restoration.c 73.8 KB
Newer Older
1
/*
Yaowu Xu's avatar
Yaowu Xu committed
2
3
4
5
6
7
8
9
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
11
12
13
14
 *
 */

#include <math.h>

Yaowu Xu's avatar
Yaowu Xu committed
15
16
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
17
#include "./aom_scale_rtcd.h"
Yaowu Xu's avatar
Yaowu Xu committed
18
#include "aom_mem/aom_mem.h"
19
#include "av1/common/onyxc_int.h"
20
#if CONFIG_HORZONLY_FRAME_SUPERRES
21
22
#include "av1/common/resize.h"
#endif
23
#include "av1/common/restoration.h"
Yaowu Xu's avatar
Yaowu Xu committed
24
25
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
26

27
#include "aom_ports/mem.h"
28

29
const sgr_params_type sgr_params[SGRPROJ_PARAMS] = {
30
// r1, eps1, r2, eps2
31
#if MAX_RADIUS == 2
32
33
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
34
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 2, 30, 1, 6 },
35
36
  { 2, 50, 1, 12 }, { 2, 60, 1, 13 }, { 2, 70, 1, 14 }, { 2, 80, 1, 15 },
#else
37
38
39
40
  { 2, 12, 1, 4 },  { 2, 15, 1, 6 },  { 2, 18, 1, 8 },  { 2, 20, 1, 9 },
  { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 },
  { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 },
  { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 },
41
#endif  // MAX_RADIUS == 2
42
43
};

44
45
46
47
48
49
50
51
52
53
54
55
56
// Similar to av1_get_tile_rect(), except that we extend the bottommost tile in
// each frame to a multiple of 8 luma pixels.
// This is done to help simplify the implementation of striped-loop-restoration,
// by avoiding nasty edge cases which would otherwise appear when the (cropped)
// frame height is 57 or 63 (mod 64).
static AV1PixelRect get_ext_tile_rect(const TileInfo *tile_info,
                                      const AV1_COMMON *cm, int is_uv) {
  int ss_y = is_uv && cm->subsampling_y;
  AV1PixelRect tile_rect = av1_get_tile_rect(tile_info, cm, is_uv);
  tile_rect.bottom = ALIGN_POWER_OF_TWO(tile_rect.bottom, 3 - ss_y);
  return tile_rect;
}

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// Count horizontal or vertical units per tile (use a width or height for
// tile_size, respectively). We basically want to divide the tile size by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a restoration
// unit.
static int count_units_in_tile(int unit_size, int tile_size) {
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
}

void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
                                  int is_uv) {
#if CONFIG_MAX_TILE
  // We need to allocate enough space for restoration units to cover the
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
73
  // top-left and we can use get_ext_tile_rect(). With CONFIG_MAX_TILE, we have
74
75
  // to do the computation ourselves, iterating over the tiles and keeping
  // track of the largest width and height, then upscaling.
76
77
78
79
80
  TileInfo tile;
  int max_mi_w = 0;
  int max_mi_h = 0;
  int tile_col = 0;
  int tile_row = 0;
81
  for (int i = 0; i < cm->tile_cols; ++i) {
82
83
84
85
86
    av1_tile_set_col(&tile, cm, i);
    if (tile.mi_col_end - tile.mi_col_start > max_mi_w) {
      max_mi_w = tile.mi_col_end - tile.mi_col_start;
      tile_col = i;
    }
87
88
  }
  for (int i = 0; i < cm->tile_rows; ++i) {
89
90
91
92
93
    av1_tile_set_row(&tile, cm, i);
    if (tile.mi_row_end - tile.mi_row_start > max_mi_h) {
      max_mi_h = tile.mi_row_end - tile.mi_row_start;
      tile_row = i;
    }
94
  }
95
96
  TileInfo tile_info;
  av1_tile_init(&tile_info, cm, tile_row, tile_col);
97
98
99
#else
  TileInfo tile_info;
  av1_tile_init(&tile_info, cm, 0, 0);
100
#endif  // CONFIG_MAX_TILE
101

102
  const AV1PixelRect tile_rect = get_ext_tile_rect(&tile_info, cm, is_uv);
103
104
  const int max_tile_w = tile_rect.right - tile_rect.left;
  const int max_tile_h = tile_rect.bottom - tile_rect.top;
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

  // To calculate hpertile and vpertile (horizontal and vertical units per
  // tile), we basically want to divide the largest tile width or height by the
  // size of a restoration unit. Rather than rounding up unconditionally as you
  // might expect, we round to nearest, which models the way a right or bottom
  // restoration unit can extend to up to 150% its normal width or height. The
  // max with 1 is to deal with tiles that are smaller than half of a
  // restoration unit.
  const int unit_size = rsi->restoration_unit_size;
  const int hpertile = count_units_in_tile(unit_size, max_tile_w);
  const int vpertile = count_units_in_tile(unit_size, max_tile_h);

  rsi->units_per_tile = hpertile * vpertile;
  rsi->horz_units_per_tile = hpertile;
  rsi->vert_units_per_tile = vpertile;

  const int ntiles = cm->tile_rows * cm->tile_cols;
  const int nunits = ntiles * rsi->units_per_tile;

  aom_free(rsi->unit_info);
125
126
127
  CHECK_MEM_ERROR(cm, rsi->unit_info,
                  (RestorationUnitInfo *)aom_memalign(
                      16, sizeof(*rsi->unit_info) * nunits));
128
129
130
}

void av1_free_restoration_struct(RestorationInfo *rst_info) {
131
132
  aom_free(rst_info->unit_info);
  rst_info->unit_info = NULL;
133
}
134
135
136

// TODO(debargha): This table can be substantially reduced since only a few
// values are actually used.
David Barker's avatar
David Barker committed
137
int sgrproj_mtable[MAX_EPS][MAX_NELEM];
138
139
140
141
142
143
144
145
146
147

static void GenSgrprojVtable() {
  int e, n;
  for (e = 1; e <= MAX_EPS; ++e)
    for (n = 1; n <= MAX_NELEM; ++n) {
      const int n2e = n * n * e;
      sgrproj_mtable[e - 1][n - 1] =
          (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
    }
}
148
149

void av1_loop_restoration_precal() { GenSgrprojVtable(); }
150

151
152
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
                               int border_horz, int border_vert) {
153
154
155
156
  uint8_t *data_p;
  int i;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
157
158
    memset(data_p - border_horz, data_p[0], border_horz);
    memset(data_p + width, data_p[width - 1], border_horz);
159
  }
160
161
162
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
163
  }
164
  for (i = height; i < height + border_vert; ++i) {
165
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
166
           width + 2 * border_horz);
167
168
169
  }
}

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#if CONFIG_HIGHBITDEPTH
static void extend_frame_highbd(uint16_t *data, int width, int height,
                                int stride, int border_horz, int border_vert) {
  uint16_t *data_p;
  int i, j;
  for (i = 0; i < height; ++i) {
    data_p = data + i * stride;
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
  }
  data_p = data - border_horz;
  for (i = -border_vert; i < 0; ++i) {
    memcpy(data_p + i * stride, data_p,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
  for (i = height; i < height + border_vert; ++i) {
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
           (width + 2 * border_horz) * sizeof(uint16_t));
  }
}
#endif

void extend_frame(uint8_t *data, int width, int height, int stride,
                  int border_horz, int border_vert, int highbd) {
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
                        border_horz, border_vert);
  else
#endif
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
}

206
207
208
209
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
                            int src_stride, uint8_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
210
211
212
}

#if CONFIG_HIGHBITDEPTH
213
214
215
216
static void copy_tile_highbd(int width, int height, const uint16_t *src,
                             int src_stride, uint16_t *dst, int dst_stride) {
  for (int i = 0; i < height; ++i)
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
217
218
219
}
#endif

220
221
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
                      uint8_t *dst, int dst_stride, int highbd) {
222
223
224
225
226
#if !CONFIG_HIGHBITDEPTH
  assert(highbd == 0);
  (void)highbd;
#else
  if (highbd)
227
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
228
229
230
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
  else
#endif
231
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
232
}
233

234
235
236
#if CONFIG_STRIPED_LOOP_RESTORATION
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))

237
238
239
240
241
242
243
244
245
246
247
248
// Helper function: Save one column of left/right context to the appropriate
// column buffers, then extend the edge of the current tile into that column.
//
// Note: The code to deal with above/below boundaries may have filled out
// the corners of the border with data from the tiles to our left or right,
// which isn't allowed. To fix that up, we need to include the top and
// bottom context regions in the area which we extend.
// But note that we don't need to store the pixels we overwrite in the
// corners of the context area - those have already been overwritten once,
// so their original values are already in rlbs->tmp_save_{above,below}.
#if CONFIG_LOOPFILTERING_ACROSS_TILES
static void setup_boundary_column(const uint8_t *src8, int src_stride,
249
250
                                  uint8_t *dst8, int dst_stride, uint16_t *buf,
                                  int h, int use_highbd) {
251
252
253
254
255
  if (use_highbd) {
    const uint16_t *src16 = CONVERT_TO_SHORTPTR(src8);
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst16[i * dst_stride] = src16[i * src_stride];
256
257
    for (int i = 0; i < h; i++) {
      buf[i] = dst16[i * dst_stride];
258
259
      dst16[i * dst_stride] = src16[i * src_stride];
    }
260
    for (int i = h; i < h + RESTORATION_BORDER; i++)
261
262
263
264
      dst16[i * dst_stride] = src16[i * src_stride];
  } else {
    for (int i = -RESTORATION_BORDER; i < 0; i++)
      dst8[i * dst_stride] = src8[i * src_stride];
265
266
    for (int i = 0; i < h; i++) {
      buf[i] = dst8[i * dst_stride];
267
268
      dst8[i * dst_stride] = src8[i * src_stride];
    }
269
    for (int i = h; i < h + RESTORATION_BORDER; i++)
270
271
272
      dst8[i * dst_stride] = src8[i * src_stride];
  }
}
273
274
275
276
277
278
279
280
281
282
283

static void restore_boundary_column(uint8_t *dst8, int dst_stride,
                                    const uint16_t *buf, int h,
                                    int use_highbd) {
  if (use_highbd) {
    uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst8);
    for (int i = 0; i < h; i++) dst16[i * dst_stride] = buf[i];
  } else {
    for (int i = 0; i < h; i++) dst8[i * dst_stride] = buf[i];
  }
}
284
285
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES

286
// With striped loop restoration, the filtering for each 64-pixel stripe gets
287
288
289
290
// most of its input from the output of CDEF (stored in data8), but we need to
// fill out a border of 3 pixels above/below the stripe according to the
// following
// rules:
291
//
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
//   This extension is done by a call to extend_frame() at the start of the loop
//   restoration process, so the value of copy_above/copy_below doesn't strictly
//   matter.
//   However, by setting *copy_above = *copy_below = 1 whenever loop filtering
//   across tiles is disabled, we can allow
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
//   data has always been copied, simplifying the behaviour at the left and
//   right edges of tiles.
//
// * If we're at a tile boundary and loop filtering across tiles is enabled,
//   then there is a logical stripe which is 64 pixels high, but which is split
//   into an 8px high and a 56px high stripe so that the processing (and
//   coefficient set usage) can be aligned to tiles.
//   In this case, we use the 3 rows of CDEF output across the boundary for
//   context; this corresponds to leaving the frame buffer as-is.
//
// * If we're at a tile boundary and loop filtering across tiles is disabled,
//   then we take the outermost row of CDEF pixels *within the current tile*
//   and copy it three times. Thus we behave exactly as if the tile were a full
//   frame.
//
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
//
// The distinction between the latter two cases is handled by the
// av1_loop_restoration_save_boundary_lines() function, so here we just need
// to decide if we're overwriting the above/below boundary pixels or not.
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
                                     const AV1PixelRect *tile_rect, int ss_y,
#if CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
                                     int *copy_above, int *copy_below) {
  *copy_above = 1;
  *copy_below = 1;

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (loop_filter_across_tiles_enabled) {
#endif
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
    const int rtile_offset = RESTORATION_TILE_OFFSET >> ss_y;

    const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
    const int this_stripe_height =
        full_stripe_height - (first_stripe_in_tile ? rtile_offset : 0);
    const int last_stripe_in_tile =
        (limits->v_start + this_stripe_height >= tile_rect->bottom);

    if (first_stripe_in_tile) *copy_above = 0;
    if (last_stripe_in_tile) *copy_below = 0;
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  }
#endif
}

// Overwrite the border pixels around a processing stripe so that the conditions
// listed above get_stripe_boundary_info() are preserved.
// We save the pixels which get overwritten into a temporary buffer, so that
// they can be restored by restore_processing_stripe_boundary() after we've
// processed the stripe.
353
354
//
// limits gives the rectangular limits of the remaining stripes for the current
355
356
// restoration unit. rsb is the stored stripe boundaries (taken from either
// deblock or CDEF output as necessary).
357
358
359
360
//
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
// the first stripe in this tile (needed to convert the tile-relative stripe
// index we get from limits into something we can look up in rsb).
361
static void setup_processing_stripe_boundary(
362
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
363
    int rsb_row, int use_highbd, int h,
364
#if CONFIG_LOOPFILTERING_ACROSS_TILES
365
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
366
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
367
368
    uint8_t *data8, int data_stride, RestorationLineBuffers *rlbs,
    int copy_above, int copy_below) {
369
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
370

371
372
373
  // Offsets within the line buffers. The buffer logically starts at column
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
  // has column x0 in the buffer.
374
  const int buf_stride = rsb->stripe_boundary_stride;
375
376
377
378
  const int buf_x0_off = limits->h_start;
  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
379

380
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
381

382
383
384
385
386
  // Replace RESTORATION_BORDER pixels above the top of the stripe
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  //
  // Special case: If we're at the top of a tile, which isn't on the topmost
  // tile row, and we're allowed to loop filter across tiles, then we have a
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
  // we want to leave the boundary alone!
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;

    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *buf = rsb->stripe_boundary_above + (buf_off << use_highbd);
      uint8_t *dst8 = data8_tl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_above
      memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
             REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
    }
406
  }
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
  // The second buffer row is repeated, so src_row gets the values 0, 1, 1
  // for i = 0, 1, 2.
  if (copy_below) {
    const int stripe_end = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;

    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
      const int buf_off = buf_x0_off + buf_row * buf_stride;
      const uint8_t *src = rsb->stripe_boundary_below + (buf_off << use_highbd);

      uint8_t *dst8 = data8_bl + i * data_stride;
      // Save old pixels, then replace with data from stripe_boundary_below
      memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
      memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
    }
425
  }
426

427
428
429
430
431
432
#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // If loopfiltering across tiles is disabled, we need to check if we're at
    // the edge of the current tile column. If we are, we need to extend the
    // leftmost/rightmost column within the tile by 3 pixels, so that the output
    // doesn't depend on pixels from the next column over.
433
434
    // This applies to the top and bottom borders too, since those may have
    // been filled out with data from the tile to the top-left (etc.) of us.
435
436
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);
437

438
439
440
441
    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
        setup_boundary_column(dst8, data_stride, dst8 + j, data_stride,
442
443
                              rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                              use_highbd);
444
445
446
447
448
449
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
        setup_boundary_column(dst8 - 1, data_stride, dst8 + j, data_stride,
450
                              rlbs->tmp_save_right[j], h, use_highbd);
451
452
453
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
454
455
456
457
}

// This function restores the boundary lines modified by
// setup_processing_stripe_boundary.
458
static void restore_processing_stripe_boundary(
459
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
460
    int use_highbd, int h,
461
462
463
#if CONFIG_LOOPFILTERING_ACROSS_TILES
    const AV1PixelRect *tile_rect, int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
464
    uint8_t *data8, int data_stride, int copy_above, int copy_below) {
465
  assert(CONFIG_HIGHBITDEPTH || !use_highbd);
466
467
468
469

  const int line_width =
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
  const int line_size = line_width << use_highbd;
470

471
472
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;

473
474
475
476
477
478
479
  if (copy_above) {
    uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
    for (int i = -RESTORATION_BORDER; i < 0; ++i) {
      uint8_t *dst8 = data8_tl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8),
             rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
    }
480
  }
481

482
483
484
  if (copy_below) {
    const int stripe_bottom = limits->v_start + h;
    uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
485

486
487
    for (int i = 0; i < RESTORATION_BORDER; ++i) {
      if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
488

489
490
491
      uint8_t *dst8 = data8_bl + i * data_stride;
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
    }
492
  }
493
494
495
496
497
498

#if CONFIG_LOOPFILTERING_ACROSS_TILES
  if (!loop_filter_across_tiles_enabled) {
    // Restore any pixels we overwrote at the left/right edge of this
    // processing unit
    // Note: We don't need to restore the corner pixels, even if we overwrote
499
500
501
    // them in the equivalent place in setup_processing_stripe_boundary:
    // Because !loop_filter_across_tiles_enabled => copy_above = copy_below = 1,
    // the corner pixels will already have been restored before we get here.
502
503
504
505
506
507
    const int at_tile_left_border = (limits->h_start == tile_rect->left);
    const int at_tile_right_border = (limits->h_end == tile_rect->right);

    if (at_tile_left_border) {
      uint8_t *dst8 = data8 + limits->h_start + limits->v_start * data_stride;
      for (int j = -RESTORATION_BORDER; j < 0; j++)
508
509
510
        restore_boundary_column(dst8 + j, data_stride,
                                rlbs->tmp_save_left[j + RESTORATION_BORDER], h,
                                use_highbd);
511
512
513
514
515
    }

    if (at_tile_right_border) {
      uint8_t *dst8 = data8 + limits->h_end + limits->v_start * data_stride;
      for (int j = 0; j < RESTORATION_BORDER; j++)
516
517
        restore_boundary_column(dst8 + j, data_stride, rlbs->tmp_save_right[j],
                                h, use_highbd);
518
519
520
    }
  }
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
521
522
523
}
#endif

524
525
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
#define wiener_convolve8_add_src aom_convolve8_add_src_hip
526
#else
527
#define wiener_convolve8_add_src aom_convolve8_add_src
528
529
#endif

530
531
532
533
534
535
536
537
538
539
540
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
                                 int stripe_width, int stripe_height,
                                 int procunit_width, const uint8_t *src,
                                 int src_stride, uint8_t *dst, int dst_stride,
                                 int32_t *tmpbuf, int bit_depth) {
  (void)tmpbuf;
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
541
542
543
    const uint8_t *src_p = src + j;
    uint8_t *dst_p = dst + j;
    wiener_convolve8_add_src(src_p, src_stride, dst_p, dst_stride,
544
                             rui->wiener_info.hfilter, 16,
545
                             rui->wiener_info.vfilter, 16, w, stripe_height);
546
  }
547
}
548

549
550
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
   over the input. The window is of size (2r + 1)x(2r + 1), and we
551
   specialize to r = 1, 2, 3. A default function is used for r > 3.
552
553
554
555
556
557
558
559
560
561
562
563
564
565

   Each loop follows the same format: We keep a window's worth of input
   in individual variables and select data out of that as appropriate.
*/
static void boxsum1(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c;

  // Vertical sum over 3-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
566

567
568
569
570
571
572
573
574
575
576
577
578
579
580
      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 1) * src_stride + j]
        // b = src[(i    ) * src_stride + j]
        // c = src[(i + 1) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
581
  } else {
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];

      dst[j] = a + b;
      for (i = 1; i < height - 2; ++i) {
        dst[i * dst_stride + j] = a + b + c;
        a = b;
        b = c;
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c;
      dst[(i + 1) * dst_stride + j] = b + c;
    }
  }

  // Horizontal sum over 3-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];

    dst[i * dst_stride] = a + b;
    for (j = 1; j < width - 2; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 1)]
      // b = src[i * src_stride + (j    )]
      // c = src[i * src_stride + (j + 1)]
      dst[i * dst_stride + j] = a + b + c;
      a = b;
      b = c;
      c = dst[i * dst_stride + (j + 2)];
    }
    dst[i * dst_stride + j] = a + b + c;
    dst[i * dst_stride + (j + 1)] = b + c;
  }
}

static void boxsum2(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e;

  // Vertical sum over 5-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        // Loop invariant: At the start of each iteration,
        // a = src[(i - 2) * src_stride + j]
        // b = src[(i - 1) * src_stride + j]
        // c = src[(i    ) * src_stride + j]
        // d = src[(i + 1) * src_stride + j]
        // e = src[(i + 2) * src_stride + j]
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[src_stride + j] * src[src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];

      dst[j] = a + b + c;
      dst[dst_stride + j] = a + b + c + d;
      for (i = 2; i < height - 3; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e;
        a = b;
        b = c;
        c = d;
        d = e;
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e;
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
      dst[(i + 2) * dst_stride + j] = c + d + e;
    }
  }

  // Horizontal sum over 5-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];

    dst[i * dst_stride] = a + b + c;
    dst[i * dst_stride + 1] = a + b + c + d;
    for (j = 2; j < width - 3; ++j) {
      // Loop invariant: At the start of each iteration,
      // a = src[i * src_stride + (j - 2)]
      // b = src[i * src_stride + (j - 1)]
      // c = src[i * src_stride + (j    )]
      // d = src[i * src_stride + (j + 1)]
      // e = src[i * src_stride + (j + 2)]
      dst[i * dst_stride + j] = a + b + c + d + e;
      a = b;
      b = c;
      c = d;
      d = e;
      e = dst[i * dst_stride + (j + 3)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e;
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
    dst[i * dst_stride + (j + 2)] = c + d + e;
  }
}

708
#if MAX_RADIUS > 2
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
static void boxsum3(int32_t *src, int width, int height, int src_stride,
                    int sqr, int32_t *dst, int dst_stride) {
  int i, j, a, b, c, d, e, f, g;

  // Vertical sum over 7-pixel regions, from src into dst.
  if (!sqr) {
    for (j = 0; j < width; ++j) {
      a = src[j];
      b = src[1 * src_stride + j];
      c = src[2 * src_stride + j];
      d = src[3 * src_stride + j];
      e = src[4 * src_stride + j];
      f = src[5 * src_stride + j];
      g = src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  } else {
    for (j = 0; j < width; ++j) {
      a = src[j] * src[j];
      b = src[1 * src_stride + j] * src[1 * src_stride + j];
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
      f = src[5 * src_stride + j] * src[5 * src_stride + j];
      g = src[6 * src_stride + j] * src[6 * src_stride + j];

      dst[j] = a + b + c + d;
      dst[dst_stride + j] = a + b + c + d + e;
      dst[2 * dst_stride + j] = a + b + c + d + e + f;
      for (i = 3; i < height - 4; ++i) {
        dst[i * dst_stride + j] = a + b + c + d + e + f + g;
        a = b;
        b = c;
        c = d;
        d = e;
        e = f;
        f = g;
        g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j];
      }
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g;
      dst[(i + 2) * dst_stride + j] = c + d + e + f + g;
      dst[(i + 3) * dst_stride + j] = d + e + f + g;
    }
  }

  // Horizontal sum over 7-pixel regions of dst
  for (i = 0; i < height; ++i) {
    a = dst[i * dst_stride];
    b = dst[i * dst_stride + 1];
    c = dst[i * dst_stride + 2];
    d = dst[i * dst_stride + 3];
    e = dst[i * dst_stride + 4];
    f = dst[i * dst_stride + 5];
    g = dst[i * dst_stride + 6];

    dst[i * dst_stride] = a + b + c + d;
    dst[i * dst_stride + 1] = a + b + c + d + e;
    dst[i * dst_stride + 2] = a + b + c + d + e + f;
    for (j = 3; j < width - 4; ++j) {
      dst[i * dst_stride + j] = a + b + c + d + e + f + g;
      a = b;
      b = c;
      c = d;
      d = e;
      e = f;
      f = g;
      g = dst[i * dst_stride + (j + 4)];
    }
    dst[i * dst_stride + j] = a + b + c + d + e + f + g;
    dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g;
    dst[i * dst_stride + (j + 2)] = c + d + e + f + g;
    dst[i * dst_stride + (j + 3)] = d + e + f + g;
  }
}

// Generic version for any r. To be removed after experiments are done.
static void boxsumr(int32_t *src, int width, int height, int src_stride, int r,
                    int sqr, int32_t *dst, int dst_stride) {
  int32_t *tmp = aom_malloc(width * height * sizeof(*tmp));
  int tmp_stride = width;
  int i, j;
  if (sqr) {
    for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j];
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] +
            src[i * src_stride + j] * src[i * src_stride + j];
  } else {
    memcpy(tmp, src, sizeof(*tmp) * width);
    for (j = 0; j < width; ++j)
      for (i = 1; i < height; ++i)
        tmp[i * tmp_stride + j] =
            tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j];
  }
  for (i = 0; i <= r; ++i)
    memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride],
           sizeof(*tmp) * width);
  for (i = r + 1; i < height - r; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] =
          tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j];
  for (i = height - r; i < height; ++i)
    for (j = 0; j < width; ++j)
      dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] -
                                tmp[(i - r - 1) * tmp_stride + j];

  for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride];
  for (i = 0; i < height; ++i)
    for (j = 1; j < width; ++j)
      tmp[i * tmp_stride + j] =
          tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j];

  for (j = 0; j <= r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r];
  for (j = r + 1; j < width - r; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1];
  for (j = width - r; j < width; ++j)
    for (i = 0; i < height; ++i)
      dst[i * dst_stride + j] =
          tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1];
  aom_free(tmp);
}
853
#endif  // MAX_RADIUS > 2
854

855
856
857
858
859
860
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
                   int sqr, int32_t *dst, int dst_stride) {
  if (r == 1)
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
  else if (r == 2)
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
861
#if MAX_RADIUS > 2
862
863
  else if (r == 3)
    boxsum3(src, width, height, src_stride, sqr, dst, dst_stride);
864
  else if (r > 3)
865
    boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride);
866
867
868
#endif  // MAX_RADIUS > 2
  else
    assert(0 && "Invalid value of r in self-guided filter");
869
870
}

871
#if MAX_RADIUS > 2
872
873
static void boxnum(int width, int height, int r, int8_t *num, int num_stride) {
  int i, j;
874
875
876
  for (i = 0; i <= r; ++i) {
    for (j = 0; j <= r; ++j) {
      num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j);
877
878
879
880
881
882
      num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j];
      num[(height - 1 - i) * num_stride + (width - 1 - j)] =
          num[i * num_stride + j];
    }
  }
883
884
  for (j = 0; j <= r; ++j) {
    const int val = (2 * r + 1) * (r + 1 + j);
885
886
887
888
889
    for (i = r + 1; i < height - r; ++i) {
      num[i * num_stride + j] = val;
      num[i * num_stride + (width - 1 - j)] = val;
    }
  }
890
891
  for (i = 0; i <= r; ++i) {
    const int val = (2 * r + 1) * (r + 1 + i);
892
893
894
895
896
897
898
    for (j = r + 1; j < width - r; ++j) {
      num[i * num_stride + j] = val;
      num[(height - 1 - i) * num_stride + j] = val;
    }
  }
  for (i = r + 1; i < height - r; ++i) {
    for (j = r + 1; j < width - r; ++j) {
899
      num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1);
900
901
902
    }
  }
}
903
#endif  // MAX_RADIUS > 2
904

905
void decode_xq(const int *xqd, int *xq) {
906
  xq[0] = xqd[0];
907
908
909
  xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
}

David Barker's avatar
David Barker committed
910
const int32_t x_by_xplus1[256] = {
911
912
913
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
  // instead of 0. See comments in av1_selfguided_restoration_internal() for why
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  256,
};

David Barker's avatar
David Barker committed
933
const int32_t one_by_x[MAX_NELEM] = {
934
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
935
936
937
938
939
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
#if MAX_RADIUS > 2
  158,  152,  146,  141,  137, 132, 128, 124, 120, 117, 114, 111, 108,
  105,  102,  100,  98,   95,  93,  91,  89,  87,  85,  84
#endif  // MAX_RADIUS > 2
940
941
};

942
static void av1_selfguided_restoration_internal(int32_t *dgd, int width,
943
944
                                                int height, int dgd_stride,
                                                int32_t *dst, int dst_stride,
945
                                                int bit_depth, int r, int eps) {
946
947
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
David Barker's avatar
David Barker committed
948
949
950
951
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
  // leading to a significant speed improvement.
  // We also align the stride to a multiple of 16 bytes, for consistency
  // with the SIMD version of this function.
952
  int buf_stride = ((width_ext + 3) & ~3) + 16;
953
954
955
956
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
  int32_t *A = A_;
  int32_t *B = B_;
957
958
#if MAX_RADIUS > 2
  const int num_stride = width_ext;
959
  int8_t num_[RESTORATION_PROC_UNIT_PELS];
960
  int8_t *num = num_ + SGRPROJ_BORDER_VERT * num_stride + SGRPROJ_BORDER_HORZ;
961
#endif
962
  int i, j;
963

964
965
966
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
         "Need SGRPROJ_BORDER_* >= r+1");
967

968
969
970
971
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
972
#if MAX_RADIUS > 2
973
  boxnum(width_ext, height_ext, r, num_, num_stride);
974
#endif
975
976
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
977
978
979
980
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
  for (i = -1; i < height + 1; ++i) {
    for (j = -1; j < width + 1; ++j) {
David Barker's avatar
David Barker committed
981
      const int k = i * buf_stride + j;
982
#if MAX_RADIUS > 2
983
      const int n = num[i * num_stride + j];
984
985
986
#else
      const int n = (2 * r + 1) * (2 * r + 1);
#endif
987

988
989
990
991
992
993
994
      // a < 2^16 * n < 2^22 regardless of bit depth
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
      // b < 2^8 * n < 2^14 regardless of bit depth
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);

      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
995
996
997
      // This bound on p is due to:
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
      //
998
999
1000
1001
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
      // This is an artefact of rounding, and can only happen if all pixels
      // are (almost) identical, so in this case we saturate to p=0.
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
1002
1003
1004
1005
1006

      // Note: If MAX_RADIUS <= 2, then this 's' is a function only of
      // r and eps. Further, this is the only place we use 'eps', so we could
      // pre-calculate 's' for each parameter set and store that in place of
      // 'eps'.
1007
1008
1009
1010
1011
1012
1013
      uint32_t s = sgrproj_mtable[eps - 1][n - 1];

      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
      // (this holds even after accounting for the rounding in s)
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
      // Note: We have to be quite careful about the value of A[k].
      // This is used as a blend factor between individual pixel values and the
      // local mean. So it logically has a range of [0, 256], including both
      // endpoints.
      //
      // This is a pain for hardware, as we'd like something which can be stored
      // in exactly 8 bits.
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
      // slightly above 2^(8 + bit depth), due to rounding in the value of
      // one_by_x[25-1].
      //
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
      // overflow), without significantly affecting the final result: z == 0
      // implies that the image is essentially "flat", so the local mean and
      // individual pixel values are very similar.
      //
      // Note that saturating on the other side, ie. requring A[k] <= 255,
      // would be a bad idea, as that corresponds to the case where the image
      // is very variable, when we want to preserve the local pixel value as
      // much as possible.
      A[k] = x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]

      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
1039
1040
1041
      // one_by_x[n - 1] = round(2^12 / n)
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
      // and B[k] is set to a value < 2^(8 + bit depth)
1042
1043
      // This holds even with the rounding in one_by_x and in the overall
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
1044
1045
1046
1047
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
                                             (uint32_t)B[k] *
                                             (uint32_t)one_by_x[n - 1],
                                         SGRPROJ_RECIP_BITS);
1048
1049
    }
  }
1050
1051
1052
  // Use the A[] and B[] arrays to calculate the filtered image
  for (i = 0; i < height; ++i) {
    for (j = 0; j < width; ++j) {
David Barker's avatar
David Barker committed
1053
      const int k = i * buf_stride + j;
1054
1055
      const int l = i * dgd_stride + j;
      const int m = i * dst_stride + j;
1056
      const int nb = 5;
1057
      const int32_t a =
David Barker's avatar
David Barker committed
1058
1059
1060
1061
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
              4 +
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
1062
              3;
1063
      const int32_t b =
David Barker's avatar
David Barker committed
1064
1065
1066
1067
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
              4 +
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
1068
              3;
1069
      const int32_t v = a * dgd[l] + b;
1070
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
1071
1072
1073
1074
    }
  }
}

1075
void av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
1076
1077
1078
                                  int dgd_stride, int32_t *flt1, int32_t *flt2,
                                  int flt_stride, const sgr_params_type *params,
                                  int bit_depth, int highbd) {
1079
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
1080
1081
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
  int32_t *dgd32 =
1082
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
1083
1084
1085
1086
1087

  if (highbd) {
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
1088
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
1089
1090
1091
1092
1093
      }
    }
  } else {
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
1094
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
1095
      }
1096
1097
    }
  }
1098

1099
1100
1101
1102
1103
1104
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
                                      flt_stride, bit_depth, params->r1,
                                      params->e1);
  av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt2,
                                      flt_stride, bit_depth, params->r2,
                                      params->e2);
1105
1106
}

1107
void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height,
1108
                                    int stride, int eps, const int *xqd,
1109
1110
1111
                                    uint8_t *dst8, int dst_stride,
                                    int32_t *tmpbuf, int bit_depth,
                                    int highbd) {
1112
  int xq[2];
1113
  int32_t *flt1 = tmpbuf;
1114
  int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
1115
  assert(width * height <= RESTORATION_TILEPELS_MAX);
1116
1117
  av1_selfguided_restoration_c(dat8, width, height, stride, flt1, flt2, width,
                               &sgr_params[eps], bit_depth, highbd);
1118
  decode_xq(xqd, xq);
1119
1120
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
1121
      const int k = i * width + j;
1122
1123
1124
1125
1126
1127
1128
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
      const uint8_t *dat8ij = dat8 + i * stride + j;

      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
      const int32_t f1 = flt1[k] - u;
      const int32_t f2 = flt2[k] - u;
David Barker's avatar
David Barker committed
1129
      const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
1130
1131
      const int16_t w =
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
1132
1133
1134
1135
1136
1137

      const uint16_t out = clip_pixel_highbd(w, bit_depth);
      if (highbd)
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
      else
        *dst8ij = out;
1138
1139
1140
1141
    }
  }
}

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
                                  int stripe_width, int stripe_height,
                                  int procunit_width, const uint8_t *src,
                                  int src_stride, uint8_t *dst, int dst_stride,
                                  int32_t *tmpbuf, int bit_depth) {
  (void)bit_depth;
  assert(bit_depth == 8);

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, stripe_width - j);
    apply_selfguided_restoration(src + j, w, stripe_height, src_stride,
                                 rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
1154
                                 dst + j, dst_stride, tmpbuf, bit_depth, 0);
1155
1156
1157
  }
}

1158
#if CONFIG_HIGHBITDEPTH
1159
#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION
1160
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src_hip
1161
#else
1162
#define wiener_highbd_convolve8_add_src aom_highbd_convolve8_add_src
1163
#endif
1164

1165
1166
1167
static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
                                        int stripe_width, int stripe_height,
                                        int procunit_width, const uint8_t *src8,
1168
                                        int src_stride, uint8_t *dst8,
1169
1170
1171
1172
1173
1174
                                        int dst_stride, int32_t *tmpbuf,
                                        int bit_depth) {
  (void)tmpbuf;

  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
1175
1176
    const uint8_t *src8_p = src8 + j;
    uint8_t *dst8_p = dst8 + j;
1177
1178
    wiener_highbd_convolve8_add_src(
        src8_p, src_stride, dst8_p, dst_stride, rui->wiener_info.hfilter, 16,
1179
        rui->wiener_info.vfilter, 16, w, stripe_height, bit_depth);
1180
  }
1181
1182
}

1183
1184
1185
1186
1187
1188
1189
1190
static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui,
                                         int stripe_width, int stripe_height,
                                         int procunit_width,
                                         const uint8_t *src8, int src_stride,
                                         uint8_t *dst8, int dst_stride,
                                         int32_t *tmpbuf, int bit_depth) {
  for (int j = 0; j < stripe_width; j += procunit_width) {
    int w = AOMMIN(procunit_width, stripe_width - j);
1191
1192
1193
    apply_selfguided_restoration(src8 + j, w, stripe_height, src_stride,
                                 rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
                                 dst8 + j, dst_stride, tmpbuf, bit_depth, 1);
1194
1195
1196
1197
  }
}
#endif  // CONFIG_HIGHBITDEPTH

1198
1199
1200
1201
1202
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
                                  int stripe_width, int stripe_height,
                                  int procunit_width, const uint8_t *src,
                                  int src_stride, uint8_t *dst, int dst_stride,
                                  int32_t *tmpbuf, int bit_depth);
1203
1204
1205

#if CONFIG_HIGHBITDEPTH
#define NUM_STRIPE_FILTERS 4
1206
#else
1207
#define NUM_STRIPE_FILTERS 2
1208
#endif
1209
1210
1211
1212
1213
1214
1215
1216

static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
  wiener_filter_stripe, sgrproj_filter_stripe,
#if CONFIG_HIGHBITDEPTH
  wiener_filter_stripe_highbd, sgrproj_filter_stripe_highbd
#endif  // CONFIG_HIGHBITDEPTH
};

1217
// Filter one restoration unit
1218
1219
void av1_loop_restoration_filter_unit(
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
1220
#if CONFIG_STRIPED_LOOP_RESTORATION
1221
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
1222
    const AV1PixelRect *tile_rect, int tile_stripe0,
1223
1224
1225
1226
#if CONFIG_LOOPFILTERING_ACROSS_TILES
    int loop_filter_across_tiles_enabled,
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES
#endif  // CONFIG_STRIPED_LOOP_RESTORATION
1227
1228
    int ss_x, int ss_y, int highbd, int bit_depth, uint8_t *data8, int stride,
    uint8_t *dst8, int dst_stride, int32_t *tmpbuf) {
1229
1230
1231
1232
1233
1234
1235
1236
1237
  RestorationType unit_rtype = rui->restoration_type;

  int unit_h = limits->v_end - limits->v_start;
  int unit_w = limits->h_end - limits->h_start;
  uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
  uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start;

  if (unit_rtype == RESTORE_NONE) {
    copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd);
1238
1239
    return;
  }