pvq.c 33.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*
 * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

/* clang-format off */

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#include "odintrin.h"
#include "partition.h"
#include "pvq.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/* Imported from encode.c in daala */
/* These are the PVQ equivalent of quantization matrices, except that
   the values are per-band. */
#define OD_MASKING_DISABLED 0
#define OD_MASKING_ENABLED 1

const unsigned char OD_LUMA_QM_Q4[2][OD_QM_SIZE] = {
/* Flat quantization for PSNR. The DC component isn't 16 because the DC
   magnitude compensation is done here for inter (Haar DC doesn't need it).
   Masking disabled: */
 {
  16, 16,
  16, 16, 16, 16,
  16, 16, 16, 16, 16, 16,
  16, 16, 16, 16, 16, 16, 16, 16
 },
/* The non-flat AC coefficients compensate for the non-linear scaling caused
   by activity masking. The values are currently hand-tuned so that the rate
   of each band remains roughly constant when enabling activity masking
   on intra.
   Masking enabled: */
 {
  16, 16,
  16, 18, 28, 32,
  16, 14, 20, 20, 28, 32,
  16, 11, 14, 14, 17, 17, 22, 28
 }
};

const unsigned char OD_CHROMA_QM_Q4[2][OD_QM_SIZE] = {
/* Chroma quantization is different because of the reduced lapping.
   FIXME: Use the same matrix as luma for 4:4:4.
   Masking disabled: */
 {
  16, 16,
  16, 16, 16, 16,
  16, 16, 16, 16, 16, 16,
  16, 16, 16, 16, 16, 16, 16, 16
 },
/* The AC part is flat for chroma because it has no activity masking.
   Masking enabled: */
 {
  16, 16,
  16, 16, 16, 16,
  16, 16, 16, 16, 16, 16,
  16, 16, 16, 16, 16, 16, 16, 16
 }
};

/* No interpolation, always use od_flat_qm_q4, but use a different scale for
   each plane.
   FIXME: Add interpolation and properly tune chroma. */
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
const od_qm_entry OD_DEFAULT_QMS[2][2][OD_NPLANES_MAX] = {
  /* Masking disabled */
  { { { 4, 256, OD_LUMA_QM_Q4[OD_MASKING_DISABLED] },
      { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_DISABLED] },
      { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_DISABLED] } },
    { { 0, 0, NULL},
      { 0, 0, NULL},
      { 0, 0, NULL} } },
  /* Masking enabled */
  { { { 4, 256, OD_LUMA_QM_Q4[OD_MASKING_ENABLED] },
      { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_ENABLED] },
      { 4, 256, OD_CHROMA_QM_Q4[OD_MASKING_ENABLED] } },
    { { 0, 0, NULL},
      { 0, 0, NULL},
      { 0, 0, NULL} } }
93
94
};

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/* Constants for the beta parameter, which controls how activity masking is
   used.
   beta = 1 / (1 - alpha), so when beta is 1, alpha is 0 and activity
   masking is disabled. When beta is 1.5, activity masking is used. Note that
   activity masking is neither used for 4x4 blocks nor for chroma. */
#define OD_BETA(b) OD_QCONST32(b, OD_BETA_SHIFT)
static const od_val16 OD_PVQ_BETA4_LUMA[1] = {OD_BETA(1.)};
static const od_val16 OD_PVQ_BETA8_LUMA[4] = {OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.)};
static const od_val16 OD_PVQ_BETA16_LUMA[7] = {OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.)};
static const od_val16 OD_PVQ_BETA32_LUMA[10] = {OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.)};

static const od_val16 OD_PVQ_BETA4_LUMA_MASKING[1] = {OD_BETA(1.)};
static const od_val16 OD_PVQ_BETA8_LUMA_MASKING[4] = {OD_BETA(1.5),
 OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5)};
static const od_val16 OD_PVQ_BETA16_LUMA_MASKING[7] = {OD_BETA(1.5),
 OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5),
 OD_BETA(1.5)};
static const od_val16 OD_PVQ_BETA32_LUMA_MASKING[10] = {OD_BETA(1.5),
 OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5),
 OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5), OD_BETA(1.5)};

static const od_val16 OD_PVQ_BETA4_CHROMA[1] = {OD_BETA(1.)};
static const od_val16 OD_PVQ_BETA8_CHROMA[4] = {OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.)};
static const od_val16 OD_PVQ_BETA16_CHROMA[7] = {OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.)};
static const od_val16 OD_PVQ_BETA32_CHROMA[10] = {OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.), OD_BETA(1.),
 OD_BETA(1.), OD_BETA(1.)};

129
const od_val16 *const OD_PVQ_BETA[2][OD_NPLANES_MAX][OD_TXSIZES + 1] = {
130
131
132
133
134
135
136
137
138
139
140
141
142
143
 {{OD_PVQ_BETA4_LUMA, OD_PVQ_BETA8_LUMA,
   OD_PVQ_BETA16_LUMA, OD_PVQ_BETA32_LUMA},
  {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
   OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA},
  {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
   OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}},
 {{OD_PVQ_BETA4_LUMA_MASKING, OD_PVQ_BETA8_LUMA_MASKING,
   OD_PVQ_BETA16_LUMA_MASKING, OD_PVQ_BETA32_LUMA_MASKING},
  {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
   OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA},
  {OD_PVQ_BETA4_CHROMA, OD_PVQ_BETA8_CHROMA,
   OD_PVQ_BETA16_CHROMA, OD_PVQ_BETA32_CHROMA}}
};

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

void od_interp_qm(unsigned char *out, int q, const od_qm_entry *entry1,
  const od_qm_entry *entry2) {
  int i;
  if (entry2 == NULL || entry2->qm_q4 == NULL
   || q < entry1->interp_q << OD_COEFF_SHIFT) {
    /* Use entry1. */
    for (i = 0; i < OD_QM_SIZE; i++) {
      out[i] = OD_MINI(255, entry1->qm_q4[i]*entry1->scale_q8 >> 8);
    }
  }
  else if (entry1 == NULL || entry1->qm_q4 == NULL
   || q > entry2->interp_q << OD_COEFF_SHIFT) {
    /* Use entry2. */
    for (i = 0; i < OD_QM_SIZE; i++) {
      out[i] = OD_MINI(255, entry2->qm_q4[i]*entry2->scale_q8 >> 8);
    }
  }
  else {
    /* Interpolate between entry1 and entry2. The interpolation is linear
       in terms of log(q) vs log(m*scale). Considering that we're ultimately
       multiplying the result it makes sense, but we haven't tried other
       interpolation methods. */
    double x;
    const unsigned char *m1;
    const unsigned char *m2;
    int q1;
    int q2;
    m1 = entry1->qm_q4;
    m2 = entry2->qm_q4;
    q1 = entry1->interp_q << OD_COEFF_SHIFT;
    q2 = entry2->interp_q << OD_COEFF_SHIFT;
    x = (log(q)-log(q1))/(log(q2)-log(q1));
    for (i = 0; i < OD_QM_SIZE; i++) {
      out[i] = OD_MINI(255, (int)floor(.5 + (1./256)*exp(
       x*log(m2[i]*entry2->scale_q8) + (1 - x)*log(m1[i]*entry1->scale_q8))));
    }
  }
}

184
185
186
187
188
189
190
191
192
void od_adapt_pvq_ctx_reset(od_pvq_adapt_ctx *state, int is_keyframe) {
  od_pvq_codeword_ctx *ctx;
  int i;
  int pli;
  int bs;
  ctx = &state->pvq_codeword_ctx;
  generic_model_init(&state->pvq_param_model[0]);
  generic_model_init(&state->pvq_param_model[1]);
  generic_model_init(&state->pvq_param_model[2]);
193
  for (i = 0; i < 2*OD_TXSIZES; i++) {
194
195
196
197
198
199
200
201
    ctx->pvq_adapt[4*i + OD_ADAPT_K_Q8] = 384;
    ctx->pvq_adapt[4*i + OD_ADAPT_SUM_EX_Q8] = 256;
    ctx->pvq_adapt[4*i + OD_ADAPT_COUNT_Q8] = 104;
    ctx->pvq_adapt[4*i + OD_ADAPT_COUNT_EX_Q8] = 128;
  }
  ctx->pvq_k1_increment = 128;
  OD_CDFS_INIT(ctx->pvq_k1_cdf, ctx->pvq_k1_increment);
  for (pli = 0; pli < OD_NPLANES_MAX; pli++) {
202
    for (bs = 0; bs < OD_TXSIZES; bs++)
203
204
205
206
    for (i = 0; i < PVQ_MAX_PARTITIONS; i++) {
      state->pvq_exg[pli][bs][i] = 2 << 16;
    }
  }
207
  for (i = 0; i < OD_TXSIZES*PVQ_MAX_PARTITIONS; i++) {
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    state->pvq_ext[i] = is_keyframe ? 24576 : 2 << 16;
  }
  state->pvq_gaintheta_increment = 128;
  OD_CDFS_INIT(state->pvq_gaintheta_cdf, state->pvq_gaintheta_increment >> 2);
  state->pvq_skip_dir_increment = 128;
  OD_CDFS_INIT(state->pvq_skip_dir_cdf, state->pvq_skip_dir_increment >> 2);
  ctx->pvq_split_increment = 128;
  OD_CDFS_INIT(ctx->pvq_split_cdf, ctx->pvq_split_increment >> 1);
}

/* QMs are arranged from smallest to largest blocksizes, first for
   blocks with decimation=0, followed by blocks with decimation=1.*/
int od_qm_offset(int bs, int xydec)
{
    return xydec*OD_QM_STRIDE + OD_QM_OFFSET(bs);
}

Tristan Matthews's avatar
Tristan Matthews committed
225
226
227
228
229
230
#if defined(OD_FLOAT_PVQ)
#define OD_DEFAULT_MAG 1.0
#else
#define OD_DEFAULT_MAG OD_QM_SCALE
#endif

231
/* Initialize the quantization matrix. */
232
233
234
// Note: When hybrid transform and corresponding scan order is used by PVQ,
// we don't need seperate qm and qm_inv for each transform type,
// because AOM does not do magnitude compensation (i.e. simplay x16 for all coeffs).
235
236
237
void od_init_qm(int16_t *x, int16_t *x_inv, const int *qm) {
  int i;
  int j;
238
239
  int16_t y[OD_TXSIZE_MAX*OD_TXSIZE_MAX];
  int16_t y_inv[OD_TXSIZE_MAX*OD_TXSIZE_MAX];
240
241
242
243
244
  int16_t *x1;
  int16_t *x1_inv;
  int off;
  int bs;
  int xydec;
245
  for (bs = 0; bs < OD_TXSIZES; bs++) {
246
247
248
249
250
251
    for (xydec = 0; xydec < 2; xydec++) {
      off = od_qm_offset(bs, xydec);
      x1 = x + off;
      x1_inv = x_inv + off;
      for (i = 0; i < 4 << bs; i++) {
        for (j = 0; j < 4 << bs; j++) {
Tristan Matthews's avatar
Tristan Matthews committed
252
253
254
255
256
257
          /*This will ultimately be clamped to fit in 16 bits.*/
          od_val32 mag;
          int16_t ytmp;
          mag = OD_DEFAULT_MAG;
          if (i != 0 || j != 0) {
#if defined(OD_FLOAT_PVQ)
258
            mag /= 0.0625*qm[(i << 1 >> bs)*8 + (j << 1 >> bs)];
Tristan Matthews's avatar
Tristan Matthews committed
259
260
261
262
263
264
#else
            int qmv;
            qmv = qm[(i << 1 >> bs)*8 + (j << 1 >> bs)];
            mag *= 16;
            mag = (mag + (qmv >> 1))/qmv;
#endif
265
266
267
            OD_ASSERT(mag > 0.0);
          }
          /*Convert to fit in 16 bits.*/
Tristan Matthews's avatar
Tristan Matthews committed
268
#if defined(OD_FLOAT_PVQ)
269
270
271
272
          y[i*(4 << bs) + j] = (int16_t)OD_MINI(OD_QM_SCALE_MAX,
           (int32_t)floor(.5 + mag*OD_QM_SCALE));
          y_inv[i*(4 << bs) + j] = (int16_t)floor(.5
           + OD_QM_SCALE*OD_QM_INV_SCALE/(double)y[i*(4 << bs) + j]);
Tristan Matthews's avatar
Tristan Matthews committed
273
274
275
276
277
278
#else
          y[i*(4 << bs) + j] = (int16_t)OD_MINI(OD_QM_SCALE_MAX, mag);
          ytmp = y[i*(4 << bs) + j];
          y_inv[i*(4 << bs) + j] = (int16_t)((OD_QM_SCALE*OD_QM_INV_SCALE
           + (ytmp >> 1))/ytmp);
#endif
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        }
      }
      od_raster_to_coding_order_16(x1, 4 << bs, y, 4 << bs);
      od_raster_to_coding_order_16(x1_inv, 4 << bs, y_inv, 4 << bs);
    }
  }
}

/* Maps each possible size (n) in the split k-tokenizer to a different value.
   Possible values of n are:
   2, 3, 4, 7, 8, 14, 15, 16, 31, 32, 63, 64, 127, 128
   Since we don't care about the order (even in the bit-stream) the simplest
   ordering (implemented here) is:
   14, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 */
int od_pvq_size_ctx(int n) {
  int logn;
  int odd;
  logn = OD_ILOG(n - 1);
  odd = n & 1;
  return 2*logn - 1 - odd - 7*(n == 14);
}

/* Maps a length n to a context for the (k=1, n<=16) coder, with a special
   case when n is the original length (orig_length=1) of the vector (i.e. we
   haven't split it yet). For orig_length=0, we use the same mapping as
   od_pvq_size_ctx() up to n=16. When orig_length=1, we map lengths
   7, 8, 14, 15 to contexts 8 to 11. */
int od_pvq_k1_ctx(int n, int orig_length) {
  if (orig_length) return 8 + 2*(n > 8) + (n & 1);
  else return od_pvq_size_ctx(n);
}

/* Indexing for the packed quantization matrices. */
int od_qm_get_index(int bs, int band) {
  /* The -band/3 term is due to the fact that we force corresponding horizontal
     and vertical bands to have the same quantization. */
315
  OD_ASSERT(bs >= 0 && bs < OD_TXSIZES);
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
  return bs*(bs + 1) + band - band/3;
}

#if !defined(OD_FLOAT_PVQ)
/*See celt/mathops.c in Opus and tools/cos_search.c.*/
static int16_t od_pvq_cos_pi_2(int16_t x)
{
  int16_t x2;
  x2 = OD_MULT16_16_Q15(x, x);
  return OD_MINI(32767, (1073758164 - x*x + x2*(-7654 + OD_MULT16_16_Q16(x2,
   16573 + OD_MULT16_16_Q16(-2529, x2)))) >> 15);
}
#endif

/*Approximates cos(x) for -pi < x < pi.
  Input is in OD_THETA_SCALE.*/
od_val16 od_pvq_cos(od_val32 x) {
#if defined(OD_FLOAT_PVQ)
  return cos(x);
#else
  /*Wrap x around by masking, since cos is periodic.*/
  x = x & 0x0001ffff;
  if (x > (1 << 16)) {
    x = (1 << 17) - x;
  }
  if (x & 0x00007fff) {
    if (x < (1 << 15)) {
       return od_pvq_cos_pi_2((int16_t)x);
    }
    else {
      return -od_pvq_cos_pi_2((int16_t)(65536 - x));
    }
  }
  else {
    if (x & 0x0000ffff) {
      return 0;
    }
    else if (x & 0x0001ffff) {
      return -32767;
    }
    else {
      return 32767;
    }
  }
#endif
}

/*Approximates sin(x) for 0 <= x < pi.
  Input is in OD_THETA_SCALE.*/
od_val16 od_pvq_sin(od_val32 x) {
#if defined(OD_FLOAT_PVQ)
  return sin(x);
#else
  return od_pvq_cos(32768 - x);
#endif
}

#if !defined(OD_FLOAT_PVQ)
/* Computes an upper-bound on the number of bits required to store the L2 norm
   of a vector (excluding sign). */
int od_vector_log_mag(const od_coeff *x, int n) {
  int i;
  int32_t sum;
  sum = 0;
  for (i = 0; i < n; i++) {
    int16_t tmp;
    tmp = x[i] >> 8;
    sum += tmp*(int32_t)tmp;
  }
  /* We add one full bit (instead of rounding OD_ILOG() up) for safety because
     the >> 8 above causes the sum to be slightly underestimated. */
  return 8 + 1 + OD_ILOG(n + sum)/2;
}
#endif

/** Computes Householder reflection that aligns the reference r to the
 *  dimension in r with the greatest absolute value. The reflection
 *  vector is returned in r.
 *
 * @param [in,out]  r      reference vector to be reflected, reflection
 *                         also returned in r
 * @param [in]      n      number of dimensions in r
 * @param [in]      gr     gain of reference vector
 * @param [out]     sign   sign of reflection
 * @return                 dimension number to which reflection aligns
 **/
int od_compute_householder(od_val16 *r, int n, od_val32 gr, int *sign,
 int shift) {
  int m;
  int i;
  int s;
  od_val16 maxr;
  OD_UNUSED(shift);
  /* Pick component with largest magnitude. Not strictly
   * necessary, but it helps numerical stability */
  m = 0;
  maxr = 0;
  for (i = 0; i < n; i++) {
    if (OD_ABS(r[i]) > maxr) {
      maxr = OD_ABS(r[i]);
      m = i;
    }
  }
  s = r[m] > 0 ? 1 : -1;
  /* This turns r into a Householder reflection vector that would reflect
   * the original r[] to e_m */
  r[m] += OD_SHR_ROUND(gr*s, shift);
  *sign = s;
  return m;
}

#if !defined(OD_FLOAT_PVQ)
#define OD_RCP_INSHIFT 15
#define OD_RCP_OUTSHIFT 14
static od_val16 od_rcp(od_val16 x)
{
  int i;
  od_val16 n;
  od_val16 r;
  i = OD_ILOG(x) - 1;
  /*n is Q15 with range [0,1).*/
  n = OD_VSHR_ROUND(x, i - OD_RCP_INSHIFT) - (1 << OD_RCP_INSHIFT);
  /*Start with a linear approximation:
    r = 1.8823529411764706-0.9411764705882353*n.
    The coefficients and the result are Q14 in the range [15420,30840].*/
  r = 30840 + OD_MULT16_16_Q15(-15420, n);
  /*Perform two Newton iterations:
    r -= r*((r*n)-1.Q15)
       = r*((r*n)+(r-1.Q15)).*/
  r = r - OD_MULT16_16_Q15(r, (OD_MULT16_16_Q15(r, n) + r - 32768));
  /*We subtract an extra 1 in the second iteration to avoid overflow; it also
     neatly compensates for truncation error in the rest of the process.*/
  r = r - (1 + OD_MULT16_16_Q15(r, OD_MULT16_16_Q15(r, n) + r - 32768));
  /*r is now the Q15 solution to 2/(n+1), with a maximum relative error
     of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
     error of 1.24665/32768.*/
  return OD_VSHR_ROUND(r, i - OD_RCP_OUTSHIFT);
}
#endif

/** Applies Householder reflection from compute_householder(). The
 * reflection is its own inverse.
 *
 * @param [out]     out    reflected vector
 * @param [in]      x      vector to be reflected
 * @param [in]      r      reflection
 * @param [in]      n      number of dimensions in x,r
 */
void od_apply_householder(od_val16 *out, const od_val16 *x, const od_val16 *r,
 int n) {
  int i;
  od_val32 proj;
  od_val16 proj_1;
  od_val32 l2r;
#if !defined(OD_FLOAT_PVQ)
  od_val16 proj_norm;
  od_val16 l2r_norm;
  od_val16 rcp;
  int proj_shift;
  int l2r_shift;
  int outshift;
#endif
  /*FIXME: Can we get l2r and/or l2r_shift from an earlier computation?*/
  l2r = 0;
  for (i = 0; i < n; i++) {
    l2r += OD_MULT16_16(r[i], r[i]);
  }
  /* Apply Householder reflection */
  proj = 0;
  for (i = 0; i < n; i++) {
    proj += OD_MULT16_16(r[i], x[i]);
  }
#if defined(OD_FLOAT_PVQ)
  proj_1 = proj*2./(1e-100 + l2r);
  for (i = 0; i < n; i++) {
    out[i] = x[i] - r[i]*proj_1;
  }
#else
  /*l2r_norm is [0.5, 1.0[ in Q15.*/
  l2r_shift = (OD_ILOG(l2r) - 1) - 14;
  l2r_norm = OD_VSHR_ROUND(l2r, l2r_shift);
  rcp = od_rcp(l2r_norm);
  proj_shift = (OD_ILOG(abs(proj)) - 1) - 14;
  /*proj_norm is [0.5, 1.0[ in Q15.*/
  proj_norm = OD_VSHR_ROUND(proj, proj_shift);
  proj_1 = OD_MULT16_16_Q15(proj_norm, rcp);
  /*The proj*2. in the float code becomes -1 in the final outshift.
    The sign of l2r_shift is positive since we're taking the reciprocal of
     l2r_norm and this is a right shift.*/
  outshift = OD_MINI(30, OD_RCP_OUTSHIFT - proj_shift - 1 + l2r_shift);
  if (outshift >= 0) {
    for (i = 0; i < n; i++) {
      int32_t tmp;
      tmp = OD_MULT16_16(r[i], proj_1);
      tmp = OD_SHR_ROUND(tmp, outshift);
      out[i] = x[i] - tmp;
    }
  }
  else {
    /*FIXME: Can we make this case impossible?
      Right now, if r[] is all zeros except for 1, 2, or 3 ones, and
       if x[] is all zeros except for large values at the same position as the
       ones in r[], then we can end up with a shift of -1.*/
    for (i = 0; i < n; i++) {
      int32_t tmp;
      tmp = OD_MULT16_16(r[i], proj_1);
      tmp = OD_SHL(tmp, -outshift);
      out[i] = x[i] - tmp;
    }
  }
#endif
}

#if !defined(OD_FLOAT_PVQ)
Tristan Matthews's avatar
Tristan Matthews committed
530
531
532
533
534
535
536
537
538
539
540
541
542
static od_val16 od_beta_rcp(od_val16 beta){
  if (beta == OD_BETA(1.))
    return OD_BETA(1.);
  else if (beta == OD_BETA(1.5))
    return OD_BETA(1./1.5);
  else {
    od_val16 rcp_beta;
    /*Shift by 1 less, transposing beta to range [.5, .75] and thus < 32768.*/
    rcp_beta = od_rcp(beta << (OD_RCP_INSHIFT - 1 - OD_BETA_SHIFT));
    return OD_SHR_ROUND(rcp_beta, OD_RCP_OUTSHIFT + 1 - OD_BETA_SHIFT);
  }
}

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#define OD_EXP2_INSHIFT 15
#define OD_EXP2_FRACSHIFT 15
#define OD_EXP2_OUTSHIFT 15
static const int32_t OD_EXP2_C[5] = {32768, 22709, 7913, 1704, 443};
/*Output is [1.0, 2.0) in Q(OD_EXP2_FRACSHIFT).
  It does not include the integer offset, which is added in od_exp2 after the
   final shift).*/
static int32_t od_exp2_frac(int32_t x)
{
  return OD_MULT16_16_Q15(x, (OD_EXP2_C[1] + OD_MULT16_16_Q15(x,
   (OD_EXP2_C[2] + OD_MULT16_16_Q15(x, (OD_EXP2_C[3]
   + OD_MULT16_16_Q15(x, OD_EXP2_C[4])))))));
}

/** Base-2 exponential approximation (2^x) with Q15 input and output.*/
static int32_t od_exp2(int32_t x)
{
  int integer;
  int32_t frac;
  integer = x >> OD_EXP2_INSHIFT;
  if (integer > 14)
    return 0x7f000000;
  else if (integer < -15)
    return 0;
  frac = od_exp2_frac(x - OD_SHL(integer, OD_EXP2_INSHIFT));
  return OD_VSHR_ROUND(OD_EXP2_C[0] + frac, -integer) + 1;
}

#define OD_LOG2_INSHIFT 15
#define OD_LOG2_OUTSHIFT 15
#define OD_LOG2_INSCALE_1 (1./(1 << OD_LOG2_INSHIFT))
#define OD_LOG2_OUTSCALE (1 << OD_LOG2_OUTSHIFT)
static int16_t od_log2(int16_t x)
{
  return x + OD_MULT16_16_Q15(x, (14482 + OD_MULT16_16_Q15(x, (-23234
   + OD_MULT16_16_Q15(x, (13643 + OD_MULT16_16_Q15(x, (-6403
   + OD_MULT16_16_Q15(x, 1515)))))))));
}

static int32_t od_pow(int32_t x, od_val16 beta)
{
  int16_t t;
  int xshift;
  int log2_x;
  od_val32 logr;
  /*FIXME: this conditional is to avoid doing log2(0).*/
  if (x == 0)
    return 0;
  log2_x = (OD_ILOG(x) - 1);
  xshift = log2_x - OD_LOG2_INSHIFT;
  /*t should be in range [0.0, 1.0[ in Q(OD_LOG2_INSHIFT).*/
  t = OD_VSHR(x, xshift) - (1 << OD_LOG2_INSHIFT);
  /*log2(g/OD_COMPAND_SCALE) = log2(x) - OD_COMPAND_SHIFT in
     Q(OD_LOG2_OUTSHIFT).*/
  logr = od_log2(t) + (log2_x - OD_COMPAND_SHIFT)*OD_LOG2_OUTSCALE;
  logr = OD_MULT16_32_QBETA(beta, logr);
  return od_exp2(logr);
}
#endif

/** Gain companding: raises gain to the power 1/beta for activity masking.
 *
 * @param [in]  g     real (uncompanded) gain
 * @param [in]  q0    uncompanded quality parameter
 * @param [in]  beta  activity masking beta param (exponent)
 * @return            g^(1/beta)
 */
static od_val32 od_gain_compand(od_val32 g, int q0, od_val16 beta) {
#if defined(OD_FLOAT_PVQ)
Tristan Matthews's avatar
Tristan Matthews committed
612
  if (beta == 1) return OD_CGAIN_SCALE*g/(double)q0;
613
  else {
Tristan Matthews's avatar
Tristan Matthews committed
614
615
    return OD_CGAIN_SCALE*OD_COMPAND_SCALE*pow(g*OD_COMPAND_SCALE_1,
     1./beta)/(double)q0;
616
617
618
619
620
  }
#else
  if (beta == OD_BETA(1)) return (OD_CGAIN_SCALE*g + (q0 >> 1))/q0;
  else {
    int32_t expr;
Tristan Matthews's avatar
Tristan Matthews committed
621
    expr = od_pow(g, od_beta_rcp(beta));
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    expr <<= OD_CGAIN_SHIFT + OD_COMPAND_SHIFT - OD_EXP2_OUTSHIFT;
    return (expr + (q0 >> 1))/q0;
  }
#endif
}

#if !defined(OD_FLOAT_PVQ)
#define OD_SQRT_INSHIFT 16
#define OD_SQRT_OUTSHIFT 15
static int16_t od_rsqrt_norm(int16_t x);

static int16_t od_sqrt_norm(int32_t x)
{
  OD_ASSERT(x < 65536);
  return OD_MINI(OD_SHR_ROUND(x*od_rsqrt_norm(x), OD_SQRT_OUTSHIFT), 32767);
}

static int16_t od_sqrt(int32_t x, int *sqrt_shift)
{
  int k;
  int s;
  int32_t t;
  if (x == 0) {
    *sqrt_shift = 0;
     return 0;
  }
  OD_ASSERT(x < (1 << 30));
  k = ((OD_ILOG(x) - 1) >> 1);
  /*t is x in the range [0.25, 1) in QINSHIFT, or x*2^(-s).
    Shift by log2(x) - log2(0.25*(1 << INSHIFT)) to ensure 0.25 lower bound.*/
  s = 2*k - (OD_SQRT_INSHIFT - 2);
  t = OD_VSHR(x, s);
  /*We want to express od_sqrt() in terms of od_sqrt_norm(), which is
     defined as (2^OUTSHIFT)*sqrt(t*(2^-INSHIFT)) with t=x*(2^-s).
    This simplifies to 2^(OUTSHIFT-(INSHIFT/2)-(s/2))*sqrt(x), so the caller
     needs to shift right by OUTSHIFT - INSHIFT/2 - s/2.*/
  *sqrt_shift = OD_SQRT_OUTSHIFT - ((s + OD_SQRT_INSHIFT) >> 1);
  return od_sqrt_norm(t);
}
#endif

/** Gain expanding: raises gain to the power beta for activity masking.
 *
 * @param [in]  cg    companded gain
 * @param [in]  q0    uncompanded quality parameter
 * @param [in]  beta  activity masking beta param (exponent)
 * @return            g^beta
 */
od_val32 od_gain_expand(od_val32 cg0, int q0, od_val16 beta) {
  if (beta == OD_BETA(1)) {
    /*The multiply fits into 28 bits because the expanded gain has a range from
       0 to 2^20.*/
    return OD_SHR_ROUND(cg0*q0, OD_CGAIN_SHIFT);
  }
  else if (beta == OD_BETA(1.5)) {
#if defined(OD_FLOAT_PVQ)
    double cg;
    cg = cg0*OD_CGAIN_SCALE_1;
    cg *= q0*OD_COMPAND_SCALE_1;
Tristan Matthews's avatar
Tristan Matthews committed
681
    return OD_COMPAND_SCALE*cg*sqrt(cg);
682
683
684
685
686
687
688
689
690
691
692
693
694
#else
    int32_t irt;
    int64_t tmp;
    int sqrt_inshift;
    int sqrt_outshift;
    /*cg0 is in Q(OD_CGAIN_SHIFT) and we need to divide it by
       2^OD_COMPAND_SHIFT.*/
    irt = od_sqrt(cg0*q0, &sqrt_outshift);
    sqrt_inshift = (OD_CGAIN_SHIFT + OD_COMPAND_SHIFT) >> 1;
    /*tmp is in Q(OD_CGAIN_SHIFT + OD_COMPAND_SHIFT).*/
    tmp = cg0*q0*(int64_t)irt;
    /*Expanded gain must be in Q(OD_COMPAND_SHIFT), thus OD_COMPAND_SHIFT is
       not included here.*/
695
696
    return OD_MAXI(1,
        OD_VSHR_ROUND(tmp, OD_CGAIN_SHIFT + sqrt_outshift + sqrt_inshift));
697
698
699
700
701
702
703
704
#endif
  }
  else {
#if defined(OD_FLOAT_PVQ)
    /*Expanded gain must be in Q(OD_COMPAND_SHIFT), hence the multiply by
       OD_COMPAND_SCALE.*/
    double cg;
    cg = cg0*OD_CGAIN_SCALE_1;
Tristan Matthews's avatar
Tristan Matthews committed
705
    return OD_COMPAND_SCALE*pow(cg*q0*OD_COMPAND_SCALE_1, beta);
706
707
708
709
710
711
712
#else
    int32_t expr;
    int32_t cg;
    cg = OD_SHR_ROUND(cg0*q0, OD_CGAIN_SHIFT);
    expr = od_pow(cg, beta);
    /*Expanded gain must be in Q(OD_COMPAND_SHIFT), hence the subtraction by
       OD_COMPAND_SHIFT.*/
713
    return OD_MAXI(1, OD_SHR_ROUND(expr, OD_EXP2_OUTSHIFT - OD_COMPAND_SHIFT));
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
#endif
  }
}

/** Computes the raw and quantized/companded gain of a given input
 * vector
 *
 * @param [in]      x      vector of input data
 * @param [in]      n      number of elements in vector x
 * @param [in]      q0     quantizer
 * @param [out]     g      raw gain
 * @param [in]      beta   activity masking beta param
 * @param [in]      bshift shift to be applied to raw gain
 * @return                 quantized/companded gain
 */
od_val32 od_pvq_compute_gain(const od_val16 *x, int n, int q0, od_val32 *g,
 od_val16 beta, int bshift) {
  int i;
  od_val32 acc;
#if !defined(OD_FLOAT_PVQ)
  od_val32 irt;
  int sqrt_shift;
#else
  OD_UNUSED(bshift);
#endif
  acc = 0;
  for (i = 0; i < n; i++) {
    acc += x[i]*(od_val32)x[i];
  }
#if defined(OD_FLOAT_PVQ)
  *g = sqrt(acc);
#else
  irt = od_sqrt(acc, &sqrt_shift);
  *g = OD_VSHR_ROUND(irt, sqrt_shift - bshift);
#endif
  /* Normalize gain by quantization step size and apply companding
     (if ACTIVITY != 1). */
  return od_gain_compand(*g, q0, beta);
}

/** Compute theta quantization range from quantized/companded gain
 *
 * @param [in]      qcg    quantized companded gain value
 * @param [in]      beta   activity masking beta param
 * @return                 max theta value
 */
int od_pvq_compute_max_theta(od_val32 qcg, od_val16 beta){
  /* Set angular resolution (in ra) to match the encoded gain */
#if defined(OD_FLOAT_PVQ)
  int ts = (int)floor(.5 + qcg*OD_CGAIN_SCALE_1*M_PI/(2*beta));
#else
  int ts = OD_SHR_ROUND(qcg*OD_MULT16_16_QBETA(OD_QCONST32(M_PI/2,
   OD_CGAIN_SHIFT), od_beta_rcp(beta)), OD_CGAIN_SHIFT*2);
#endif
  /* Special case for low gains -- will need to be tuned anyway */
  if (qcg < OD_QCONST32(1.4, OD_CGAIN_SHIFT)) ts = 1;
  return ts;
}

/** Decode quantized theta value from coded value
 *
 * @param [in]      t          quantized companded gain value
 * @param [in]      max_theta  maximum theta value
 * @return                     decoded theta value
 */
od_val32 od_pvq_compute_theta(int t, int max_theta) {
  if (max_theta != 0) {
#if defined(OD_FLOAT_PVQ)
    return OD_MINI(t, max_theta - 1)*.5*M_PI/max_theta;
#else
    return (OD_MAX_THETA_SCALE*OD_MINI(t, max_theta - 1)
     + (max_theta >> 1))/max_theta;
#endif
  }
  else return 0;
}

Tristan Matthews's avatar
Tristan Matthews committed
791
792
#define OD_SQRT_TBL_SHIFT (10)

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
#define OD_ITHETA_SHIFT 15
/** Compute the number of pulses used for PVQ encoding a vector from
 * available metrics (encode and decode side)
 *
 * @param [in]      qcg        quantized companded gain value
 * @param [in]      itheta     quantized PVQ error angle theta
 * @param [in]      theta      PVQ error angle theta
 * @param [in]      noref      indicates present or lack of reference
 *                             (prediction)
 * @param [in]      n          number of elements to be coded
 * @param [in]      beta       activity masking beta param
 * @param [in]      nodesync   do not use info that depends on the reference
 * @return                     number of pulses to use for coding
 */
int od_pvq_compute_k(od_val32 qcg, int itheta, od_val32 theta, int noref, int n,
 od_val16 beta, int nodesync) {
Tristan Matthews's avatar
Tristan Matthews committed
809
810
811
812
813
814
815
816
#if !defined(OD_FLOAT_PVQ)
  /*Lookup table for sqrt(n+3/2) and sqrt(n+2/2) in Q10.
    Real max values are 32792 and 32784, but clamped to stay within 16 bits.
    Update with tools/gen_sqrt_tbl if needed.*/
  static const od_val16 od_sqrt_table[2][13] = {
   {0, 0, 0, 0, 2290, 2985, 4222, 0, 8256, 0, 16416, 0, 32767},
   {0, 0, 0, 0, 2401, 3072, 4284, 0, 8287, 0, 16432, 0, 32767}};
#endif
817
818
819
820
821
822
823
824
825
826
  if (noref) {
    if (qcg == 0) return 0;
    if (n == 15 && qcg == OD_CGAIN_SCALE && beta > OD_BETA(1.25)) {
      return 1;
    }
    else {
#if defined(OD_FLOAT_PVQ)
      return OD_MAXI(1, (int)floor(.5 + (qcg*OD_CGAIN_SCALE_1 - .2)*
       sqrt((n + 3)/2)/beta));
#else
Tristan Matthews's avatar
Tristan Matthews committed
827
828
829
      od_val16 rt;
      OD_ASSERT(OD_ILOG(n + 1) < 13);
      rt = od_sqrt_table[1][OD_ILOG(n + 1)];
830
831
      /*FIXME: get rid of 64-bit mul.*/
      return OD_MAXI(1, OD_SHR_ROUND((int64_t)((qcg
Tristan Matthews's avatar
Tristan Matthews committed
832
833
834
       - (int64_t)OD_QCONST32(.2, OD_CGAIN_SHIFT))*
       OD_MULT16_16_QBETA(od_beta_rcp(beta), rt)), OD_CGAIN_SHIFT
       + OD_SQRT_TBL_SHIFT));
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
#endif
    }
  }
  else {
    if (itheta == 0) return 0;
    /* Sets K according to gain and theta, based on the high-rate
       PVQ distortion curves (see PVQ document). Low-rate will have to be
       perceptually tuned anyway. We subtract 0.2 from the radius as an
       approximation for the fact that the coefficients aren't identically
       distributed within a band so at low gain the number of dimensions that
       are likely to have a pulse is less than n. */
    if (nodesync) {
#if defined(OD_FLOAT_PVQ)
      return OD_MAXI(1, (int)floor(.5 + (itheta - .2)*sqrt((n + 2)/2)));
#else
Tristan Matthews's avatar
Tristan Matthews committed
850
851
852
      od_val16 rt;
      OD_ASSERT(OD_ILOG(n + 1) < 13);
      rt = od_sqrt_table[0][OD_ILOG(n + 1)];
853
854
855
      /*FIXME: get rid of 64-bit mul.*/
      return OD_MAXI(1, OD_VSHR_ROUND(((OD_SHL(itheta, OD_ITHETA_SHIFT)
       - OD_QCONST32(.2, OD_ITHETA_SHIFT)))*(int64_t)rt,
Tristan Matthews's avatar
Tristan Matthews committed
856
       OD_SQRT_TBL_SHIFT + OD_ITHETA_SHIFT));
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
#endif
    }
    else {
      return OD_MAXI(1, (int)floor(.5 + (qcg*OD_CGAIN_SCALE_1*
       od_pvq_sin(theta)*OD_TRIG_SCALE_1 - .2)*sqrt((n
       + 2)/2)/(beta*OD_BETA_SCALE_1)));
    }
  }
}

#if !defined(OD_FLOAT_PVQ)
#define OD_RSQRT_INSHIFT 16
#define OD_RSQRT_OUTSHIFT 14
/** Reciprocal sqrt approximation where the input is in the range [0.25,1) in
     Q16 and the output is in the range (1.0, 2.0] in Q14).
    Error is always within +/1 of round(1/sqrt(t))*/
static int16_t od_rsqrt_norm(int16_t t)
{
  int16_t n;
  int32_t r;
  int32_t r2;
  int32_t ry;
  int32_t y;
  int32_t ret;
  /* Range of n is [-16384,32767] ([-0.5,1) in Q15).*/
  n = t - 32768;
  OD_ASSERT(n >= -16384);
  /*Get a rough initial guess for the root.
    The optimal minimax quadratic approximation (using relative error) is
     r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
    Coefficients here, and the final result r, are Q14.*/
  r = (23565 + OD_MULT16_16_Q15(n, (-13481 + OD_MULT16_16_Q15(n, 6711))));
  /*We want y = t*r*r-1 in Q15, but t is 32-bit Q16 and r is Q14.
    We can compute the result from n and r using Q15 multiplies with some
     adjustment, carefully done to avoid overflow.*/
  r2 = r*r;
  y = (((r2 >> 15)*n + r2) >> 12) - 131077;
  ry = r*y;
  /*Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
    This yields the Q14 reciprocal square root of the Q16 t, with a maximum
     relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a peak
     absolute error of 2.26591/16384.*/
  ret = r + ((((ry >> 16)*(3*y) >> 3) - ry) >> 18);
  OD_ASSERT(ret >= 16384 && ret < 32768);
  return (int16_t)ret;
}

static int16_t od_rsqrt(int32_t x, int *rsqrt_shift)
{
   int k;
   int s;
   int16_t t;
   k = (OD_ILOG(x) - 1) >> 1;
  /*t is x in the range [0.25, 1) in QINSHIFT, or x*2^(-s).
    Shift by log2(x) - log2(0.25*(1 << INSHIFT)) to ensure 0.25 lower bound.*/
   s = 2*k - (OD_RSQRT_INSHIFT - 2);
   t = OD_VSHR(x, s);
   /*We want to express od_rsqrt() in terms of od_rsqrt_norm(), which is
      defined as (2^OUTSHIFT)/sqrt(t*(2^-INSHIFT)) with t=x*(2^-s).
     This simplifies to 2^(OUTSHIFT+(INSHIFT/2)+(s/2))/sqrt(x), so the caller
      needs to shift right by OUTSHIFT + INSHIFT/2 + s/2.*/
   *rsqrt_shift = OD_RSQRT_OUTSHIFT + ((s + OD_RSQRT_INSHIFT) >> 1);
   return od_rsqrt_norm(t);
}
#endif

/** Synthesizes one parition of coefficient values from a PVQ-encoded
 * vector.  This 'partial' version is called by the encode loop where
 * the Householder reflection has already been computed and there's no
 * need to recompute it.
 *
 * @param [out]     xcoeff  output coefficient partition (x in math doc)
 * @param [in]      ypulse  PVQ-encoded values (y in the math doc); in
 *                          the noref case, this vector has n entries,
 *                          in the reference case it contains n-1 entries
 *                          (the m-th entry is not included)
 * @param [in]      r       reference vector (prediction)
 * @param [in]      n       number of elements in this partition
 * @param [in]      noref   indicates presence or lack of prediction
 * @param [in]      g       decoded quantized vector gain
 * @param [in]      theta   decoded theta (prediction error)
 * @param [in]      m       alignment dimension of Householder reflection
 * @param [in]      s       sign of Householder reflection
 * @param [in]      qm_inv  inverse of the QM with magnitude compensation
 */
void od_pvq_synthesis_partial(od_coeff *xcoeff, const od_coeff *ypulse,
 const od_val16 *r16, int n, int noref, od_val32 g, od_val32 theta, int m, int s,
 const int16_t *qm_inv) {
  int i;
  int yy;
  od_val32 scale;
  int nn;
949
#if !defined(OD_FLOAT_PVQ)
950
951
  int gshift;
  int qshift;
952
#endif
953
954
955
956
957
  OD_ASSERT(g != 0);
  nn = n-(!noref); /* when noref==0, vector in is sized n-1 */
  yy = 0;
  for (i = 0; i < nn; i++)
    yy += ypulse[i]*(int32_t)ypulse[i];
958
#if !defined(OD_FLOAT_PVQ)
959
960
961
962
  /* Shift required for the magnitude of the pre-qm synthesis to be guaranteed
     to fit in 16 bits. In practice, the range will be 8192-16384 after scaling
     most of the time. */
  gshift = OD_MAXI(0, OD_ILOG(g) - 14);
963
#endif
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
  /*scale is g/sqrt(yy) in Q(16-gshift) so that x[]*scale has a norm that fits
     in 16 bits.*/
  if (yy == 0) scale = 0;
#if defined(OD_FLOAT_PVQ)
  else {
    scale = g/sqrt(yy);
  }
#else
  else {
    int rsqrt_shift;
    int16_t rsqrt;
    /*FIXME: should be < int64_t*/
    int64_t tmp;
    rsqrt = od_rsqrt(yy, &rsqrt_shift);
    tmp = rsqrt*(int64_t)g;
    scale = OD_VSHR_ROUND(tmp, rsqrt_shift + gshift - 16);
  }
  /* Shift to apply after multiplying by the inverse QM, taking into account
     gshift. */
  qshift = OD_QM_INV_SHIFT - gshift;
#endif
  if (noref) {
    for (i = 0; i < n; i++) {
      od_val32 x;
      /* This multiply doesn't round, so it introduces some bias.
         It would be nice (but not critical) to fix this. */
      x = OD_MULT16_32_Q16(ypulse[i], scale);
#if defined(OD_FLOAT_PVQ)
      xcoeff[i] = (od_coeff)floor(.5
       + x*(qm_inv[i]*OD_QM_INV_SCALE_1));
#else
      xcoeff[i] = OD_SHR_ROUND(x*qm_inv[i], qshift);
#endif
    }
  }
  else{
    od_val16 x[MAXN];
    scale = OD_ROUND32(scale*OD_TRIG_SCALE_1*od_pvq_sin(theta));
    /* The following multiply doesn't round, but it's probably OK since
       the Householder reflection is likely to undo most of the resulting
       bias. */
    for (i = 0; i < m; i++)
      x[i] = OD_MULT16_32_Q16(ypulse[i], scale);
    x[m] = OD_ROUND16(-s*(OD_SHR_ROUND(g, gshift))*OD_TRIG_SCALE_1*
     od_pvq_cos(theta));
    for (i = m; i < nn; i++)
      x[i+1] = OD_MULT16_32_Q16(ypulse[i], scale);
    od_apply_householder(x, x, r16, n);
    for (i = 0; i < n; i++) {
#if defined(OD_FLOAT_PVQ)
      xcoeff[i] = (od_coeff)floor(.5 + (x[i]*(qm_inv[i]*OD_QM_INV_SCALE_1)));
#else
      xcoeff[i] = OD_SHR_ROUND(x[i]*qm_inv[i], qshift);
#endif
    }
  }
}