pickrst.c 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>
12
#include <float.h>
13 14 15 16 17
#include <limits.h>
#include <math.h>

#include "./vpx_scale_rtcd.h"

18 19 20 21
#include "aom_dsp/psnr.h"
#include "aom_dsp/vpx_dsp_common.h"
#include "aom_mem/vpx_mem.h"
#include "aom_ports/mem.h"
22

23 24
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
25

26 27 28 29
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"
#include "av1/encoder/quantize.h"
30

31
static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *sd,
32
                                     VP10_COMP *const cpi, RestorationInfo *rsi,
33
                                     int partial_frame) {
34
  VP10_COMMON *const cm = &cpi->common;
35
  int64_t filt_err;
36
  vp10_loop_restoration_frame(cm->frame_to_show, cm, rsi, 1, partial_frame);
37 38
#if CONFIG_VP9_HIGHBITDEPTH
  if (cm->use_highbitdepth) {
39
    filt_err = vpx_highbd_get_y_sse(sd, cm->frame_to_show);
40
  } else {
41
    filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
42 43
  }
#else
44
  filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
45 46 47 48 49 50 51
#endif  // CONFIG_VP9_HIGHBITDEPTH

  // Re-instate the unfiltered frame
  vpx_yv12_copy_y(&cpi->last_frame_db, cm->frame_to_show);
  return filt_err;
}

52
static int search_bilateral_level(const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi,
53
                                  int filter_level, int partial_frame,
54
                                  int *bilateral_level, double *best_cost_ret) {
55
  VP10_COMMON *const cm = &cpi->common;
56
  int i, j, tile_idx;
57
  int64_t err;
58
  int bits;
59 60 61 62
  double cost, best_cost, cost_norestore, cost_bilateral;
  const int bilateral_level_bits = vp10_bilateral_level_bits(&cpi->common);
  const int bilateral_levels = 1 << bilateral_level_bits;
  MACROBLOCK *x = &cpi->td.mb;
63
  RestorationInfo rsi;
64 65
  const int ntiles =
      vp10_get_restoration_ntiles(BILATERAL_TILESIZE, cm->width, cm->height);
66 67 68 69 70 71 72

  //  Make a copy of the unfiltered / processed recon buffer
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
  vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
                         1, partial_frame);
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);

73
  // RD cost associated with no restoration
74 75 76
  rsi.restoration_type = RESTORE_NONE;
  err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
  bits = 0;
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv,
                              (bits << (VP10_PROB_COST_SHIFT - 4)), err);
  best_cost = cost_norestore;

  // RD cost associated with bilateral filtering
  rsi.restoration_type = RESTORE_BILATERAL;
  rsi.bilateral_level =
      (int *)vpx_malloc(sizeof(*rsi.bilateral_level) * ntiles);
  assert(rsi.bilateral_level != NULL);

  for (j = 0; j < ntiles; ++j) bilateral_level[j] = -1;

  // Find best filter for each tile
  for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
    for (j = 0; j < ntiles; ++j) rsi.bilateral_level[j] = -1;
    best_cost = cost_norestore;
    for (i = 0; i < bilateral_levels; ++i) {
      rsi.bilateral_level[tile_idx] = i;
      err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
      bits = bilateral_level_bits + 1;
      // Normally the rate is rate in bits * 256 and dist is sum sq err * 64
      // when RDCOST is used.  However below we just scale both in the correct
      // ratios appropriately but not exactly by these values.
      cost = RDCOST_DBL(x->rdmult, x->rddiv,
                        (bits << (VP10_PROB_COST_SHIFT - 4)), err);
      if (cost < best_cost) {
        bilateral_level[tile_idx] = i;
        best_cost = cost;
      }
106 107
    }
  }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  // Find cost for combined configuration
  bits = 0;
  for (j = 0; j < ntiles; ++j) {
    rsi.bilateral_level[j] = bilateral_level[j];
    if (rsi.bilateral_level[j] >= 0) {
      bits += (bilateral_level_bits + 1);
    } else {
      bits += 1;
    }
  }
  err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
  cost_bilateral = RDCOST_DBL(x->rdmult, x->rddiv,
                              (bits << (VP10_PROB_COST_SHIFT - 4)), err);

  vpx_free(rsi.bilateral_level);

124
  vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
125 126 127 128 129 130 131
  if (cost_bilateral < cost_norestore) {
    if (best_cost_ret) *best_cost_ret = cost_bilateral;
    return 1;
  } else {
    if (best_cost_ret) *best_cost_ret = cost_norestore;
    return 0;
  }
132 133 134
}

static int search_filter_bilateral_level(const YV12_BUFFER_CONFIG *sd,
135
                                         VP10_COMP *cpi, int partial_frame,
136
                                         int *filter_best, int *bilateral_level,
137 138 139 140 141 142
                                         double *best_cost_ret) {
  const VP10_COMMON *const cm = &cpi->common;
  const struct loopfilter *const lf = &cm->lf;
  const int min_filter_level = 0;
  const int max_filter_level = vp10_get_max_filter_level(cpi);
  int filt_direction = 0;
143
  int filt_best;
144
  double best_err;
145 146 147 148 149 150
  int i, j;
  int *tmp_level;
  int bilateral_success[MAX_LOOP_FILTER + 1];

  const int ntiles =
      vp10_get_restoration_ntiles(BILATERAL_TILESIZE, cm->width, cm->height);
151 152 153 154 155 156 157

  // Start the search at the previous frame filter level unless it is now out of
  // range.
  int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
  int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
  double ss_err[MAX_LOOP_FILTER + 1];
  // Set each entry to -1
158
  for (i = 0; i <= MAX_LOOP_FILTER; ++i) ss_err[i] = -1.0;
159

160 161 162 163
  tmp_level = (int *)vpx_malloc(sizeof(*tmp_level) * ntiles);

  bilateral_success[filt_mid] = search_bilateral_level(
      sd, cpi, filt_mid, partial_frame, tmp_level, &best_err);
164 165
  filt_best = filt_mid;
  ss_err[filt_mid] = best_err;
166 167 168
  for (j = 0; j < ntiles; ++j) {
    bilateral_level[j] = tmp_level[j];
  }
169 170 171 172 173 174 175 176 177 178 179 180

  while (filter_step > 0) {
    const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level);
    const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level);

    // Bias against raising loop filter in favor of lowering it.
    double bias = (best_err / (1 << (15 - (filt_mid / 8)))) * filter_step;

    if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
      bias = (bias * cpi->twopass.section_intra_rating) / 20;

    // yx, bias less for large block size
181
    if (cm->tx_mode != ONLY_4X4) bias /= 2;
182 183 184 185

    if (filt_direction <= 0 && filt_low != filt_mid) {
      // Get Low filter error score
      if (ss_err[filt_low] < 0) {
186 187
        bilateral_success[filt_low] = search_bilateral_level(
            sd, cpi, filt_low, partial_frame, tmp_level, &ss_err[filt_low]);
188 189 190
      }
      // If value is close to the best so far then bias towards a lower loop
      // filter value.
191
      if (ss_err[filt_low] < (best_err + bias)) {
192 193 194 195 196
        // Was it actually better than the previous best?
        if (ss_err[filt_low] < best_err) {
          best_err = ss_err[filt_low];
        }
        filt_best = filt_low;
197 198 199
        for (j = 0; j < ntiles; ++j) {
          bilateral_level[j] = tmp_level[j];
        }
200 201 202 203 204 205
      }
    }

    // Now look at filt_high
    if (filt_direction >= 0 && filt_high != filt_mid) {
      if (ss_err[filt_high] < 0) {
206 207
        bilateral_success[filt_high] = search_bilateral_level(
            sd, cpi, filt_high, partial_frame, tmp_level, &ss_err[filt_high]);
208
      }
209 210
      // If value is significantly better than previous best, bias added against
      // raising filter value
211 212 213
      if (ss_err[filt_high] < (best_err - bias)) {
        best_err = ss_err[filt_high];
        filt_best = filt_high;
214 215 216
        for (j = 0; j < ntiles; ++j) {
          bilateral_level[j] = tmp_level[j];
        }
217 218 219 220 221 222 223 224 225 226 227 228
      }
    }

    // Half the step distance if the best filter value was the same as last time
    if (filt_best == filt_mid) {
      filter_step /= 2;
      filt_direction = 0;
    } else {
      filt_direction = (filt_best < filt_mid) ? -1 : 1;
      filt_mid = filt_best;
    }
  }
229

230 231
  vpx_free(tmp_level);

232 233 234
  // Update best error
  best_err = ss_err[filt_best];

235
  if (best_cost_ret) *best_cost_ret = best_err;
236 237 238
  if (filter_best) *filter_best = filt_best;

  return bilateral_success[filt_best];
239 240
}

241 242
static double find_average(uint8_t *src, int h_start, int h_end, int v_start,
                           int v_end, int stride) {
243 244 245
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
246 247 248
  for (i = v_start; i < v_end; i++)
    for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
  avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
249 250 251
  return avg;
}

252 253 254
static void compute_stats(uint8_t *dgd, uint8_t *src, int h_start, int h_end,
                          int v_start, int v_end, int dgd_stride,
                          int src_stride, double *M, double *H) {
255 256
  int i, j, k, l;
  double Y[RESTORATION_WIN2];
257 258
  const double avg =
      find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
259 260 261

  memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
  memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
262 263
  for (i = v_start; i < v_end; i++) {
    for (j = h_start; j < h_end; j++) {
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
        for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      for (k = 0; k < RESTORATION_WIN2; ++k) {
        M[k] += Y[k] * X;
        H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
        for (l = k + 1; l < RESTORATION_WIN2; ++l) {
          double value = Y[k] * Y[l];
          H[k * RESTORATION_WIN2 + l] += value;
          H[l * RESTORATION_WIN2 + k] += value;
        }
      }
    }
  }
}

#if CONFIG_VP9_HIGHBITDEPTH
286 287
static double find_average_highbd(uint16_t *src, int h_start, int h_end,
                                  int v_start, int v_end, int stride) {
288 289 290
  uint64_t sum = 0;
  double avg = 0;
  int i, j;
291 292 293
  for (i = v_start; i < v_end; i++)
    for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
  avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
294 295 296
  return avg;
}

297 298 299 300
static void compute_stats_highbd(uint8_t *dgd8, uint8_t *src8, int h_start,
                                 int h_end, int v_start, int v_end,
                                 int dgd_stride, int src_stride, double *M,
                                 double *H) {
301 302 303 304
  int i, j, k, l;
  double Y[RESTORATION_WIN2];
  uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
305 306
  const double avg =
      find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
307 308 309

  memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
  memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
310 311
  for (i = v_start; i < v_end; i++) {
    for (j = h_start; j < h_end; j++) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
      const double X = (double)src[i * src_stride + j] - avg;
      int idx = 0;
      for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
        for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
          Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
          idx++;
        }
      }
      for (k = 0; k < RESTORATION_WIN2; ++k) {
        M[k] += Y[k] * X;
        H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
        for (l = k + 1; l < RESTORATION_WIN2; ++l) {
          double value = Y[k] * Y[l];
          H[k * RESTORATION_WIN2 + l] += value;
          H[l * RESTORATION_WIN2 + k] += value;
        }
      }
    }
  }
}
#endif  // CONFIG_VP9_HIGHBITDEPTH

// Solves Ax = b, where x and b are column vectors
static int linsolve(int n, double *A, int stride, double *b, double *x) {
  int i, j, k;
  double c;
  // Partial pivoting
  for (i = n - 1; i > 0; i--) {
    if (A[(i - 1) * stride] < A[i * stride]) {
      for (j = 0; j < n; j++) {
        c = A[i * stride + j];
        A[i * stride + j] = A[(i - 1) * stride + j];
        A[(i - 1) * stride + j] = c;
      }
      c = b[i];
      b[i] = b[i - 1];
      b[i - 1] = c;
    }
  }
  // Forward elimination
  for (k = 0; k < n - 1; k++) {
    for (i = k; i < n - 1; i++) {
      c = A[(i + 1) * stride + k] / A[k * stride + k];
355
      for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j];
356 357 358 359 360
      b[i + 1] -= c * b[k];
    }
  }
  // Backward substitution
  for (i = n - 1; i >= 0; i--) {
361
    if (fabs(A[i * stride + i]) < 1e-10) return 0;
362
    c = 0;
363
    for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j];
364 365 366 367 368 369 370 371 372 373 374 375 376 377
    x[i] = (b[i] - c) / A[i * stride + i];
  }
  return 1;
}

static INLINE int wrap_index(int i) {
  return (i >= RESTORATION_HALFWIN1 ? RESTORATION_WIN - 1 - i : i);
}

// Fix vector b, update vector a
static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) {
  int i, j;
  double S[RESTORATION_WIN];
  double A[RESTORATION_WIN], B[RESTORATION_WIN2];
Aamir Anis's avatar
Aamir Anis committed
378
  int w, w2;
379 380
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
381
  for (i = 0; i < RESTORATION_WIN; i++) {
382 383 384 385 386 387
    int j;
    for (j = 0; j < RESTORATION_WIN; ++j) {
      const int jj = wrap_index(j);
      A[jj] += Mc[i][j] * b[i];
    }
  }
388 389
  for (i = 0; i < RESTORATION_WIN; i++) {
    for (j = 0; j < RESTORATION_WIN; j++) {
390 391 392 393 394 395
      int k, l;
      for (k = 0; k < RESTORATION_WIN; ++k)
        for (l = 0; l < RESTORATION_WIN; ++l) {
          const int kk = wrap_index(k);
          const int ll = wrap_index(l);
          B[ll * RESTORATION_HALFWIN1 + kk] +=
396 397
              Hc[j * RESTORATION_WIN + i][k * RESTORATION_WIN2 + l] * b[i] *
              b[j];
398 399 400
        }
    }
  }
Aamir Anis's avatar
Aamir Anis committed
401 402 403 404
  // Normalization enforcement in the system of equations itself
  w = RESTORATION_WIN;
  w2 = (w >> 1) + 1;
  for (i = 0; i < w2 - 1; ++i)
405 406
    A[i] -=
        A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
Aamir Anis's avatar
Aamir Anis committed
407 408 409 410 411 412 413 414 415
  for (i = 0; i < w2 - 1; ++i)
    for (j = 0; j < w2 - 1; ++j)
      B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
                            2 * B[(w2 - 1) * w2 + (w2 - 1)]);
  if (linsolve(w2 - 1, B, w2, A, S)) {
    S[w2 - 1] = 1.0;
    for (i = w2; i < w; ++i) {
      S[i] = S[w - 1 - i];
      S[w2 - 1] -= 2 * S[i];
416
    }
Aamir Anis's avatar
Aamir Anis committed
417
    memcpy(a, S, w * sizeof(*a));
418 419 420 421 422 423 424 425
  }
}

// Fix vector a, update vector b
static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) {
  int i, j;
  double S[RESTORATION_WIN];
  double A[RESTORATION_WIN], B[RESTORATION_WIN2];
Aamir Anis's avatar
Aamir Anis committed
426
  int w, w2;
427 428
  memset(A, 0, sizeof(A));
  memset(B, 0, sizeof(B));
429
  for (i = 0; i < RESTORATION_WIN; i++) {
430 431
    int j;
    const int ii = wrap_index(i);
432
    for (j = 0; j < RESTORATION_WIN; j++) A[ii] += Mc[i][j] * a[j];
433 434 435 436 437 438 439 440 441 442
  }

  for (i = 0; i < RESTORATION_WIN; i++) {
    for (j = 0; j < RESTORATION_WIN; j++) {
      const int ii = wrap_index(i);
      const int jj = wrap_index(j);
      int k, l;
      for (k = 0; k < RESTORATION_WIN; ++k)
        for (l = 0; l < RESTORATION_WIN; ++l)
          B[jj * RESTORATION_HALFWIN1 + ii] +=
443 444
              Hc[i * RESTORATION_WIN + j][k * RESTORATION_WIN2 + l] * a[k] *
              a[l];
445 446
    }
  }
Aamir Anis's avatar
Aamir Anis committed
447 448 449 450
  // Normalization enforcement in the system of equations itself
  w = RESTORATION_WIN;
  w2 = RESTORATION_HALFWIN1;
  for (i = 0; i < w2 - 1; ++i)
451 452
    A[i] -=
        A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
Aamir Anis's avatar
Aamir Anis committed
453 454 455 456 457 458 459 460 461
  for (i = 0; i < w2 - 1; ++i)
    for (j = 0; j < w2 - 1; ++j)
      B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
                            2 * B[(w2 - 1) * w2 + (w2 - 1)]);
  if (linsolve(w2 - 1, B, w2, A, S)) {
    S[w2 - 1] = 1.0;
    for (i = w2; i < w; ++i) {
      S[i] = S[w - 1 - i];
      S[w2 - 1] -= 2 * S[i];
462
    }
Aamir Anis's avatar
Aamir Anis committed
463
    memcpy(b, S, w * sizeof(*b));
464 465 466
  }
}

467 468
static int wiener_decompose_sep_sym(double *M, double *H, double *a,
                                    double *b) {
469
  static const double init_filt[RESTORATION_WIN] = {
470
    0.035623, -0.127154, 0.211436, 0.760190, 0.211436, -0.127154, 0.035623,
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  };
  int i, j, iter;
  double *Hc[RESTORATION_WIN2];
  double *Mc[RESTORATION_WIN];
  for (i = 0; i < RESTORATION_WIN; i++) {
    Mc[i] = M + i * RESTORATION_WIN;
    for (j = 0; j < RESTORATION_WIN; j++) {
      Hc[i * RESTORATION_WIN + j] =
          H + i * RESTORATION_WIN * RESTORATION_WIN2 + j * RESTORATION_WIN;
    }
  }
  memcpy(a, init_filt, sizeof(*a) * RESTORATION_WIN);
  memcpy(b, init_filt, sizeof(*b) * RESTORATION_WIN);

  iter = 1;
  while (iter < 10) {
    update_a_sep_sym(Mc, Hc, a, b);
    update_b_sep_sym(Mc, Hc, a, b);
    iter++;
  }
491
  return 1;
492 493
}

Aamir Anis's avatar
Aamir Anis committed
494 495 496
// Computes the function x'*A*x - x'*b for the learned filters, and compares
// against identity filters; Final score is defined as the difference between
// the function values
497
static double compute_score(double *M, double *H, int *vfilt, int *hfilt) {
Aamir Anis's avatar
Aamir Anis committed
498 499 500 501 502 503 504 505 506 507
  double ab[RESTORATION_WIN * RESTORATION_WIN];
  int i, k, l;
  double P = 0, Q = 0;
  double iP = 0, iQ = 0;
  double Score, iScore;
  int w;
  double a[RESTORATION_WIN], b[RESTORATION_WIN];
  w = RESTORATION_WIN;
  a[RESTORATION_HALFWIN] = b[RESTORATION_HALFWIN] = 1.0;
  for (i = 0; i < RESTORATION_HALFWIN; ++i) {
508 509 510 511
    a[i] = a[RESTORATION_WIN - i - 1] =
        (double)vfilt[i] / RESTORATION_FILT_STEP;
    b[i] = b[RESTORATION_WIN - i - 1] =
        (double)hfilt[i] / RESTORATION_FILT_STEP;
Aamir Anis's avatar
Aamir Anis committed
512 513 514 515 516 517 518 519 520 521
    a[RESTORATION_HALFWIN] -= 2 * a[i];
    b[RESTORATION_HALFWIN] -= 2 * b[i];
  }
  for (k = 0; k < w; ++k) {
    for (l = 0; l < w; ++l) {
      ab[k * w + l] = a[l] * b[k];
    }
  }
  for (k = 0; k < w * w; ++k) {
    P += ab[k] * M[k];
522
    for (l = 0; l < w * w; ++l) Q += ab[k] * H[k * w * w + l] * ab[l];
Aamir Anis's avatar
Aamir Anis committed
523 524 525 526 527 528 529 530 531 532
  }
  Score = Q - 2 * P;

  iP = M[(w * w) >> 1];
  iQ = H[((w * w) >> 1) * w * w + ((w * w) >> 1)];
  iScore = iQ - 2 * iP;

  return Score - iScore;
}

533
#define CLIP(x, lo, hi) ((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x))
534
#define RINT(x) ((x) < 0 ? (int)((x)-0.5) : (int)((x) + 0.5))
535 536 537 538 539 540 541 542 543 544 545 546

static void quantize_sym_filter(double *f, int *fi) {
  int i;
  for (i = 0; i < RESTORATION_HALFWIN; ++i) {
    fi[i] = RINT(f[i] * RESTORATION_FILT_STEP);
  }
  // Specialize for 7-tap filter
  fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
  fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
  fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
}

547 548
static int search_wiener_filter(const YV12_BUFFER_CONFIG *src, VP10_COMP *cpi,
                                int filter_level, int partial_frame,
549 550 551
                                int (*vfilter)[RESTORATION_HALFWIN],
                                int (*hfilter)[RESTORATION_HALFWIN],
                                int *process_tile, double *best_cost_ret) {
552 553
  VP10_COMMON *const cm = &cpi->common;
  RestorationInfo rsi;
554 555
  int64_t err;
  int bits;
556 557 558 559 560 561 562 563 564 565
  double cost_wiener, cost_norestore;
  MACROBLOCK *x = &cpi->td.mb;
  double M[RESTORATION_WIN2];
  double H[RESTORATION_WIN2 * RESTORATION_WIN2];
  double vfilterd[RESTORATION_WIN], hfilterd[RESTORATION_WIN];
  const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
  const int width = cm->width;
  const int height = cm->height;
  const int src_stride = src->y_stride;
  const int dgd_stride = dgd->y_stride;
Aamir Anis's avatar
Aamir Anis committed
566
  double score;
567 568 569 570 571 572
  int tile_idx, htile_idx, vtile_idx, tile_width, tile_height, nhtiles, nvtiles;
  int h_start, h_end, v_start, v_end;
  int i, j;

  const int tilesize = WIENER_TILESIZE;
  const int ntiles = vp10_get_restoration_ntiles(tilesize, width, height);
573 574 575 576 577 578

  assert(width == dgd->y_crop_width);
  assert(height == dgd->y_crop_height);
  assert(width == src->y_crop_width);
  assert(height == src->y_crop_height);

579 580 581
  vp10_get_restoration_tile_size(tilesize, width, height, &tile_width,
                                 &tile_height, &nhtiles, &nvtiles);

582 583 584 585 586 587 588 589 590
  //  Make a copy of the unfiltered / processed recon buffer
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
  vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
                         1, partial_frame);
  vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);

  rsi.restoration_type = RESTORE_NONE;
  err = try_restoration_frame(src, cpi, &rsi, partial_frame);
  bits = 0;
591 592
  cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv,
                              (bits << (VP10_PROB_COST_SHIFT - 4)), err);
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
  rsi.restoration_type = RESTORE_WIENER;
  rsi.vfilter =
      (int(*)[RESTORATION_HALFWIN])vpx_malloc(sizeof(*rsi.vfilter) * ntiles);
  assert(rsi.vfilter != NULL);
  rsi.hfilter =
      (int(*)[RESTORATION_HALFWIN])vpx_malloc(sizeof(*rsi.hfilter) * ntiles);
  assert(rsi.hfilter != NULL);
  rsi.wiener_level = (int *)vpx_malloc(sizeof(*rsi.wiener_level) * ntiles);
  assert(rsi.wiener_level != NULL);

  // Compute best Wiener filters for each tile
  for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
    htile_idx = tile_idx % nhtiles;
    vtile_idx = tile_idx / nhtiles;
    h_start =
        htile_idx * tile_width + ((htile_idx > 0) ? 0 : RESTORATION_HALFWIN);
    h_end = (htile_idx < nhtiles - 1) ? ((htile_idx + 1) * tile_width)
                                      : (width - RESTORATION_HALFWIN);
    v_start =
        vtile_idx * tile_height + ((vtile_idx > 0) ? 0 : RESTORATION_HALFWIN);
    v_end = (vtile_idx < nvtiles - 1) ? ((vtile_idx + 1) * tile_height)
                                      : (height - RESTORATION_HALFWIN);

617
#if CONFIG_VP9_HIGHBITDEPTH
618 619 620 621
    if (cm->use_highbitdepth)
      compute_stats_highbd(dgd->y_buffer, src->y_buffer, h_start, h_end,
                           v_start, v_end, dgd_stride, src_stride, M, H);
    else
622
#endif  // CONFIG_VP9_HIGHBITDEPTH
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
      compute_stats(dgd->y_buffer, src->y_buffer, h_start, h_end, v_start,
                    v_end, dgd_stride, src_stride, M, H);

    if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) {
      for (i = 0; i < RESTORATION_HALFWIN; ++i)
        rsi.vfilter[tile_idx][i] = rsi.hfilter[tile_idx][i] = 0;
      process_tile[tile_idx] = 0;
      continue;
    }
    quantize_sym_filter(vfilterd, rsi.vfilter[tile_idx]);
    quantize_sym_filter(hfilterd, rsi.hfilter[tile_idx]);
    process_tile[tile_idx] = 1;

    // Filter score computes the value of the function x'*A*x - x'*b for the
    // learned filter and compares it against identity filer. If there is no
    // reduction in the function, the filter is reverted back to identity
    score = compute_score(M, H, rsi.vfilter[tile_idx], rsi.hfilter[tile_idx]);
    if (score > 0.0) {
      for (i = 0; i < RESTORATION_HALFWIN; ++i)
        rsi.vfilter[tile_idx][i] = rsi.hfilter[tile_idx][i] = 0;
      process_tile[tile_idx] = 0;
      continue;
    }
646

647 648 649 650 651 652 653 654
    for (j = 0; j < ntiles; ++j) rsi.wiener_level[j] = 0;
    rsi.wiener_level[tile_idx] = 1;

    err = try_restoration_frame(src, cpi, &rsi, partial_frame);
    bits = 1 + WIENER_FILT_BITS;
    cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv,
                             (bits << (VP10_PROB_COST_SHIFT - 4)), err);
    if (cost_wiener >= cost_norestore) process_tile[tile_idx] = 0;
655
  }
656 657 658 659 660
  // Cost for Wiener filtering
  bits = 0;
  for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
    bits += (process_tile[tile_idx] ? (WIENER_FILT_BITS + 1) : 1);
    rsi.wiener_level[tile_idx] = process_tile[tile_idx];
Aamir Anis's avatar
Aamir Anis committed
661
  }
662
  err = try_restoration_frame(src, cpi, &rsi, partial_frame);
663 664
  cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv,
                           (bits << (VP10_PROB_COST_SHIFT - 4)), err);
665

666 667 668 669 670 671 672 673 674 675 676
  for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
    if (process_tile[tile_idx] == 0) continue;
    for (i = 0; i < RESTORATION_HALFWIN; ++i) {
      vfilter[tile_idx][i] = rsi.vfilter[tile_idx][i];
      hfilter[tile_idx][i] = rsi.hfilter[tile_idx][i];
    }
  }

  vpx_free(rsi.vfilter);
  vpx_free(rsi.hfilter);
  vpx_free(rsi.wiener_level);
677

678
  vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
679 680 681 682 683 684 685 686 687
  if (cost_wiener < cost_norestore) {
    if (best_cost_ret) *best_cost_ret = cost_wiener;
    return 1;
  } else {
    if (best_cost_ret) *best_cost_ret = cost_norestore;
    return 0;
  }
}

688 689
void vp10_pick_filter_restoration(const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi,
                                  LPF_PICK_METHOD method) {
690 691
  VP10_COMMON *const cm = &cpi->common;
  struct loopfilter *const lf = &cm->lf;
692
  int wiener_success = 0;
693
  int bilateral_success = 0;
694 695 696
  double cost_bilateral = DBL_MAX;
  double cost_wiener = DBL_MAX;
  double cost_norestore = DBL_MAX;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  int ntiles;

  ntiles =
      vp10_get_restoration_ntiles(BILATERAL_TILESIZE, cm->width, cm->height);
  cm->rst_info.bilateral_level =
      (int *)vpx_realloc(cm->rst_info.bilateral_level,
                         sizeof(*cm->rst_info.bilateral_level) * ntiles);
  assert(cm->rst_info.bilateral_level != NULL);

  ntiles = vp10_get_restoration_ntiles(WIENER_TILESIZE, cm->width, cm->height);
  cm->rst_info.wiener_level = (int *)vpx_realloc(
      cm->rst_info.wiener_level, sizeof(*cm->rst_info.wiener_level) * ntiles);
  assert(cm->rst_info.wiener_level != NULL);
  cm->rst_info.vfilter = (int(*)[RESTORATION_HALFWIN])vpx_realloc(
      cm->rst_info.vfilter, sizeof(*cm->rst_info.vfilter) * ntiles);
  assert(cm->rst_info.vfilter != NULL);
  cm->rst_info.hfilter = (int(*)[RESTORATION_HALFWIN])vpx_realloc(
      cm->rst_info.hfilter, sizeof(*cm->rst_info.hfilter) * ntiles);
  assert(cm->rst_info.hfilter != NULL);
716

717
  lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;
718 719

  if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
720 721
    lf->filter_level = 0;
    cm->rst_info.restoration_type = RESTORE_NONE;
722 723 724 725
  } else if (method >= LPF_PICK_FROM_Q) {
    const int min_filter_level = 0;
    const int max_filter_level = vp10_get_max_filter_level(cpi);
    const int q = vp10_ac_quant(cm->base_qindex, 0, cm->bit_depth);
726 727
// These values were determined by linear fitting the result of the
// searched level, filt_guess = q * 0.316206 + 3.87252
728 729 730 731 732 733 734 735 736 737 738 739 740
#if CONFIG_VP9_HIGHBITDEPTH
    int filt_guess;
    switch (cm->bit_depth) {
      case VPX_BITS_8:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
        break;
      case VPX_BITS_10:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
        break;
      case VPX_BITS_12:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
        break;
      default:
741 742 743
        assert(0 &&
               "bit_depth should be VPX_BITS_8, VPX_BITS_10 "
               "or VPX_BITS_12");
744 745 746 747 748
        return;
    }
#else
    int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
#endif  // CONFIG_VP9_HIGHBITDEPTH
749
    if (cm->frame_type == KEY_FRAME) filt_guess -= 4;
750
    lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
751
    bilateral_success = search_bilateral_level(
752
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
753
        cm->rst_info.bilateral_level, &cost_bilateral);
754 755
    wiener_success = search_wiener_filter(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
756 757
        cm->rst_info.vfilter, cm->rst_info.hfilter, cm->rst_info.wiener_level,
        &cost_wiener);
758
    if (cost_bilateral < cost_wiener) {
759
      if (bilateral_success)
760 761 762 763 764 765 766 767 768 769 770
        cm->rst_info.restoration_type = RESTORE_BILATERAL;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    } else {
      if (wiener_success)
        cm->rst_info.restoration_type = RESTORE_WIENER;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    }
  } else {
    int blf_filter_level = -1;
771 772 773
    bilateral_success = search_filter_bilateral_level(
        sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, &blf_filter_level,
        cm->rst_info.bilateral_level, &cost_bilateral);
774 775 776 777
    lf->filter_level = vp10_search_filter_level(
        sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, &cost_norestore);
    wiener_success = search_wiener_filter(
        sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
778 779
        cm->rst_info.vfilter, cm->rst_info.hfilter, cm->rst_info.wiener_level,
        &cost_wiener);
780 781
    if (cost_bilateral < cost_wiener) {
      lf->filter_level = blf_filter_level;
782
      if (bilateral_success)
783 784 785 786 787 788 789 790 791
        cm->rst_info.restoration_type = RESTORE_BILATERAL;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    } else {
      if (wiener_success)
        cm->rst_info.restoration_type = RESTORE_WIENER;
      else
        cm->rst_info.restoration_type = RESTORE_NONE;
    }
792
    // printf("[%d] Costs %g %g (%d) %g (%d)\n", cm->rst_info.restoration_type,
793 794 795 796 797 798 799 800 801 802 803 804 805 806
    //        cost_norestore, cost_bilateral, lf->filter_level, cost_wiener,
    //        wiener_success);
  }
  if (cm->rst_info.restoration_type != RESTORE_BILATERAL) {
    vpx_free(cm->rst_info.bilateral_level);
    cm->rst_info.bilateral_level = NULL;
  }
  if (cm->rst_info.restoration_type != RESTORE_WIENER) {
    vpx_free(cm->rst_info.vfilter);
    cm->rst_info.vfilter = NULL;
    vpx_free(cm->rst_info.hfilter);
    cm->rst_info.hfilter = NULL;
    vpx_free(cm->rst_info.wiener_level);
    cm->rst_info.wiener_level = NULL;
807 808
  }
}