selfguided_avx2.c 30.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <immintrin.h>

#include "./aom_config.h"
#include "./av1_rtcd.h"
#include "av1/common/restoration.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/synonyms_avx2.h"

// Load 8 bytes from the possibly-misaligned pointer p, extend each byte to
// 32-bit precision and return them in an AVX2 register.
static __m256i yy256_load_extend_8_32(const void *p) {
  return _mm256_cvtepu8_epi32(xx_loadl_64(p));
}

// Load 8 halfwords from the possibly-misaligned pointer p, extend each
// halfword to 32-bit precision and return them in an AVX2 register.
static __m256i yy256_load_extend_16_32(const void *p) {
  return _mm256_cvtepu16_epi32(xx_loadu_128(p));
}

// Compute the scan of an AVX2 register holding 8 32-bit integers. If the
// register holds x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ...,
// x0+x1+...+x7
//
// Let [...] represent a 128-bit block, and let a, ..., h be 32-bit integers
// (assumed small enough to be able to add them without overflow).
//
// Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a.
//
// x   = [h g f e][d c b a]
// x01 = [g f e 0][c b a 0]
// x02 = [g+h f+g e+f e][c+d b+c a+b a]
// x03 = [e+f e 0 0][a+b a 0 0]
// x04 = [e->h e->g e->f e][a->d a->c a->b a]
// s   = a->d
// s01 = [a->d a->d a->d a->d]
// s02 = [a->d a->d a->d a->d][0 0 0 0]
// ret = [a->h a->g a->f a->e][a->d a->c a->b a]
static __m256i scan_32(__m256i x) {
  const __m256i x01 = _mm256_slli_si256(x, 4);
  const __m256i x02 = _mm256_add_epi32(x, x01);
  const __m256i x03 = _mm256_slli_si256(x02, 8);
  const __m256i x04 = _mm256_add_epi32(x02, x03);
  const int32_t s = _mm256_extract_epi32(x04, 3);
  const __m128i s01 = _mm_set1_epi32(s);
  const __m256i s02 = _mm256_insertf128_si256(_mm256_setzero_si256(), s01, 1);
  return _mm256_add_epi32(x04, s02);
}

// Compute two integral images from src. B sums elements; A sums their
// squares. The images are offset by one pixel, so will have width and height
// equal to width + 1, height + 1 and the first row and column will be zero.
//
// A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple
// of 8.
static void integral_images(const uint8_t *src, int src_stride, int width,
                            int height, int32_t *A, int32_t *B,
                            int buf_stride) {
  // Write out the zero top row
  memset(A, 0, sizeof(*A) * (width + 1));
  memset(B, 0, sizeof(*B) * (width + 1));

  const __m256i zero = _mm256_setzero_si256();
  for (int i = 0; i < height; ++i) {
    // Zero the left column.
    A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0;

    // ldiff is the difference H - D where H is the output sample immediately
    // to the left and D is the output sample above it. These are scalars,
    // replicated across the eight lanes.
    __m256i ldiff1 = zero, ldiff2 = zero;
    for (int j = 0; j < width; j += 8) {
      const int ABj = 1 + j;

      const __m256i above1 = yy_load_256(B + ABj + i * buf_stride);
      const __m256i above2 = yy_load_256(A + ABj + i * buf_stride);

      const __m256i x1 = yy256_load_extend_8_32(src + j + i * src_stride);
      const __m256i x2 = _mm256_madd_epi16(x1, x1);

      const __m256i sc1 = scan_32(x1);
      const __m256i sc2 = scan_32(x2);

      const __m256i row1 =
          _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1);
      const __m256i row2 =
          _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2);

      yy_store_256(B + ABj + (i + 1) * buf_stride, row1);
      yy_store_256(A + ABj + (i + 1) * buf_stride, row2);

      // Calculate the new H - D.
      ldiff1 = _mm256_set1_epi32(
          _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7));
      ldiff2 = _mm256_set1_epi32(
          _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7));
    }
  }
}

// Compute two integral images from src. B sums elements; A sums their squares
//
// A and B should be aligned to 32 bytes. buf_stride should be a multiple of 8.
static void integral_images_highbd(const uint16_t *src, int src_stride,
                                   int width, int height, int32_t *A,
                                   int32_t *B, int buf_stride) {
  // Write out the zero top row
  memset(A, 0, sizeof(*A) * (width + 1));
  memset(B, 0, sizeof(*B) * (width + 1));

  const __m256i zero = _mm256_setzero_si256();
  for (int i = 0; i < height; ++i) {
    // Zero the left column.
    A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0;

    // ldiff is the difference H - D where H is the output sample immediately
    // to the left and D is the output sample above it. These are scalars,
    // replicated across the eight lanes.
    __m256i ldiff1 = zero, ldiff2 = zero;
    for (int j = 0; j < width; j += 8) {
      const int ABj = 1 + j;

      const __m256i above1 = yy_load_256(B + ABj + i * buf_stride);
      const __m256i above2 = yy_load_256(A + ABj + i * buf_stride);

      const __m256i x1 = yy256_load_extend_16_32(src + j + i * src_stride);
      const __m256i x2 = _mm256_madd_epi16(x1, x1);

      const __m256i sc1 = scan_32(x1);
      const __m256i sc2 = scan_32(x2);

      const __m256i row1 =
          _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1);
      const __m256i row2 =
          _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2);

      yy_store_256(B + ABj + (i + 1) * buf_stride, row1);
      yy_store_256(A + ABj + (i + 1) * buf_stride, row2);

      // Calculate the new H - D.
      ldiff1 = _mm256_set1_epi32(
          _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7));
      ldiff2 = _mm256_set1_epi32(
          _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7));
    }
  }
}

// Compute four values of boxsum from the given integral image. ii should point
// at the middle of the box (for the first value). r is the box radius
static __m256i boxsum_from_ii(const int32_t *ii, int stride, int r) {
  const __m256i tl = yy_loadu_256(ii - (r + 1) - (r + 1) * stride);
  const __m256i tr = yy_loadu_256(ii + (r + 0) - (r + 1) * stride);
  const __m256i bl = yy_loadu_256(ii - (r + 1) + r * stride);
  const __m256i br = yy_loadu_256(ii + (r + 0) + r * stride);
  const __m256i u = _mm256_sub_epi32(tr, tl);
  const __m256i v = _mm256_sub_epi32(br, bl);
  return _mm256_sub_epi32(v, u);
}

static __m256i round_for_shift(unsigned shift) {
  return _mm256_set1_epi32((1 << shift) >> 1);
}

static __m256i compute_p(__m256i sum1, __m256i sum2, int bit_depth, int n) {
  __m256i an, bb;
  if (bit_depth > 8) {
    const __m256i rounding_a = round_for_shift(2 * (bit_depth - 8));
    const __m256i rounding_b = round_for_shift(bit_depth - 8);
    const __m128i shift_a = _mm_cvtsi32_si128(2 * (bit_depth - 8));
    const __m128i shift_b = _mm_cvtsi32_si128(bit_depth - 8);
    const __m256i a =
        _mm256_srl_epi32(_mm256_add_epi32(sum2, rounding_a), shift_a);
    const __m256i b =
        _mm256_srl_epi32(_mm256_add_epi32(sum1, rounding_b), shift_b);
    // b < 2^14, so we can use a 16-bit madd rather than a 32-bit
    // mullo to square it
    bb = _mm256_madd_epi16(b, b);
    an = _mm256_max_epi32(_mm256_mullo_epi32(a, _mm256_set1_epi32(n)), bb);
  } else {
    bb = _mm256_madd_epi16(sum1, sum1);
    an = _mm256_mullo_epi32(sum2, _mm256_set1_epi32(n));
  }
  return _mm256_sub_epi32(an, bb);
}

// Assumes that C, D are integral images for the original buffer which has been
// extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels
// on the sides. A, B, C, D point at logical position (0, 0).
static void calc_ab(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D,
                    int width, int height, int buf_stride, int eps,
                    int bit_depth, int r) {
  const int n = (2 * r + 1) * (2 * r + 1);
  const __m256i s = _mm256_set1_epi32(sgrproj_mtable[eps - 1][n - 1]);
  // one_over_n[n-1] is 2^12/n, so easily fits in an int16
  const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]);

  const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS);
  const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS);

212
213
214
215
216
217
218
219
  // Set up masks
  const __m128i ones32 = _mm_set_epi64x(0, 0xffffffffffffffffULL);
  __m256i mask[8];
  for (int idx = 0; idx < 8; idx++) {
    const __m128i shift = _mm_set_epi64x(0, 8 * (8 - idx));
    mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift));
  }

220
221
222
223
224
  for (int i = -1; i < height + 1; ++i) {
    for (int j = -1; j < width + 1; j += 8) {
      const int32_t *Cij = C + i * buf_stride + j;
      const int32_t *Dij = D + i * buf_stride + j;

225
226
227
228
229
230
231
232
233
234
235
236
237
      __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r);
      __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r);

      // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain
      // some uninitialised data in their upper words. We use a mask to
      // ensure that these bits are set to 0.
      int idx = AOMMIN(8, width + 1 - j);
      assert(idx >= 1);

      if (idx < 8) {
        sum1 = _mm256_and_si256(mask[idx], sum1);
        sum2 = _mm256_and_si256(mask[idx], sum2);
      }
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

      const __m256i p = compute_p(sum1, sum2, bit_depth, n);

      const __m256i z = _mm256_min_epi32(
          _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z),
                            SGRPROJ_MTABLE_BITS),
          _mm256_set1_epi32(255));

      const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4);

      yy_storeu_256(A + i * buf_stride + j, a_res);

      const __m256i a_complement =
          _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res);

      // sum1 might have lanes greater than 2^15, so we can't use madd to do
      // multiplication involving sum1. However, a_complement and one_over_n
      // are both less than 256, so we can multiply them first.
      const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n);
      const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1);
      const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res),
                                              SGRPROJ_RECIP_BITS);

      yy_storeu_256(B + i * buf_stride + j, b_res);
    }
  }
}

// Calculate 4 values of the "cross sum" starting at buf. This is a 3x3 filter
// where the outer four corners have weight 3 and all other pixels have weight
// 4.
//
// Pixels are indexed as follows:
// xtl  xt   xtr
// xl    x   xr
// xbl  xb   xbr
//
// buf points to x
//
// fours = xl + xt + xr + xb + x
// threes = xtl + xtr + xbr + xbl
// cross_sum = 4 * fours + 3 * threes
//           = 4 * (fours + threes) - threes
//           = (fours + threes) << 2 - threes
static __m256i cross_sum(const int32_t *buf, int stride) {
  const __m256i xtl = yy_loadu_256(buf - 1 - stride);
  const __m256i xt = yy_loadu_256(buf - stride);
  const __m256i xtr = yy_loadu_256(buf + 1 - stride);
  const __m256i xl = yy_loadu_256(buf - 1);
  const __m256i x = yy_loadu_256(buf);
  const __m256i xr = yy_loadu_256(buf + 1);
  const __m256i xbl = yy_loadu_256(buf - 1 + stride);
  const __m256i xb = yy_loadu_256(buf + stride);
  const __m256i xbr = yy_loadu_256(buf + 1 + stride);

  const __m256i fours = _mm256_add_epi32(
      xl, _mm256_add_epi32(xt, _mm256_add_epi32(xr, _mm256_add_epi32(xb, x))));
  const __m256i threes =
      _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl)));

  return _mm256_sub_epi32(_mm256_slli_epi32(_mm256_add_epi32(fours, threes), 2),
                          threes);
}

// The final filter for self-guided restoration. Computes a weighted average
// across A, B with "cross sums" (see cross_sum implementation above)
static void final_filter(int32_t *dst, int dst_stride, const int32_t *A,
                         const int32_t *B, int buf_stride, const void *dgd8,
                         int dgd_stride, int width, int height, int highbd) {
  const int nb = 5;
  const __m256i rounding =
      round_for_shift(SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
  const uint8_t *dgd_real =
      highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8;

  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; j += 4) {
      const __m256i a = cross_sum(A + i * buf_stride + j, buf_stride);
      const __m256i b = cross_sum(B + i * buf_stride + j, buf_stride);

      const __m128i raw =
          xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
      const __m256i src =
          highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);

      __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
      __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding),
                                    SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);

      yy_storeu_256(dst + i * dst_stride + j, w);
    }
  }
}

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
#if CONFIG_FAST_SGR
// Assumes that C, D are integral images for the original buffer which has been
// extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels
// on the sides. A, B, C, D point at logical position (0, 0).
static void calc_ab_fast(int32_t *A, int32_t *B, const int32_t *C,
                         const int32_t *D, int width, int height,
                         int buf_stride, int eps, int bit_depth, int r) {
  const int n = (2 * r + 1) * (2 * r + 1);
  const __m256i s = _mm256_set1_epi32(sgrproj_mtable[eps - 1][n - 1]);
  // one_over_n[n-1] is 2^12/n, so easily fits in an int16
  const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]);

  const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS);
  const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS);

  // Set up masks
  const __m128i ones32 = _mm_set_epi64x(0, 0xffffffffffffffffULL);
  __m256i mask[8];
  for (int idx = 0; idx < 8; idx++) {
    const __m128i shift = _mm_set_epi64x(0, 8 * (8 - idx));
    mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift));
  }

  for (int i = -1; i < height + 1; i += 2) {
    for (int j = -1; j < width + 1; j += 8) {
      const int32_t *Cij = C + i * buf_stride + j;
      const int32_t *Dij = D + i * buf_stride + j;

      __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r);
      __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r);

      // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain
      // some uninitialised data in their upper words. We use a mask to
      // ensure that these bits are set to 0.
      int idx = AOMMIN(8, width + 1 - j);
      assert(idx >= 1);

      if (idx < 8) {
        sum1 = _mm256_and_si256(mask[idx], sum1);
        sum2 = _mm256_and_si256(mask[idx], sum2);
      }

      const __m256i p = compute_p(sum1, sum2, bit_depth, n);

      const __m256i z = _mm256_min_epi32(
          _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z),
                            SGRPROJ_MTABLE_BITS),
          _mm256_set1_epi32(255));

      const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4);

      yy_storeu_256(A + i * buf_stride + j, a_res);

      const __m256i a_complement =
          _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res);

      // sum1 might have lanes greater than 2^15, so we can't use madd to do
      // multiplication involving sum1. However, a_complement and one_over_n
      // are both less than 256, so we can multiply them first.
      const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n);
      const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1);
      const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res),
                                              SGRPROJ_RECIP_BITS);

      yy_storeu_256(B + i * buf_stride + j, b_res);
    }
  }
}

// Calculate 4 values of the "cross sum" starting at buf.
//
// Pixels are indexed like this:
// xtl  xt   xtr
//  -   buf   -
// xbl  xb   xbr
//
// Pixels are weighted like this:
//  5    6    5
//  0    0    0
//  5    6    5
//
// fives = xtl + xtr + xbl + xbr
// sixes = xt + xb
// cross_sum = 6 * sixes + 5 * fives
//           = 5 * (fives + sixes) - sixes
//           = (fives + sixes) << 2 + (fives + sixes) + sixes
static __m256i cross_sum_fast_even(const int32_t *buf, int stride) {
  const __m256i xtl = yy_loadu_256(buf - 1 - stride);
  const __m256i xt = yy_loadu_256(buf - stride);
  const __m256i xtr = yy_loadu_256(buf + 1 - stride);
  const __m256i xbl = yy_loadu_256(buf - 1 + stride);
  const __m256i xb = yy_loadu_256(buf + stride);
  const __m256i xbr = yy_loadu_256(buf + 1 + stride);

  const __m256i fives =
      _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl)));
  const __m256i sixes = _mm256_add_epi32(xt, xb);
  const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes);

  return _mm256_add_epi32(
      _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2),
                       fives_plus_sixes),
      sixes);
}

// Calculate 4 values of the "cross sum" starting at buf.
//
// Pixels are indexed like this:
// xtl  xt   xtr
//  -    -    -
// xl    x   xr
//  -    -    -
// xbl  xb   xbr
//
// Pixels are weighted like this:
//  3    4    3
//  0    0    0
//  14   16   14
//  0    0    0
//  3    4    3
//
// buf points to x
//
// threes = xtl + xtr + xbr + xbl
// fours = xt + xb
// fourteens = xl + xr
// sixteens = x
// cross_sum = 4 * fours + 3 * threes + 14 * fourteens + 16 * sixteens
//           = 4 * (fours + threes) + 16 * (sixteens + fourteens)
//              - (threes + fourteens) - fourteens
//           = (fours + threes) << 2 + (sixteens + fourteens) << 4
//              - (threes + fourteens) - fourteens
static __m256i cross_sum_fast_odd_not_last(const int32_t *buf, int stride) {
  const int two_stride = 2 * stride;
  const __m256i xtl = yy_loadu_256(buf - 1 - two_stride);
  const __m256i xt = yy_loadu_256(buf - two_stride);
  const __m256i xtr = yy_loadu_256(buf + 1 - two_stride);
  const __m256i xl = yy_loadu_256(buf - 1);
  const __m256i x = yy_loadu_256(buf);
  const __m256i xr = yy_loadu_256(buf + 1);
  const __m256i xbl = yy_loadu_256(buf - 1 + two_stride);
  const __m256i xb = yy_loadu_256(buf + two_stride);
  const __m256i xbr = yy_loadu_256(buf + 1 + two_stride);

  const __m256i threes =
      _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl)));
  const __m256i fours = _mm256_add_epi32(xt, xb);
  const __m256i fourteens = _mm256_add_epi32(xl, xr);
  const __m256i sixteens = x;

  const __m256i fours_plus_threes = _mm256_add_epi32(fours, threes);
  const __m256i sixteens_plus_fourteens = _mm256_add_epi32(sixteens, fourteens);
  const __m256i threes_plus_fourteens = _mm256_add_epi32(threes, fourteens);

  return _mm256_sub_epi32(
      _mm256_sub_epi32(
          _mm256_add_epi32(_mm256_slli_epi32(fours_plus_threes, 2),
                           _mm256_slli_epi32(sixteens_plus_fourteens, 4)),
          threes_plus_fourteens),
      fourteens);
}

// Calculate 4 values of the "cross sum" starting at buf.
//
// Pixels are indexed like this:
// xtl  xt   xtr
//  -    -    -
// xl    x   xr
//
// Pixels are weighted like this:
//  6    8    6
//  0    0    0
//  14   16   14
//
// buf points to x
//
// sixes = xtl + xtr
// eights = xt
// fourteens = xl + xr
// sixteens = x
// cross_sum = 6 * sixes + 8 * eights + 14 * fourteens + 16 * sixteens
//           = 8 * (sixes + eights) + 16 * (sixteens + fourteens)
//              - 2 * (sixes + fourteens)
//           = (sixes + eights) << 3 + (sixteens + fourteens) << 4
//              - (sixes + fourteens) << 1
static __m256i cross_sum_fast_odd_last(const int32_t *buf, int stride) {
  const int two_stride = 2 * stride;
  const __m256i xtl = yy_loadu_256(buf - 1 - two_stride);
  const __m256i xt = yy_loadu_256(buf - two_stride);
  const __m256i xtr = yy_loadu_256(buf + 1 - two_stride);
  const __m256i xl = yy_loadu_256(buf - 1);
  const __m256i x = yy_loadu_256(buf);
  const __m256i xr = yy_loadu_256(buf + 1);

  const __m256i sixes = _mm256_add_epi32(xtl, xtr);
  const __m256i eights = xt;
  const __m256i fourteens = _mm256_add_epi32(xl, xr);
  const __m256i sixteens = x;

  const __m256i sixes_plus_eights = _mm256_add_epi32(sixes, eights);
  const __m256i sixteens_plus_fourteens = _mm256_add_epi32(sixteens, fourteens);
  const __m256i sixes_plus_fourteens = _mm256_add_epi32(sixes, fourteens);

  return _mm256_sub_epi32(
      _mm256_add_epi32(_mm256_slli_epi32(sixes_plus_eights, 3),
                       _mm256_slli_epi32(sixteens_plus_fourteens, 4)),
      _mm256_slli_epi32(sixes_plus_fourteens, 1));
}

// The final filter for selfguided restoration. Computes a weighted average
// across A, B with "cross sums" (see cross_sum_... implementations above)
static void final_filter_fast(int32_t *dst, int dst_stride, const int32_t *A,
                              const int32_t *B, int buf_stride,
                              const void *dgd8, int dgd_stride, int width,
                              int height, int highbd) {
  const int nb0 = 5;
  const int nb1 = 6;

  const __m256i rounding0 =
      round_for_shift(SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS);
  const __m256i rounding1 =
      round_for_shift(SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS);

  const uint8_t *dgd_real =
      highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8;

  for (int i = 0; i < height; ++i) {
    if (!(i & 1)) {  // even row
      for (int j = 0; j < width; j += 4) {
        const __m256i a =
            cross_sum_fast_even(A + i * buf_stride + j, buf_stride);
        const __m256i b =
            cross_sum_fast_even(B + i * buf_stride + j, buf_stride);

        const __m128i raw =
            xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
        const __m256i src =
            highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);

        __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
        __m256i w =
            _mm256_srai_epi32(_mm256_add_epi32(v, rounding0),
                              SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS);

        yy_storeu_256(dst + i * dst_stride + j, w);
      }
    } else if (i != height - 1) {  // odd row and not last
      for (int j = 0; j < width; j += 4) {
        const __m256i a =
            cross_sum_fast_odd_not_last(A + i * buf_stride + j, buf_stride);
        const __m256i b =
            cross_sum_fast_odd_not_last(B + i * buf_stride + j, buf_stride);

        const __m128i raw =
            xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
        const __m256i src =
            highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);

        __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
        __m256i w =
            _mm256_srai_epi32(_mm256_add_epi32(v, rounding1),
                              SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS);

        yy_storeu_256(dst + i * dst_stride + j, w);
      }
    } else {  // odd row and last
      for (int j = 0; j < width; j += 4) {
        const __m256i a =
            cross_sum_fast_odd_last(A + i * buf_stride + j, buf_stride);
        const __m256i b =
            cross_sum_fast_odd_last(B + i * buf_stride + j, buf_stride);

        const __m128i raw =
            xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd));
        const __m256i src =
            highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw);

        __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b);
        __m256i w =
            _mm256_srai_epi32(_mm256_add_epi32(v, rounding1),
                              SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS);

        yy_storeu_256(dst + i * dst_stride + j, w);
      }
    }
  }
}
#endif

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
void av1_selfguided_restoration_avx2(const uint8_t *dgd8, int width, int height,
                                     int dgd_stride, int32_t *flt1,
                                     int32_t *flt2, int flt_stride,
                                     const sgr_params_type *params,
                                     int bit_depth, int highbd) {
  // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl,
  // Ctl and Dtl is 32-byte aligned.
  const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3);

  DECLARE_ALIGNED(32, int32_t,
                  buf[4 * ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3)]);
  memset(buf, 0, sizeof(buf));

  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;

  // Adjusting the stride of A and B here appears to avoid bad cache effects,
  // leading to a significant speed improvement.
  // We also align the stride to a multiple of 32 bytes for efficiency.
  int buf_stride = ALIGN_POWER_OF_TWO(width_ext + 16, 3);

  // The "tl" pointers point at the top-left of the initialised data for the
  // array.
  int32_t *Atl = buf + 0 * buf_elts + 7;
  int32_t *Btl = buf + 1 * buf_elts + 7;
  int32_t *Ctl = buf + 2 * buf_elts + 7;
  int32_t *Dtl = buf + 3 * buf_elts + 7;

  // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note
  // there's a zero row and column in A, B (integral images), so we move down
  // and right one for them.
  const int buf_diag_border =
      SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT;

  int32_t *A0 = Atl + 1 + buf_stride;
  int32_t *B0 = Btl + 1 + buf_stride;
  int32_t *C0 = Ctl + 1 + buf_stride;
  int32_t *D0 = Dtl + 1 + buf_stride;

  // Finally, A, B, C, D point at position (0, 0).
  int32_t *A = A0 + buf_diag_border;
  int32_t *B = B0 + buf_diag_border;
  int32_t *C = C0 + buf_diag_border;
  int32_t *D = D0 + buf_diag_border;

  const int dgd_diag_border =
      SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT;
  const uint8_t *dgd0 = dgd8 - dgd_diag_border;

  // Generate integral images from the input. C will contain sums of squares; D
  // will contain just sums
  if (highbd)
    integral_images_highbd(CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext,
                           height_ext, Ctl, Dtl, buf_stride);
  else
    integral_images(dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl,
                    buf_stride);

  // Write to flt1 and flt2
  for (int i = 0; i < 2; ++i) {
    int r = i ? params->r2 : params->r1;
    int e = i ? params->e2 : params->e1;
    int32_t *flt = i ? flt2 : flt1;

    assert(r + 1 <= AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ));
686
687
688
689
690
#if CONFIG_FAST_SGR
    calc_ab_fast(A, B, C, D, width, height, buf_stride, e, bit_depth, r);
    final_filter_fast(flt, flt_stride, A, B, buf_stride, dgd8, dgd_stride,
                      width, height, highbd);
#else
691
692
693
    calc_ab(A, B, C, D, width, height, buf_stride, e, bit_depth, r);
    final_filter(flt, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width,
                 height, highbd);
694
#endif
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
  }
}

void apply_selfguided_restoration_avx2(const uint8_t *dat8, int width,
                                       int height, int stride, int eps,
                                       const int *xqd, uint8_t *dst8,
                                       int dst_stride, int32_t *tmpbuf,
                                       int bit_depth, int highbd) {
  int32_t *flt1 = tmpbuf;
  int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
  assert(width * height <= RESTORATION_TILEPELS_MAX);
  av1_selfguided_restoration_avx2(dat8, width, height, stride, flt1, flt2,
                                  width, &sgr_params[eps], bit_depth, highbd);

  int xq[2];
  decode_xq(xqd, xq);

  __m256i xq0 = _mm256_set1_epi32(xq[0]);
  __m256i xq1 = _mm256_set1_epi32(xq[1]);

  for (int i = 0; i < height; ++i) {
    // Calculate output in batches of 16 pixels
    for (int j = 0; j < width; j += 16) {
      const int k = i * width + j;
      const int m = i * dst_stride + j;

      const uint8_t *dat8ij = dat8 + i * stride + j;
      __m256i ep_0, ep_1;
      __m128i src_0, src_1;
      if (highbd) {
        src_0 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij));
        src_1 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij + 8));
        ep_0 = _mm256_cvtepu16_epi32(src_0);
        ep_1 = _mm256_cvtepu16_epi32(src_1);
      } else {
        src_0 = xx_loadu_128(dat8ij);
        ep_0 = _mm256_cvtepu8_epi32(src_0);
        ep_1 = _mm256_cvtepu8_epi32(_mm_srli_si128(src_0, 8));
      }

      const __m256i u_0 = _mm256_slli_epi32(ep_0, SGRPROJ_RST_BITS);
      const __m256i u_1 = _mm256_slli_epi32(ep_1, SGRPROJ_RST_BITS);

      const __m256i f1_0 = _mm256_sub_epi32(yy_loadu_256(&flt1[k]), u_0);
      const __m256i f1_1 = _mm256_sub_epi32(yy_loadu_256(&flt1[k + 8]), u_1);

      const __m256i f2_0 = _mm256_sub_epi32(yy_loadu_256(&flt2[k]), u_0);
      const __m256i f2_1 = _mm256_sub_epi32(yy_loadu_256(&flt2[k + 8]), u_1);

      const __m256i v_0 =
          _mm256_add_epi32(_mm256_add_epi32(_mm256_mullo_epi32(xq0, f1_0),
                                            _mm256_mullo_epi32(xq1, f2_0)),
                           _mm256_slli_epi32(u_0, SGRPROJ_PRJ_BITS));
      const __m256i v_1 =
          _mm256_add_epi32(_mm256_add_epi32(_mm256_mullo_epi32(xq0, f1_1),
                                            _mm256_mullo_epi32(xq1, f2_1)),
                           _mm256_slli_epi32(u_1, SGRPROJ_PRJ_BITS));

      const __m256i rounding =
          round_for_shift(SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
      const __m256i w_0 = _mm256_srai_epi32(
          _mm256_add_epi32(v_0, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
      const __m256i w_1 = _mm256_srai_epi32(
          _mm256_add_epi32(v_1, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);

      if (highbd) {
        // Pack into 16 bits and clamp to [0, 2^bit_depth)
        // Note that packing into 16 bits messes up the order of the bits,
        // so we use a permute function to correct this
        const __m256i tmp = _mm256_packus_epi32(w_0, w_1);
        const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8);
        const __m256i max = _mm256_set1_epi16((1 << bit_depth) - 1);
        const __m256i res = _mm256_min_epi16(tmp2, max);
        yy_store_256(CONVERT_TO_SHORTPTR(dst8 + m), res);
      } else {
        // Pack into 8 bits and clamp to [0, 256)
        // Note that each pack messes up the order of the bits,
        // so we use a permute function to correct this
        const __m256i tmp = _mm256_packs_epi32(w_0, w_1);
        const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8);
        const __m256i res =
            _mm256_packus_epi16(tmp2, tmp2 /* "don't care" value */);
        const __m128i res2 =
            _mm256_castsi256_si128(_mm256_permute4x64_epi64(res, 0xd8));
        xx_store_128(dst8 + m, res2);
      }
    }
  }
}