intrapred_test.cc 9.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include <string.h>
Johann's avatar
Johann committed
13
#include "test/acm_random.h"
14
15
16
17
18
19
20
21
22
#include "third_party/googletest/src/include/gtest/gtest.h"
extern "C" {
#include "vpx_config.h"
#include "vpx_rtcd.h"
#include "vp8/common/blockd.h"
}

namespace {

Johann's avatar
Johann committed
23
24
using libvpx_test::ACMRandom;

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class IntraPredBase {
 protected:
  void SetupMacroblock(uint8_t *data, int block_size, int stride,
                       int num_planes) {
    memset(&mb_, 0, sizeof(mb_));
    memset(&mi_, 0, sizeof(mi_));
    mb_.up_available = 1;
    mb_.left_available = 1;
    mb_.mode_info_context = &mi_;
    stride_ = stride;
    block_size_ = block_size;
    num_planes_ = num_planes;
    for (int p = 0; p < num_planes; p++)
      data_ptr_[p] = data + stride * (block_size + 1) * p +
                     stride + block_size;
  }

  void FillRandom() {
    // Fill edges with random data
Johann's avatar
Johann committed
44
    ACMRandom rnd(ACMRandom::DeterministicSeed());
45
46
    for (int p = 0; p < num_planes_; p++) {
      for (int x = -1 ; x <= block_size_; x++)
Johann's avatar
Johann committed
47
        data_ptr_[p][x - stride_] = rnd.Rand8();
48
      for (int y = 0; y < block_size_; y++)
Johann's avatar
Johann committed
49
        data_ptr_[p][y * stride_ - 1] = rnd.Rand8();
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    }
  }

  virtual void Predict(MB_PREDICTION_MODE mode) = 0;

  void SetLeftUnavailable() {
    mb_.left_available = 0;
    for (int p = 0; p < num_planes_; p++)
      for (int i = -1; i < block_size_; ++i)
        data_ptr_[p][stride_ * i - 1] = 129;
  }

  void SetTopUnavailable() {
    mb_.up_available = 0;
    for (int p = 0; p < num_planes_; p++)
      memset(&data_ptr_[p][-1 - stride_], 127, block_size_ + 2);
  }

  void SetTopLeftUnavailable() {
    SetLeftUnavailable();
    SetTopUnavailable();
  }

  int BlockSizeLog2Min1() const {
    switch (block_size_) {
      case 16:
        return 3;
      case 8:
        return 2;
      default:
        return 0;
    }
  }

  // check DC prediction output against a reference
  void CheckDCPrediction() const {
    for (int p = 0; p < num_planes_; p++) {
      // calculate expected DC
      int expected;
      if (mb_.up_available || mb_.left_available) {
        int sum = 0, shift = BlockSizeLog2Min1() + mb_.up_available +
                             mb_.left_available;
        if (mb_.up_available)
          for (int x = 0; x < block_size_; x++)
            sum += data_ptr_[p][x - stride_];
        if (mb_.left_available)
          for (int y = 0; y < block_size_; y++)
            sum += data_ptr_[p][y * stride_ - 1];
        expected = (sum + (1 << (shift - 1))) >> shift;
      } else
        expected = 0x80;

      // check that all subsequent lines are equal to the first
      for (int y = 1; y < block_size_; ++y)
        ASSERT_EQ(0, memcmp(data_ptr_[p], &data_ptr_[p][y * stride_],
                            block_size_));
      // within the first line, ensure that each pixel has the same value
      for (int x = 1; x < block_size_; ++x)
        ASSERT_EQ(data_ptr_[p][0], data_ptr_[p][x]);
      // now ensure that that pixel has the expected (DC) value
      ASSERT_EQ(expected, data_ptr_[p][0]);
    }
  }

  // check V prediction output against a reference
  void CheckVPrediction() const {
    // check that all lines equal the top border
    for (int p = 0; p < num_planes_; p++)
      for (int y = 0; y < block_size_; y++)
        ASSERT_EQ(0, memcmp(&data_ptr_[p][-stride_],
                            &data_ptr_[p][y * stride_], block_size_));
  }

  // check H prediction output against a reference
  void CheckHPrediction() const {
    // for each line, ensure that each pixel is equal to the left border
    for (int p = 0; p < num_planes_; p++)
      for (int y = 0; y < block_size_; y++)
        for (int x = 0; x < block_size_; x++)
          ASSERT_EQ(data_ptr_[p][-1 + y * stride_],
                    data_ptr_[p][x + y * stride_]);
  }

  static int ClipByte(int value) {
    if (value > 255)
      return 255;
    else if (value < 0)
      return 0;
    return value;
  }

  // check TM prediction output against a reference
  void CheckTMPrediction() const {
    for (int p = 0; p < num_planes_; p++)
      for (int y = 0; y < block_size_; y++)
        for (int x = 0; x < block_size_; x++) {
          const int expected = ClipByte(data_ptr_[p][x - stride_]
                                      + data_ptr_[p][stride_ * y - 1]
                                      - data_ptr_[p][-1 - stride_]);
          ASSERT_EQ(expected, data_ptr_[p][y * stride_ + x]);
       }
  }

  // Actual test
  void RunTest() {
    {
      SCOPED_TRACE("DC_PRED");
      FillRandom();
      Predict(DC_PRED);
      CheckDCPrediction();
    }
    {
      SCOPED_TRACE("DC_PRED LEFT");
      FillRandom();
      SetLeftUnavailable();
      Predict(DC_PRED);
      CheckDCPrediction();
    }
    {
      SCOPED_TRACE("DC_PRED TOP");
      FillRandom();
      SetTopUnavailable();
      Predict(DC_PRED);
      CheckDCPrediction();
    }
    {
      SCOPED_TRACE("DC_PRED TOP_LEFT");
      FillRandom();
      SetTopLeftUnavailable();
      Predict(DC_PRED);
      CheckDCPrediction();
    }
    {
      SCOPED_TRACE("H_PRED");
      FillRandom();
      Predict(H_PRED);
      CheckHPrediction();
    }
    {
      SCOPED_TRACE("V_PRED");
      FillRandom();
      Predict(V_PRED);
      CheckVPrediction();
    }
    {
      SCOPED_TRACE("TM_PRED");
      FillRandom();
      Predict(TM_PRED);
      CheckTMPrediction();
    }
  }

  MACROBLOCKD mb_;
  MODE_INFO mi_;
  uint8_t *data_ptr_[2];  // in the case of Y, only [0] is used
  int stride_;
  int block_size_;
  int num_planes_;
};

typedef void (*intra_pred_y_fn_t)(MACROBLOCKD *x,
                                  uint8_t *yabove_row,
                                  uint8_t *yleft,
                                  int left_stride,
                                  uint8_t *ypred_ptr,
                                  int y_stride);

class IntraPredYTest : public ::testing::TestWithParam<intra_pred_y_fn_t>,
    protected IntraPredBase {
 protected:
  static const int kBlockSize = 16;
  static const int kStride = kBlockSize * 3;

  virtual void SetUp() {
    pred_fn_ = GetParam();
    SetupMacroblock(data_array_, kBlockSize, kStride, 1);
  }

  virtual void Predict(MB_PREDICTION_MODE mode) {
    mb_.mode_info_context->mbmi.mode = mode;
    pred_fn_(&mb_, data_ptr_[0] - kStride, data_ptr_[0] - 1, kStride,
             data_ptr_[0], kStride);
  }

  intra_pred_y_fn_t pred_fn_;
  // We use 48 so that the data pointer of the first pixel in each row of
  // each macroblock is 16-byte aligned, and this gives us access to the
  // top-left and top-right corner pixels belonging to the top-left/right
  // macroblocks.
  // We use 17 lines so we have one line above us for top-prediction.
  DECLARE_ALIGNED(16, uint8_t, data_array_[kStride * (kBlockSize + 1)]);
};

TEST_P(IntraPredYTest, IntraPredTests) {
  RunTest();
}

INSTANTIATE_TEST_CASE_P(C, IntraPredYTest,
                        ::testing::Values(
                            vp8_build_intra_predictors_mby_s_c));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(SSE2, IntraPredYTest,
                        ::testing::Values(
                            vp8_build_intra_predictors_mby_s_sse2));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_CASE_P(SSSE3, IntraPredYTest,
                        ::testing::Values(
                            vp8_build_intra_predictors_mby_s_ssse3));
#endif

typedef void (*intra_pred_uv_fn_t)(MACROBLOCKD *x,
                                   uint8_t *uabove_row,
                                   uint8_t *vabove_row,
                                   uint8_t *uleft,
                                   uint8_t *vleft,
                                   int left_stride,
                                   uint8_t *upred_ptr,
                                   uint8_t *vpred_ptr,
                                   int pred_stride);

class IntraPredUVTest : public ::testing::TestWithParam<intra_pred_uv_fn_t>,
    protected IntraPredBase {
 protected:
  static const int kBlockSize = 8;
  static const int kStride = kBlockSize * 3;

  virtual void SetUp() {
    pred_fn_ = GetParam();
    SetupMacroblock(data_array_, kBlockSize, kStride, 2);
  }

  virtual void Predict(MB_PREDICTION_MODE mode) {
    mb_.mode_info_context->mbmi.uv_mode = mode;
    pred_fn_(&mb_, data_ptr_[0] - kStride, data_ptr_[1] - kStride,
             data_ptr_[0] - 1, data_ptr_[1] - 1, kStride,
             data_ptr_[0], data_ptr_[1], kStride);
  }

  intra_pred_uv_fn_t pred_fn_;
  // We use 24 so that the data pointer of the first pixel in each row of
  // each macroblock is 8-byte aligned, and this gives us access to the
  // top-left and top-right corner pixels belonging to the top-left/right
  // macroblocks.
  // We use 9 lines so we have one line above us for top-prediction.
  // [0] = U, [1] = V
  DECLARE_ALIGNED(8, uint8_t, data_array_[2 * kStride * (kBlockSize + 1)]);
};

TEST_P(IntraPredUVTest, IntraPredTests) {
  RunTest();
}

INSTANTIATE_TEST_CASE_P(C, IntraPredUVTest,
                        ::testing::Values(
                            vp8_build_intra_predictors_mbuv_s_c));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(SSE2, IntraPredUVTest,
                        ::testing::Values(
                            vp8_build_intra_predictors_mbuv_s_sse2));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_CASE_P(SSSE3, IntraPredUVTest,
                        ::testing::Values(
                            vp8_build_intra_predictors_mbuv_s_ssse3));
#endif

}  // namespace