16_t,
461
                vp9_default_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
462
DECLARE_ALIGNED(16, int16_t,
463
                vp9_col_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
464
DECLARE_ALIGNED(16, int16_t,
465
                vp9_row_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
466
DECLARE_ALIGNED(16, int16_t,
467
                vp9_default_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
468
DECLARE_ALIGNED(16, int16_t,
469
                vp9_default_scan_32x32_neighbors[1025 * MAX_NEIGHBORS]);
470

471
472
473
474
475
476
477
478
479
480
481
482
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_32x32[1024]);

static int find_in_scan(const int16_t *scan, int l, int idx) {
483
484
485
486
487
488
489
490
491
  int n, l2 = l * l;
  for (n = 0; n < l2; n++) {
    int rc = scan[n];
    if (rc == idx)
      return  n;
  }
  assert(0);
  return -1;
}
492
493
static void init_scan_neighbors(const int16_t *scan,
                                int16_t *iscan,
494
                                int l, int16_t *neighbors) {
495
496
497
  int l2 = l * l;
  int n, i, j;

498
499
500
501
502
  // dc doesn't use this type of prediction
  neighbors[MAX_NEIGHBORS * 0 + 0] = 0;
  neighbors[MAX_NEIGHBORS * 0 + 1] = 0;
  iscan[0] = find_in_scan(scan, l, 0);
  for (n = 1; n < l2; n++) {
503
    int rc = scan[n];
504
    iscan[n] = find_in_scan(scan, l, n);
505
506
507
508
509
510
511
512
513
514
515
    i = rc / l;
    j = rc % l;
    if (i > 0 && j > 0) {
      // col/row scan is used for adst/dct, and generally means that
      // energy decreases to zero much faster in the dimension in
      // which ADST is used compared to the direction in which DCT
      // is used. Likewise, we find much higher correlation between
      // coefficients within the direction in which DCT is used.
      // Therefore, if we use ADST/DCT, prefer the DCT neighbor coeff
      // as a context. If ADST or DCT is used in both directions, we
      // use the combination of the two as a context.
516
517
      int a = (i - 1) * l + j;
      int b =  i      * l + j - 1;
518
519
      if (scan == vp9_col_scan_4x4 || scan == vp9_col_scan_8x8 ||
          scan == vp9_col_scan_16x16) {
520
521
522
523
524
        // in the col/row scan cases (as well as left/top edge cases), we set
        // both contexts to the same value, so we can branchlessly do a+b+1>>1
        // which automatically becomes a if a == b
        neighbors[MAX_NEIGHBORS * n + 0] =
        neighbors[MAX_NEIGHBORS * n + 1] = a;
525
526
      } else if (scan == vp9_row_scan_4x4 || scan == vp9_row_scan_8x8 ||
                 scan == vp9_row_scan_16x16) {
527
528
        neighbors[MAX_NEIGHBORS * n + 0] =
        neighbors[MAX_NEIGHBORS * n + 1] = b;
529
      } else {
530
531
        neighbors[MAX_NEIGHBORS * n + 0] = a;
        neighbors[MAX_NEIGHBORS * n + 1] = b;
532
533
      }
    } else if (i > 0) {
534
535
      neighbors[MAX_NEIGHBORS * n + 0] =
      neighbors[MAX_NEIGHBORS * n + 1] = (i - 1) * l + j;
536
    } else {
537
538
539
      assert(j > 0);
      neighbors[MAX_NEIGHBORS * n + 0] =
      neighbors[MAX_NEIGHBORS * n + 1] =  i      * l + j - 1;
540
    }
541
    assert(iscan[neighbors[MAX_NEIGHBORS * n + 0]] < n);
542
  }
543
544
545
546
  // one padding item so we don't have to add branches in code to handle
  // calls to get_coef_context() for the token after the final dc token
  neighbors[MAX_NEIGHBORS * l2 + 0] = 0;
  neighbors[MAX_NEIGHBORS * l2 + 1] = 0;
547
548
549
}

void vp9_init_neighbors() {
550
  init_scan_neighbors(vp9_default_scan_4x4, vp9_default_iscan_4x4, 4,
551
                      vp9_default_scan_4x4_neighbors);
552
  init_scan_neighbors(vp9_row_scan_4x4, vp9_row_iscan_4x4, 4,
553
                      vp9_row_scan_4x4_neighbors);
554
  init_scan_neighbors(vp9_col_scan_4x4, vp9_col_iscan_4x4, 4,
555
                      vp9_col_scan_4x4_neighbors);
556
  init_scan_neighbors(vp9_default_scan_8x8, vp9_default_iscan_8x8, 8,
557
                      vp9_default_scan_8x8_neighbors);
558
  init_scan_neighbors(vp9_row_scan_8x8, vp9_row_iscan_8x8, 8,
559
                      vp9_row_scan_8x8_neighbors);
560
  init_scan_neighbors(vp9_col_scan_8x8, vp9_col_iscan_8x8, 8,
561
                      vp9_col_scan_8x8_neighbors);
562
  init_scan_neighbors(vp9_default_scan_16x16, vp9_default_iscan_16x16, 16,
563
                      vp9_default_scan_16x16_neighbors);
564
  init_scan_neighbors(vp9_row_scan_16x16, vp9_row_iscan_16x16, 16,
565
                      vp9_row_scan_16x16_neighbors);
566
  init_scan_neighbors(vp9_col_scan_16x16, vp9_col_iscan_16x16, 16,
567
                      vp9_col_scan_16x16_neighbors);
568
  init_scan_neighbors(vp9_default_scan_32x32, vp9_default_iscan_32x32, 32,
569
                      vp9_default_scan_32x32_neighbors);
570
571
}

572
const int16_t *vp9_get_coef_neighbors_handle(const int16_t *scan) {
Paul Wilkins's avatar
Paul Wilkins committed
573
574
  if (scan == vp9_default_scan_4x4) {
    return vp9_default_scan_4x4_neighbors;
575
576
577
578
  } else if (scan == vp9_row_scan_4x4) {
    return vp9_row_scan_4x4_neighbors;
  } else if (scan == vp9_col_scan_4x4) {
    return vp9_col_scan_4x4_neighbors;
Paul Wilkins's avatar
Paul Wilkins committed
579
580
  } else if (scan == vp9_default_scan_8x8) {
    return vp9_default_scan_8x8_neighbors;
581
582
583
584
  } else if (scan == vp9_row_scan_8x8) {
    return vp9_row_scan_8x8_neighbors;
  } else if (scan == vp9_col_scan_8x8) {
    return vp9_col_scan_8x8_neighbors;
Paul Wilkins's avatar
Paul Wilkins committed
585
586
  } else if (scan == vp9_default_scan_16x16) {
    return vp9_default_scan_16x16_neighbors;
587
588
589
590
  } else if (scan == vp9_row_scan_16x16) {
    return vp9_row_scan_16x16_neighbors;
  } else if (scan == vp9_col_scan_16x16) {
    return vp9_col_scan_16x16_neighbors;
591
  } else {
592
593
    assert(scan == vp9_default_scan_32x32);
    return vp9_default_scan_32x32_neighbors;
594
595
596
  }
}

597
void vp9_coef_tree_initialize() {
598
  vp9_init_neighbors();
John Koleszar's avatar
John Koleszar committed
599
  init_bit_trees();
600
  vp9_tokens_from_tree(vp9_coef_encodings, vp9_coef_tree);
601
602
}

John Koleszar's avatar
John Koleszar committed
603
// #define COEF_COUNT_TESTING
604
605
606
607
608
609
610
611

#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128

612
static void adapt_coef_probs(VP9_COMMON *cm, TX_SIZE tx_size,
613
614
                             unsigned int count_sat,
                             unsigned int update_factor) {
615
616
  FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx];

617
618
619
  vp9_coeff_probs_model *dst_coef_probs = cm->fc.coef_probs[tx_size];
  vp9_coeff_probs_model *pre_coef_probs = pre_fc->coef_probs[tx_size];
  vp9_coeff_count_model *coef_counts = cm->counts.coef[tx_size];
620
  unsigned int (*eob_branch_count)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
621
      cm->counts.eob_branch[tx_size];
622
  int t, i, j, k, l;
623
624
625
  unsigned int branch_ct[UNCONSTRAINED_NODES][2];
  vp9_prob coef_probs[UNCONSTRAINED_NODES];
  int entropy_nodes_adapt = UNCONSTRAINED_NODES;
626

627
  for (i = 0; i < BLOCK_TYPES; ++i)
628
629
630
631
632
    for (j = 0; j < REF_TYPES; ++j)
      for (k = 0; k < COEF_BANDS; ++k)
        for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
          if (l >= 3 && k == 0)
            continue;
633
634
635
          vp9_tree_probs_from_distribution(vp9_coefmodel_tree, coef_probs,
                                           branch_ct, coef_counts[i][j][k][l],
                                           0);
636
637
          branch_ct[0][1] = eob_branch_count[i][j][k][l] - branch_ct[0][0];
          coef_probs[0] = get_binary_prob(branch_ct[0][0], branch_ct[0][1]);
638
639
640
641
          for (t = 0; t < entropy_nodes_adapt; ++t)
            dst_coef_probs[i][j][k][l][t] = merge_probs(
                pre_coef_probs[i][j][k][l][t], coef_probs[t],
                branch_ct[t], count_sat, update_factor);
642
643
644
645
        }
}

void vp9_adapt_coef_probs(VP9_COMMON *cm) {
646
  TX_SIZE t;
647
  unsigned int count_sat, update_factor;
John Koleszar's avatar
John Koleszar committed
648

649
  if (cm->frame_type == KEY_FRAME || cm->intra_only) {
John Koleszar's avatar
John Koleszar committed
650
651
652
653
654
655
656
657
658
    update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
    count_sat = COEF_COUNT_SAT_KEY;
  } else if (cm->last_frame_type == KEY_FRAME) {
    update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY;  /* adapt quickly */
    count_sat = COEF_COUNT_SAT_AFTER_KEY;
  } else {
    update_factor = COEF_MAX_UPDATE_FACTOR;
    count_sat = COEF_COUNT_SAT;
  }
659
660
  for (t = TX_4X4; t <= TX_32X32; t++)
    adapt_coef_probs(cm, t, count_sat, update_factor);
661
}