generic_decoder.c 4.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/*
 * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

/* clang-format off */

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#include <stdio.h>

#include "aom_dsp/entdec.h"
#include "av1/common/generic_code.h"
#include "av1/common/odintrin.h"
#include "pvq_decoder.h"

/** Decodes a value from 0 to N-1 (with N up to 16) based on a cdf and adapts
 * the cdf accordingly.
 *
 * @param [in,out] enc   range encoder
 * @param [in,out] cdf   CDF of the variable (Q15)
 * @param [in]     n     number of values possible
 * @param [in,out] count number of symbols encoded with that cdf so far
 * @param [in]     rate  adaptation rate shift (smaller is faster)
 * @return decoded variable
 */
int od_decode_cdf_adapt_q15_(od_ec_dec *ec, uint16_t *cdf, int n,
 int *count, int rate OD_ACC_STR) {
  int val;
  int i;
  if (*count == 0) {
    int ft;
    ft = cdf[n - 1];
    for (i = 0; i < n; i++) {
      cdf[i] = cdf[i]*32768/ft;
    }
  }
  val = od_ec_decode_cdf_q15(ec, cdf, n);
47
  aom_cdf_adapt_q15(val, cdf, n, count, rate);
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  return val;
}

/** Decodes a value from 0 to N-1 (with N up to 16) based on a cdf and adapts
 * the cdf accordingly.
 *
 * @param [in,out] enc   range encoder
 * @param [in]     cdf   CDF of the variable (Q15)
 * @param [in]     n     number of values possible
 * @param [in]     increment adaptation speed (Q15)
 *
 * @retval decoded variable
 */
int od_decode_cdf_adapt_(od_ec_dec *ec, uint16_t *cdf, int n,
 int increment OD_ACC_STR) {
  int i;
  int val;
  val = od_ec_decode_cdf_unscaled(ec, cdf, n);
  if (cdf[n-1] + increment > 32767) {
    for (i = 0; i < n; i++) {
      /* Second term ensures that the pdf is non-null */
      cdf[i] = (cdf[i] >> 1) + i + 1;
    }
  }
  for (i = val; i < n; i++) cdf[i] += increment;
  return val;
}

/** Encodes a random variable using a "generic" model, assuming that the
 * distribution is one-sided (zero and up), has a single mode, and decays
 * exponentially past the model.
 *
 * @param [in,out] dec   range decoder
 * @param [in,out] model generic probability model
 * @param [in]     x     variable being encoded
 * @param [in,out] ExQ16 expectation of x (adapted)
 * @param [in]     integration integration period of ExQ16 (leaky average over
 * 1<<integration samples)
 *
 * @retval decoded variable x
 */
int generic_decode_(od_ec_dec *dec, generic_encoder *model, int max,
 int *ex_q16, int integration OD_ACC_STR) {
  int lg_q1;
  int shift;
  int id;
  uint16_t *cdf;
  int xs;
  int lsb;
  int x;
  int ms;
  lsb = 0;
  if (max == 0) return 0;
  lg_q1 = log_ex(*ex_q16);
  /* If expectation is too large, shift x to ensure that
     all we have past xs=15 is the exponentially decaying tail
     of the distribution. */
  shift = OD_MAXI(0, (lg_q1 - 5) >> 1);
  /* Choose the cdf to use: we have two per "octave" of ExQ16. */
  id = OD_MINI(GENERIC_TABLES - 1, lg_q1);
  cdf = model->cdf[id];
  ms = (max + (1 << shift >> 1)) >> shift;
  if (max == -1) xs = od_ec_decode_cdf_unscaled(dec, cdf, 16);
  else xs = od_ec_decode_cdf_unscaled(dec, cdf, OD_MINI(ms + 1, 16));
  if (xs == 15) {
    int e;
    unsigned decay;
    /* Estimate decay based on the assumption that the distribution is close
       to Laplacian for large values. We should probably have an adaptive
       estimate instead. Note: The 2* is a kludge that's not fully understood
       yet. */
    OD_ASSERT(*ex_q16 < INT_MAX >> 1);
    e = ((2**ex_q16 >> 8) + (1 << shift >> 1)) >> shift;
    decay = OD_MAXI(2, OD_MINI(254, 256*e/(e + 256)));
    xs += laplace_decode_special(dec, decay, (max == -1) ? -1 : ms - 15, acc_str);
  }
  if (shift != 0) {
    int special;
    /* Because of the rounding, there's only half the number of possibilities
       for xs=0 */
    special = xs == 0;
    if (shift - special > 0) lsb = od_ec_dec_bits(dec, shift - special, acc_str);
    lsb -= !special << (shift - 1);
  }
  x = (xs << shift) + lsb;
  generic_model_update(model, ex_q16, x, xs, id, integration);
  OD_LOG((OD_LOG_ENTROPY_CODER, OD_LOG_DEBUG,
   "dec: %d %d %d %d %d %x", *ex_q16, x, shift, id, xs, dec->rng));
  return x;
}