restoration.c 84 KB
Newer Older
1
/*
Yaowu Xu's avatar
Yaowu Xu committed
2
3
4
5
6
7
8
9
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
11
12
13
14
 *
 */

#include <math.h>

Yaowu Xu's avatar
Yaowu Xu committed
15
16
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
17
#include "./aom_scale_rtcd.h"
18
#include "av1/common/onyxc_int.h"
19
20
21
#if CONFIG_FRAME_SUPERRES
#include "av1/common/resize.h"
#endif
22
#include "av1/common/restoration.h"
Yaowu Xu's avatar
Yaowu Xu committed
23
24
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
25

26
#include "aom_ports/mem.h"
27

28
const sgr_params_type sgr_params[SGRPROJ_PARAMS] = {
29
30
31
32
33
34
35
#if USE_HIGHPASS_IN_SGRPROJ
  // corner, edge, r2, eps2
  { -1, 2, 1, 1 }, { -1, 2, 1, 2 }, { -1, 2, 1, 3 }, { -1, 2, 1, 4 },
  { -1, 2, 1, 5 }, { -2, 3, 1, 2 }, { -2, 3, 1, 3 }, { -2, 3, 1, 4 },
  { -2, 3, 1, 5 }, { -2, 3, 1, 6 }, { -3, 4, 1, 3 }, { -3, 4, 1, 4 },
  { -3, 4, 1, 5 }, { -3, 4, 1, 6 }, { -3, 4, 1, 7 }, { -3, 4, 1, 8 }
#else
36
// r1, eps1, r2, eps2
37
#if MAX_RADIUS == 2
38
39
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
40
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 2, 30, 1, 6 },
41
42
  { 2, 50, 1, 12 }, { 2, 60, 1, 13 }, { 2, 70, 1, 14 }, { 2, 80, 1, 15 },
#else
43
44
45
46
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 },
  { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 },
47
#endif  // MAX_RADIUS == 2
48
#endif
49
50
};

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#if CONFIG_MAX_TILE
static void tile_width_and_height(const AV1_COMMON *cm, int is_uv, int sb_w,
                                  int sb_h, int *px_w, int *px_h) {
  const int scaled_sb_w = sb_w << MAX_MIB_SIZE_LOG2;
  const int scaled_sb_h = sb_h << MAX_MIB_SIZE_LOG2;

  const int ss_x = is_uv && cm->subsampling_x;
  const int ss_y = is_uv && cm->subsampling_y;

  *px_w = (scaled_sb_w + ss_x) >> ss_x;
  *px_h = (scaled_sb_h + ss_y) >> ss_y;
#if CONFIG_FRAME_SUPERRES
  if (!av1_superres_unscaled(cm)) {
    av1_calculate_unscaled_superres_size(px_w, px_h,
                                         cm->superres_scale_denominator);
  }
#endif  // CONFIG_FRAME_SUPERRES
}
#endif  // CONFIG_MAX_TILE

71
72
73
74
75
76
77
78
79
80
81
82
83
// Similar to av1_get_tile_rect(), except that we extend the bottommost tile in
// each frame to a multiple of 8 luma pixels.
// This is done to help simplify the implementation of striped-loop-restoration,
// by avoiding nasty edge cases which would otherwise appear when the (cropped)
// frame height is 57 or 63 (mod 64).
static AV1PixelRect get_ext_tile_rect(const TileInfo *tile_info,
                                      const AV1_COMMON *cm, int is_uv) {
  int ss_y = is_uv && cm->subsampling_y;
  AV1PixelRect tile_rect = av1_get_tile_rect(tile_info, cm, is_uv);
  tile_rect.bottom = ALIGN_POWER_OF_TWO(tile_rect.bottom, 3 - ss_y);
  return tile_rect;
}

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Count horizontal or vertical units per tile (use a width or height for
// tile_size, respectively). We basically want to divide the tile size by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a restoration
// unit.
static int count_units_in_tile(int unit_size, int tile_size) {
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
}

void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
                                  int is_uv) {
#if CONFIG_MAX_TILE
  // We need to allocate enough space for restoration units to cover the
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
100
  // top-left and we can use get_ext_tile_rect(). With CONFIG_MAX_TILE, we have
101
102
  // to do the computation ourselves, iterating over the tiles and keeping
  // track of the largest width and height, then upscaling.
103
104
  int max_sb_w = 0;
  int max_sb_h = 0;
105
  for (int i = 0; i < cm->tile_cols; ++i) {
106
107
    const int sb_w = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
    max_sb_w = AOMMAX(max_sb_w, sb_w);
108
109
  }
  for (int i = 0; i < cm->tile_rows; ++i) {
110
111
    const int sb_h = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i];
    max_sb_h = AOMMAX(max_sb_h, sb_h);
112
  }
113
114
115
116

  int max_tile_w, max_tile_h;
  tile_width_and_height(cm, is_uv, max_sb_w, max_sb_h, &max_tile_w,
                        &max_tile_h);
117
118
119
120
#else
  TileInfo tile_info;
  av1_tile_init(&tile_info, cm, 0, 0);

121
  const AV1PixelRect tile_rect = get_ext_tile_rect(&tile_info, cm, is_uv);
122
123
124
125
  assert(tile_rect.left == 0 && tile_rect.top == 0);

  const int max_tile_w = tile_rect.right;
  const int max_tile_h = tile_rect.bottom;
126
#endif  // CONFIG_MAX_TILE
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

  // To calculate hpertile and vpertile (horizontal and vertical units per
  // tile), we basically want to divide the largest tile width or height by the
  // size of a restoration unit. Rather than rounding up unconditionally as you
  // might expect, we round to nearest, which models the way a right or bottom
  // restoration unit can extend to up to 150% its normal width or height. The
  // max with 1 is to deal with tiles that are smaller than half of a
  // restoration unit.
  const int unit_size = rsi->restoration_unit_size;
  const int hpertile = count_units_in_tile(unit_size, max_tile_w);
  const int vpertile = count_units_in_tile(unit_size, max_tile_h);

  rsi->units_per_tile = hpertile * vpertile;
  rsi->horz_units_per_tile = hpertile;
  rsi->vert_units_per_tile = vpertile;

  const int ntiles = cm->tile_rows * cm->tile_cols;
  const int nunits = ntiles * rsi->units_per_tile;

  aom_free(rsi->unit_info);
  CHECK_MEM_ERROR(cm, rsi->unit_info, (RestorationUnitInfo *)aom_malloc(
                                          sizeof(*rsi->unit_info) * nunits));
149
150
151
}

void av1_free_restoration_struct(RestorationInfo *rst_info) {
152
153
  aom_free(rst_info->unit_info);
  rst_info->unit_info = NULL;
154
}
155
156
157

// TODO(debargha): This table can be substantially reduced since only a few
// values are actually used.
David Barker's avatar
David Barker committed
158
int sgrproj_mtable[MAX_EPS][MAX_NELEM];
159
160
161
162
163
164
165
166
167
168

static void GenSgrprojVtable() {
  int e, n;
  for (e = 1; e <= MAX_EPS; ++e)
    for (n = 1; n <= MAX_NELEM; ++n) {
      const int n2e = n * n * e;
      sgrproj_mtable[e - 1][n - 1] =
          (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
    }
}
169
170

void av1_loop_restoration_precal() { GenSgrprojVtable(); }
171

172
173
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
                               int border_horz, int border_vert) {
174
175
176
177
  uint8_t *data_p;
  int i;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
178
179
    memset(data_p - border_horz, data_p[0], border_horz);
    memset(data_p + width, data_p[width - 1], border_horz);
180
  }
181
182
183
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
184
  }
185
  for (i = height; i < height + border_vert; ++i) {
186
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
187
           width + 2 * border_horz);
188
189
190
  }
}

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#if CONFIG_HIGHBITDEPTH
static void extend_frame_highbd(uint16_t *data, int width, int height,
                                int stride, int border_horz, int border_vert) {
  uint16_t *data_p;
  int i, j;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
  }
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
  for (i = height; i < height + border_vert; ++i) {
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
}
#endif

void extend_frame(uint8_t *data, int width, int height, int stride,
                  int border_horz, int border_vert, int highbd) {
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
                        border_horz, border_vert);
  else
#endif
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
}

227
228
229
230
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
                            int src_stride, uint8_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
231
232
233
}

#if CONFIG_HIGHBITDEPTH
234
235
236
237
static void copy_tile_highbd(int width, int height, const uint16_t *src,
                             int src_stride, uint16_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
238
239
240
}
#endif

241
242
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
                      uint8_t *dst, int dst_stride, int highbd) {
243
244
245
246
247
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
248
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
249
250
251
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
  else
#endif
252
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
253
}
254

255
256
257
#if CONFIG_STRIPED_LOOP_RESTORATION
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))

258
259
260
261
262
263
264
265
266
267
268
269
// Helper function: Save one column of left/right context to the appropriate
// column buffers, then extend the edge of the current tile into that column.
//
// Note: The code to deal with above/below boundaries may have filled out
// the corners of the border with data from the tiles to our left or right,
// which isn't allowed. To fix that up, we need to include the top and
// bottom context regions in the area which we extend.
// But note that we don't need to store the pixels we overwrite in the
// corners of the context area - those have already been overwritten once,
// so their original values are already in rlbs->tmp_save_{above,below}.
#if CONFIG_LOOPFILTERING_ACROSS_TILES
static void setup_boundary_column(const uint8_t *src8, int src_stride,
270
271
                                  uint8_t *dst8, int dst_stride, uint16_t *buf,
                                  int h, int use_highbd) {
272
273
274
275
276
  if (use_highbd) {
    const uint16_t *src16 = CONVERT_TO_SHORTPTR(src8);
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst16[i * dst_stride] = src16[i * src_stride];
277
278
    for (int i = 0; i < h; i++) {
      buf[i] = dst16[i * dst_stride];
279
280
      dst16[i * dst_stride] = src16[i * src_stride];
    }
281
    for (int i = h; i < h + RESTORATION_BORDER; i++)
282
283
284
285
      dst16[i * dst_stride] = src16[i * src_stride];
  } else {
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst8[i * dst_stride] = src8[i * src_stride];
286
287
    for (int i = 0; i < h; i++) {
      buf[i] = dst8[i * dst_stride];
288
289
      dst8[i * dst_stride] = src8[i * src_stride];
    }
290
    for (int i = h; i < h + RESTORATION_BORDER; i++)
291
292
293
      dst8[i * dst_stride] = src8[i * src_stride];
  }
}
294
295
296
297
298
299
300
301
302
303
304

static void restore_boundary_column(uint8_t *dst8, int dst_stride,
                                    const uint16_t *buf, int h,
                                    int use_highbd) {
  if (use_highbd) {
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = 0; i < h; i++) dst16[i * dst_stride] = buf[i];
  } else {
    for (int i = 0; i < h; i++) dst8[i * dst_stride] = buf[i];
  }
}
305
306
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES

307
// With striped loop restoration, the filtering for each 64-pixel stripe gets
308
309
310
311
// most of its input from the output of CDEF (stored in data8), but we need to
// fill out a border of 3 pixels above/below the stripe according to the
// following
// rules:
312
//
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
//   This extension is done by a call to extend_frame() at the start of the loop
//   restoration process, so the value of copy_above/copy_below doesn't strictly
//   matter.
//   However, by setting *copy_above = *copy_below = 1 whenever loop filtering
//   across tiles is disabled, we can allow
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
//   data has always been copied, simplifying the behaviour at the left and
//   right edges of tiles.
//
// * If we're at a tile boundary and loop filtering across tiles is enabled,
//   then there is a logical stripe which is 64 pixels high, but which is split
//   into an 8px high and a 56px high stripe so that the processing (and
//   coefficient set usage) can be aligned to tiles.
//   In this case, we use the 3 rows of CDEF output across the boundary for
//   context; this corresponds to leaving the frame buffer as-is.
//
// * If we're at a tile boundary and loop filtering across tiles is disabled,
//   then we take the outermost row of CDEF pixels *within the current tile*
//   and copy it three times. Thus we behave exactly as if the tile were a full
//   frame.
//
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
//
// The distinction between the latter two cases is handled by the
// av1_loop_restoration_save_boundary_lines() function, so here we just need
// to decide if we're overwriting the above/below boundary pixels or not.
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
                                     const AV1PixelRect *tile_rect, int ss_y,
#if CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int *copy_above, int *copy_below) {
  *copy_above = 1;
  *copy_below = 1;

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (loop_filter_across_tiles_enabled) {
#endif
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
    const int rtile_offset = RESTORATION_TILE_OFFSET >> ss_y;

    const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
    const int this_stripe_height =
        full_stripe_height - (first_stripe_in_tile ? rtile_offset : 0);
    const int last_stripe_in_tile =
        (limits->v_start + this_stripe_height >= tile_rect->bottom);

    if (first_stripe_in_tile) *copy_above = 0;
    if (last_stripe_in_tile) *copy_below = 0;
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  }
#endif
}

// Overwrite the border pixels around a processing stripe so that the conditions
// listed above get_stripe_boundary_info() are preserved.
// We save the pixels which get overwritten into a temporary buffer, so that
// they can be restored by restore_processing_stripe_boundary() after we've
// processed the stripe.
374
375
//
// limits gives the rectangular limits of the remaining stripes for the current
376
377
// restoration unit. rsb is the stored stripe boundaries (taken from either
// deblock or CDEF output as necessary).
378
379
380
381
//
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
// the first stripe in this tile (needed to convert the tile-relative stripe
// index we get from limits into something we can look up in rsb).
382
static void setup_processing_stripe_boundary(
383
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
384
    int rsb_row, int use_highbd, int h,
385
#if CONFIG_LOOPFILTERING_ACROSS_TILES
386
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
387
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
388
389
    uint8_t *data8, int data_stride, RestorationLineBuffers *rlbs,
    int copy_above, int copy_below) {
390
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
391

392
393
394
  // Offsets within the line buffers. The buffer logically starts at column
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
  // has column x0 in the buffer.
395
  const int buf_stride = rsb->stripe_boundary_stride;
396
397
398
399
  const int buf_x0_off = limits->h_start;
  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
400

401
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
402

403
404
405
406
407
  // Replace RESTORATION_BORDER pixels above the top of the stripe
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
  //
  // Special case: If we're at the top of a tile, which isn't on the topmost
  // tile row, and we're allowed to loop filter across tiles, then we have a
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
  // we want to leave the boundary alone!
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;

    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *buf = rsb->stripe_boundary_above + (buf_off << use_highbd);
      uint8_t *dst8 = data8_tl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_above
      memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
             REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
    }
427
  }
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
  // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
  // The second buffer row is repeated, so src_row gets the values 0, 1, 1
  // for i = 0, 1, 2.
  if (copy_below) {
    const int stripe_end = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;

    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *src = rsb->stripe_boundary_below + (buf_off << use_highbd);

      uint8_t *dst8 = data8_bl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_below
      memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
    }
446
  }
447

448
449
450
451
452
453
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // If loopfiltering across tiles is disabled, we need to check if we're at
    // the edge of the current tile column. If we are, we need to extend the
    // leftmost/rightmost column within the tile by 3 pixels, so that the output
    // doesn't depend on pixels from the next column over.
454
455
    // This applies to the top and bottom borders too, since those may have
    // been filled out with data from the tile to the top-left (etc.) of us.
456
457
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);
458

459
460
461
462
    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
        setup_boundary_column(dst8, data_stride, dst8 + j, data_stride,
463
464
                              rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                              use_highbd);
465
466
467
468
469
470
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
        setup_boundary_column(dst8 - 1, data_stride, dst8 + j, data_stride,
471
                              rlbs->tmp_save_right[j], h, use_highbd);
472
473
474
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
475
476
477
478
}

// This function restores the boundary lines modified by
// setup_processing_stripe_boundary.
479
static void restore_processing_stripe_boundary(
480
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
481
    int use_highbd, int h,
482
483
484
#if CONFIG_LOOPFILTERING_ACROSS_TILES
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
485
    uint8_t *data8, int data_stride, int copy_above, int copy_below) {
486
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
487
488
489
490

  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
491

492
493
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;

494
495
496
497
498
499
500
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      uint8_t *dst8 = data8_tl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8),
             rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
    }
501
  }
502

503
504
505
  if (copy_below) {
    const int stripe_bottom = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
506

507
508
    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
509

510
511
512
      uint8_t *dst8 = data8_bl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
    }
513
  }
514
515
516
517
518
519

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // Restore any pixels we overwrote at the left/right edge of this
    // processing unit
    // Note: We don't need to restore the corner pixels, even if we overwrote
520
521
522
    // them in the equivalent place in setup_processing_stripe_boundary:
    // Because !loop_filter_across_tiles_enabled => copy_above = copy_below = 1,
    // the corner pixels will already have been restored before we get here.
523
524
525
526
527
528
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);

    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
529
530
531
        restore_boundary_column(dst8 + j, data_stride,
                                rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                                use_highbd);
532
533
534
535
536
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
537
538
        restore_boundary_column(dst8 + j, data_stride, rlbs->tmp_save_right[j],
                                h, use_highbd);
539
540
541
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
542
543
544
}
#endif

545
546
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
#define wiener_convolve8_add_src aom_convolve8_add_src_hip
547
#else
548
#define wiener_convolve8_add_src aom_convolve8_add_src
549
550
#endif

551
552
553
554
555
556
557
558
559
560
561
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
                                 int stripe_width, int stripe_height,
                                 int procunit_width, const uint8_t *src,
                                 int src_stride, uint8_t *dst, int dst_stride,
                                 int32_t *tmpbuf, int bit_depth) {
  (void)tmpbuf;
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
562
563
564
    const uint8_t *src_p = src + j;
    uint8_t *dst_p = dst + j;
    wiener_convolve8_add_src(src_p, src_stride, dst_p, dst_stride,
565
                             rui->wiener_info.hfilter, 16,
566
                             rui->wiener_info.vfilter, 16, w, stripe_height);
567
  }
568
}
569

570
571
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
   over the input. The window is of size (2r + 1)x(2r + 1), and we
572
   specialize to r = 1, 2, 3. A default function is used for r > 3.
573
574
575
576
577
578
579
580
581
582
583
584
585
586

   Each loop follows the same format: We keep a window's worth of input
   in individual variables and select data out of that as appropriate.
*/
static void boxsum1(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c;

  // Vertical sum over 3-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 1) * src_stride + j]
        // b = src[(i    ) * src_stride + j]
        // c = src[(i + 1) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
602
  } else {
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];

      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
  }

  // Horizontal sum over 3-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];

    dst[i * dst_stride] = a + b;
    for (j = 1; j < width - 2; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 1)]
      // b = src[i * src_stride + (j    )]
      // c = src[i * src_stride + (j + 1)]
      dst[i * dst_stride + j] = a + b + c;
      a = b;
      b = c;
      c = dst[i * dst_stride + (j + 2)];
    }
    dst[i * dst_stride + j] = a + b + c;
    dst[i * dst_stride + (j + 1)] = b + c;
  }
}

static void boxsum2(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e;

  // Vertical sum over 5-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 2) * src_stride + j]
        // b = src[(i - 1) * src_stride + j]
        // c = src[(i    ) * src_stride + j]
        // d = src[(i + 1) * src_stride + j]
        // e = src[(i + 2) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  }

  // Horizontal sum over 5-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];

    dst[i * dst_stride] = a + b + c;
    dst[i * dst_stride + 1] = a + b + c + d;
    for (j = 2; j < width - 3; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 2)]
      // b = src[i * src_stride + (j - 1)]
      // c = src[i * src_stride + (j    )]
      // d = src[i * src_stride + (j + 1)]
      // e = src[i * src_stride + (j + 2)]
      dst[i * dst_stride + j] = a + b + c + d + e;
      a = b;
      b = c;
      c = d;
      d = e;
      e = dst[i * dst_stride + (j + 3)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e;
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
    dst[i * dst_stride + (j + 2)] = c + d + e;
  }
}

729
#if MAX_RADIUS > 2
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
static void boxsum3(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e, f, g;

  // Vertical sum over 7-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[1 * src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];
      f = src[5 * src_stride + j];
      g = src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[1 * src_stride + j] * src[1 * src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
      f = src[5 * src_stride + j] * src[5 * src_stride + j];
      g = src[6 * src_stride + j] * src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  }

  // Horizontal sum over 7-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];
    f = dst[i * dst_stride + 5];
    g = dst[i * dst_stride + 6];

    dst[i * dst_stride] = a + b + c + d;
    dst[i * dst_stride + 1] = a + b + c + d + e;
    dst[i * dst_stride + 2] = a + b + c + d + e + f;
    for (j = 3; j < width - 4; ++j) {
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      a = b;
      b = c;
      c = d;
      d = e;
      e = f;
      f = g;
      g = dst[i * dst_stride + (j + 4)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e + f + g;
    dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g;
    dst[i * dst_stride + (j + 2)] = c + d + e + f + g;
    dst[i * dst_stride + (j + 3)] = d + e + f + g;
  }
}

// Generic version for any r. To be removed after experiments are done.
static void boxsumr(int32_t *src, int width, int height, int src_stride, int r,
                    int sqr, int32_t *dst, int dst_stride) {
  int32_t *tmp = aom_malloc(width * height * sizeof(*tmp));
  int tmp_stride = width;
  int i, j;
  if (sqr) {
    for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j];
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] +
            src[i * src_stride + j] * src[i * src_stride + j];
  } else {
    memcpy(tmp, src, sizeof(*tmp) * width);
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j];
  }
  for (i = 0; i <= r; ++i)
    memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride],
           sizeof(*tmp) * width);
  for (i = r + 1; i < height - r; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] =
          tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j];
  for (i = height - r; i < height; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] -
                                tmp[(i - r - 1) * tmp_stride + j];

  for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride];
  for (i = 0; i < height; ++i)
    for (j = 1; j < width; ++j)
      tmp[i * tmp_stride + j] =
          tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j];

  for (j = 0; j <= r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r];
  for (j = r + 1; j < width - r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1];
  for (j = width - r; j < width; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1];
  aom_free(tmp);
}
874
#endif  // MAX_RADIUS > 2
875

876
877
878
879
880
881
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
                   int sqr, int32_t *dst, int dst_stride) {
  if (r == 1)
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
  else if (r == 2)
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
882
#if MAX_RADIUS > 2
883
884
  else if (r == 3)
    boxsum3(src, width, height, src_stride, sqr, dst, dst_stride);
885
  else if (r > 3)
886
    boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride);
887
888
889
#endif  // MAX_RADIUS > 2
  else
    assert(0 && "Invalid value of r in self-guided filter");
890
891
}

892
#if MAX_RADIUS > 2
893
894
static void boxnum(int width, int height, int r, int8_t *num, int num_stride) {
  int i, j;
895
896
897
  for (i = 0; i <= r; ++i) {
    for (j = 0; j <= r; ++j) {
      num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j);
898
899
900
901
902
903
      num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + (width - 1 - j)] =
          num[i * num_stride + j];
    }
  }
904
905
  for (j = 0; j <= r; ++j) {
    const int val = (2 * r + 1) * (r + 1 + j);
906
907
908
909
910
    for (i = r + 1; i < height - r; ++i) {
      num[i * num_stride + j] = val;
      num[i * num_stride + (width - 1 - j)] = val;
    }
  }
911
912
  for (i = 0; i <= r; ++i) {
    const int val = (2 * r + 1) * (r + 1 + i);
913
914
915
916
917
918
919
    for (j = r + 1; j < width - r; ++j) {
      num[i * num_stride + j] = val;
      num[(height - 1 - i) * num_stride + j] = val;
    }
  }
  for (i = r + 1; i < height - r; ++i) {
    for (j = r + 1; j < width - r; ++j) {
920
      num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1);
921
922
923
    }
  }
}
924
#endif  // MAX_RADIUS > 2
925

926
void decode_xq(const int *xqd, int *xq) {
927
  xq[0] = xqd[0];
928
929
930
  xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
}

David Barker's avatar
David Barker committed
931
const int32_t x_by_xplus1[256] = {
932
933
934
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
  // instead of 0. See comments in av1_selfguided_restoration_internal() for why
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  256,
};

David Barker's avatar
David Barker committed
954
const int32_t one_by_x[MAX_NELEM] = {
955
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
956
957
958
959
960
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
#if MAX_RADIUS > 2
  158,  152,  146,  141,  137, 132, 128, 124, 120, 117, 114, 111, 108,
  105,  102,  100,  98,   95,  93,  91,  89,  87,  85,  84
#endif  // MAX_RADIUS > 2
961
962
};

963
static void av1_selfguided_restoration_internal(int32_t *dgd, int width,
964
965
                                                int height, int dgd_stride,
                                                int32_t *dst, int dst_stride,
966
                                                int bit_depth, int r, int eps) {
967
968
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
David Barker's avatar
David Barker committed
969
970
971
972
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
  // leading to a significant speed improvement.
  // We also align the stride to a multiple of 16 bytes, for consistency
  // with the SIMD version of this function.
973
  int buf_stride = ((width_ext + 3) & ~3) + 16;
974
975
976
977
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
  int32_t *A = A_;
  int32_t *B = B_;
978
979
#if MAX_RADIUS > 2
  const int num_stride = width_ext;
980
  int8_t num_[RESTORATION_PROC_UNIT_PELS];
981
  int8_t *num = num_ + SGRPROJ_BORDER_VERT * num_stride + SGRPROJ_BORDER_HORZ;
982
#endif
983
  int i, j;
984

985
986
987
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
         "Need SGRPROJ_BORDER_* >= r+1");
988

989
990
991
992
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
993
#if MAX_RADIUS > 2
994
  boxnum(width_ext, height_ext, r, num_, num_stride);
995
#endif
996
997
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
998
999
1000
1001
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
  for (i = -1; i < height + 1; ++i) {
    for (j = -1; j < width + 1; ++j) {
David Barker's avatar
David Barker committed
1002
      const int k = i * buf_stride + j;
1003
#if MAX_RADIUS > 2
1004
      const int n = num[i * num_stride + j];
1005
1006
1007
#else
      const int n = (2 * r + 1) * (2 * r + 1);
#endif
1008

1009
1010
1011
1012
1013
1014
1015
      // a < 2^16 * n < 2^22 regardless of bit depth
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
      // b < 2^8 * n < 2^14 regardless of bit depth
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);

      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
1016
1017
1018
      // This bound on p is due to:
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
      //
1019
1020
1021
1022
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
      // This is an artefact of rounding, and can only happen if all pixels
      // are (almost) identical, so in this case we saturate to p=0.
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
1023
1024
1025
1026
1027

      // Note: If MAX_RADIUS <= 2, then this 's' is a function only of
      // r and eps. Further, this is the only place we use 'eps', so we could
      // pre-calculate 's' for each parameter set and store that in place of
      // 'eps'.
1028
1029
1030
1031
1032
1033
1034
      uint32_t s = sgrproj_mtable[eps - 1][n - 1];

      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
      // (this holds even after accounting for the rounding in s)
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
      // Note: We have to be quite careful about the value of A[k].
      // This is used as a blend factor between individual pixel values and the
      // local mean. So it logically has a range of [0, 256], including both
      // endpoints.
      //
      // This is a pain for hardware, as we'd like something which can be stored
      // in exactly 8 bits.
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
      // slightly above 2^(8 + bit depth), due to rounding in the value of
      // one_by_x[25-1].
      //
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
      // overflow), without significantly affecting the final result: z == 0
      // implies that the image is essentially "flat", so the local mean and
      // individual pixel values are very similar.
      //
      // Note that saturating on the other side, ie. requring A[k] <= 255,
      // would be a bad idea, as that corresponds to the case where the image
      // is very variable, when we want to preserve the local pixel value as
      // much as possible.
      A[k] = x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]

      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
1060
1061
1062
      // one_by_x[n - 1] = round(2^12 / n)
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
      // and B[k] is set to a value < 2^(8 + bit depth)
1063
1064
      // This holds even with the rounding in one_by_x and in the overall
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
1065
1066
1067
1068
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
                                             (uint32_t)B[k] *
                                             (uint32_t)one_by_x[n - 1],
                                         SGRPROJ_RECIP_BITS);
1069
1070
    }
  }
1071
1072
1073
  // Use the A[] and B[] arrays to calculate the filtered image
  for (i = 0; i < height; ++i) {
    for (j = 0; j < width; ++j) {
David Barker's avatar
David Barker committed
1074
      const int k = i * buf_stride + j;
1075
1076
      const int l = i * dgd_stride + j;
      const int m = i * dst_stride + j;
1077
      const int nb = 5;
1078
      const int32_t a =
David Barker's avatar
David Barker committed
1079
1080
1081
1082
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
              4 +
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
1083
              3;
1084
      const int32_t b =
David Barker's avatar
David Barker committed
1085
1086
1087
1088
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
              4 +
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
1089
              3;
1090
      const int32_t v = a * dgd[l] + b;
1091
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
1092
1093
1094
1095
    }
  }
}

1096
void av1_selfguided_restoration_c(const uint8_t *dgd, int width, int height,
1097
                                  int stride, int32_t *dst, int dst_stride,
1098
1099
                                  int r, int eps) {
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
1100
1101
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
  int32_t *dgd32 =
1102
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
1103
  int i, j;
1104
1105
1106
  for (i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
    for (j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
      dgd32[i * dgd32_stride + j] = dgd[i * stride + j];
1107
1108
    }
  }
1109
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, dst,
1110
                                      dst_stride, 8, r, eps);
1111
1112
}

1113
1114
1115
void av1_highpass_filter_c(const uint8_t *dgd, int width, int height,
                           int stride, int32_t *dst, int dst_stride, int corner,
                           int edge) {
1116
  int i, j;
1117
  const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge);
1118
1119
1120
1121
1122

  i = 0;
  j = 0;
  {
    const int k = i * stride + j;
1123
1124
1125
1126
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) +
        corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]);
1127
1128
1129
1130
1131
  }
  i = 0;
  j = width - 1;
  {
    const int k = i * stride + j;
1132
1133
1134
1135
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) +
        corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]);
1136
1137
1138
1139
1140
  }
  i = height - 1;
  j = 0;
  {
    const int k = i * stride + j;
1141
1142
1143
1144
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) +
        corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]);
1145
1146
1147
1148
1149
  }
  i = height - 1;
  j = width - 1;
  {
    const int k = i * stride + j;
1150
1151
1152
1153
    const int l = i * dst_stride + j;
    dst[l] =
        center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) +
        corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]);
1154
1155
1156
1157
  }
  i = 0;
  for (j = 1; j < width - 1; ++j) {
    const int k = i * stride + j;
1158
1159
1160
1161
1162
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) +
             corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] +
                       dgd[k + 1]);
1163
1164
1165
1166
  }
  i = height - 1;
  for (j = 1; j < width - 1; ++j) {
    const int k = i * stride + j;
1167
1168
1169
1170
1171
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) +
             corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] +
                       dgd[k + 1]);
1172
1173
1174
1175
  }
  j = 0;
  for (i = 1; i < height - 1; ++i) {
    const int k = i * stride + j;
1176
1177
1178
1179
1180
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) +
             corner * (dgd[k + stride + 1] + dgd[k - stride + 1] +
                       dgd[k - stride] + dgd[k + stride]);
1181
1182
1183
1184
  }
  j = width - 1;
  for (i = 1; i < height - 1; ++i) {
    const int k = i * stride + j;
1185
1186
1187
1188
1189
    const int l = i * dst_stride + j;
    dst[l] = center * dgd[k] +
             edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) +
             corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
                       dgd[k - stride] + dgd[k + stride]);
1190
1191
1192
1193
  }
  for (i = 1; i < height - 1; ++i) {
    for (j = 1; j < width - 1; ++j) {
      const int k = i * stride + j;
1194
1195
1196
1197
1198
1199
      const int l = i * dst_stride + j;
      dst[l] =
          center * dgd[k] +
          edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) +
          corner * (dgd[k + stride - 1] + dgd[k - stride - 1] +
                    dgd[k - stride + 1] + dgd[k + stride + 1]);
1200
1201
1202
1203
    }
  }
}

1204
void apply_selfguided_restoration_c(const uint8_t *dat, int width, int height,
1205
1206
1207
                                    int stride, int eps, const int *xqd,
                                    uint8_t *dst, int dst_stride,
                                    int32_t *tmpbuf) {
1208
  int xq[2];
1209
  int32_t *flt1 = tmpbuf;
1210
  int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
1211
  int i, j;
1212
  assert(width * height <= RESTORATION_TILEPELS_MAX);
1213
1214
#if USE_HIGHPASS_IN_SGRPROJ
  av1_highpass_filter_c(dat, width, height, stride, flt1, width,
1215
                        sgr_params[eps].corner, sgr_params[eps].edge);
1216
#else
1217
  av1_selfguided_restoration_c(dat, width, height, stride, flt1, width,
1218
                               sgr_params[eps].r1, sgr_params[eps].e1);
1219
#endif  // USE_HIGHPASS_IN_SGRPROJ
1220
  av1_selfguided_restoration_c(dat, width, height, stride, flt2, width,
1221
                               sgr_params[eps].r2, sgr_params[eps].e2);
1222
1223
1224
1225
1226
  decode_xq(xqd, xq);
  for (i = 0; i < height; ++i) {
    for (j = 0; j < width; ++j) {
      const int k = i * width + j;
      const int l = i * stride + j;
1227
1228
1229
1230
      const int m = i * dst_stride + j;
      const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS);
      const int32_t f1 = (int32_t)flt1[k] - u;
      const int32_t f2 = (int32_t)flt2[k] - u;
David Barker's avatar
David Barker committed
1231
      const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
1232
1233
      const int16_t w =
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
1234
      dst[m] = clip_pixel(w);
1235
1236
1237
1238
    }
  }
}

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
                                  int stripe_width, int stripe_height,
                                  int procunit_width, const uint8_t *src,
                                  int src_stride, uint8_t *dst, int dst_stride,
                                  int32_t *tmpbuf, int bit_depth) {
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, stripe_width - j);
    apply_selfguided_restoration(src + j, w, stripe_height, src_stride,
                                 rui->sgrproj_info.ep, rui->sgrproj_info.