Commit 4bd17115 authored by Jingning Han's avatar Jingning Han

Refactor 8x8 fwd transform unit test

This commit reworked the unit test for 8x8 forward transform. It
allows scalability to cover various implemented versions.

Change-Id: I5594bd3e2307bb5bec764eaffd8860caa260e432
parent c73e4412
......@@ -258,7 +258,7 @@ void reference_16x16_dct_2d(int16_t input[256], double output[256]) {
}
typedef void (*fdct_t)(int16_t *in, int16_t *out, int stride);
typedef void (*idct_t)(int16_t *in, uint8_t *out, int stride);
typedef void (*idct_t)(int16_t *in, uint8_t *dst, int stride);
typedef void (*fht_t) (int16_t *in, int16_t *out, int stride, int tx_type);
typedef void (*iht_t) (int16_t *in, uint8_t *dst, int stride, int tx_type);
......@@ -509,7 +509,8 @@ INSTANTIATE_TEST_CASE_P(
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_short_fdct16x16_sse2, &vp9_short_idct16x16_add_c, 0)));
make_tuple(&vp9_short_fdct16x16_sse2,
&vp9_short_idct16x16_add_sse2, 0)));
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16HT,
::testing::Values(
......
......@@ -13,242 +13,309 @@
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "vpx_ports/mem.h"
#include "test/util.h"
extern "C" {
#include "vp9/common/vp9_entropy.h"
#include "./vp9_rtcd.h"
void vp9_short_idct8x8_add_c(int16_t *input, uint8_t *output, int pitch);
}
#include "test/acm_random.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
namespace {
void fdct8x8(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int /*tx_type*/) {
typedef void (*fdct_t)(int16_t *in, int16_t *out, int stride);
typedef void (*idct_t)(int16_t *in, uint8_t *dst, int stride);
typedef void (*fht_t) (int16_t *in, int16_t *out, int stride, int tx_type);
typedef void (*iht_t) (int16_t *in, uint8_t *dst, int stride, int tx_type);
void fdct8x8_ref(int16_t *in, int16_t *out, int stride, int tx_type) {
vp9_short_fdct8x8_c(in, out, stride);
}
void idct8x8_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int /*tx_type*/) {
vp9_short_idct8x8_add_c(out, dst, stride >> 1);
}
void fht8x8(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int tx_type) {
// TODO(jingning): need to refactor this to test both _c and _sse2 functions,
// when we have all inverse dct functions done sse2.
#if HAVE_SSE2
vp9_short_fht8x8_sse2(in, out, stride >> 1, tx_type);
#else
vp9_short_fht8x8_c(in, out, stride >> 1, tx_type);
#endif
}
void iht8x8_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
vp9_short_iht8x8_add_c(out, dst, stride >> 1, tx_type);
void fht8x8_ref(int16_t *in, int16_t *out, int stride, int tx_type) {
vp9_short_fht8x8_c(in, out, stride, tx_type);
}
class FwdTrans8x8Test : public ::testing::TestWithParam<int> {
class FwdTrans8x8TestBase {
public:
virtual ~FwdTrans8x8Test() {}
virtual void SetUp() {
tx_type_ = GetParam();
if (tx_type_ == 0) {
fwd_txfm = fdct8x8;
inv_txfm = idct8x8_add;
} else {
fwd_txfm = fht8x8;
inv_txfm = iht8x8_add;
}
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
virtual ~FwdTrans8x8TestBase() {}
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*fwd_txfm)(in, out, dst, stride, tx_type);
}
void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*inv_txfm)(in, out, dst, stride, tx_type);
}
virtual void RunFwdTxfm(int16_t *in, int16_t *out, int stride) = 0;
virtual void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) = 0;
int tx_type_;
void (*fwd_txfm)(int16_t*, int16_t*, uint8_t*, int, int);
void (*inv_txfm)(int16_t*, int16_t*, uint8_t*, int, int);
};
void RunSignBiasCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_output_block, 64);
int count_sign_block[64][2];
const int count_test_block = 100000;
TEST_P(FwdTrans8x8Test, SignBiasCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_output_block, 64);
const int pitch = 16;
int count_sign_block[64][2];
const int count_test_block = 100000;
memset(count_sign_block, 0, sizeof(count_sign_block));
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = rnd.Rand8() - rnd.Rand8();
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block, pitch_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = rnd.Rand8() - rnd.Rand8();
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block,
NULL, pitch, tx_type_));
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = 1125;
EXPECT_LT(diff, max_diff)
<< "Error: 8x8 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-255, 255] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = 1125;
EXPECT_LT(diff, max_diff)
<< "Error: 8x8 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-255, 255] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
memset(count_sign_block, 0, sizeof(count_sign_block));
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-15, 15].
for (int j = 0; j < 64; ++j)
test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block, pitch_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-15, 15].
for (int j = 0; j < 64; ++j)
test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block,
NULL, pitch, tx_type_));
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = 10000;
EXPECT_LT(diff, max_diff)
<< "Error: 4x4 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-15, 15] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = 10000;
EXPECT_LT(diff, max_diff)
<< "Error: 4x4 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-15, 15] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
}
TEST_P(FwdTrans8x8Test, RoundTripErrorCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 100000;
for (int i = 0; i < count_test_block; ++i) {
void RunRoundTripErrorCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 100000;
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64);
for (int j = 0; j < 64; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
}
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = src[j] - dst[j];
const int pitch = 16;
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block,
dst, pitch, tx_type_));
for (int j = 0; j < 64; ++j) {
if (test_temp_block[j] > 0) {
test_temp_block[j] += 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
} else {
test_temp_block[j] -= 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
}
}
REGISTER_STATE_CHECK(
RunInvTxfm(test_input_block, test_temp_block,
dst, pitch, tx_type_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
}
for (int j = 0; j < 64; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
for (int j = 0; j < 64; ++j) {
if (test_temp_block[j] > 0) {
test_temp_block[j] += 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
} else {
test_temp_block[j] -= 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
}
}
REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, dst, pitch_));
for (int j = 0; j < 64; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
}
EXPECT_GE(1, max_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual roundtrip error > 1";
EXPECT_GE(1, max_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual"
<< " roundtrip error > 1";
EXPECT_GE(count_test_block/5, total_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip "
"error > 1/5 per block";
}
EXPECT_GE(count_test_block/5, total_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip "
<< "error > 1/5 per block";
}
TEST_P(FwdTrans8x8Test, ExtremalCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 100000;
for (int i = 0; i < count_test_block; ++i) {
void RunExtremalCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 100000;
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64);
for (int j = 0; j < 64; ++j) {
src[j] = rnd.Rand8() % 2 ? 255 : 0;
dst[j] = src[j] > 0 ? 0 : 255;
}
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = src[j] - dst[j];
const int pitch = 16;
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block,
dst, pitch, tx_type_));
REGISTER_STATE_CHECK(
RunInvTxfm(test_input_block, test_temp_block,
dst, pitch, tx_type_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j) {
src[j] = rnd.Rand8() % 2 ? 255 : 0;
dst[j] = src[j] > 0 ? 0 : 255;
test_input_block[j] = src[j] - dst[j];
}
for (int j = 0; j < 64; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, dst, pitch_));
for (int j = 0; j < 64; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
EXPECT_GE(1, max_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has"
<< "an individual roundtrip error > 1";
EXPECT_GE(count_test_block/5, total_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average"
<< " roundtrip error > 1/5 per block";
}
}
EXPECT_GE(1, max_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has an"
<< " individual roundtrip error > 1";
int pitch_;
int tx_type_;
fht_t fwd_txfm_ref;
};
EXPECT_GE(count_test_block/5, total_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average"
<< " roundtrip error > 1/5 per block";
class FwdTrans8x8DCT : public FwdTrans8x8TestBase,
public PARAMS(fdct_t, idct_t, int) {
public:
virtual ~FwdTrans8x8DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 16;
fwd_txfm_ref = fdct8x8_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride >> 1);
}
fdct_t fwd_txfm_;
idct_t inv_txfm_;
};
TEST_P(FwdTrans8x8DCT, SignBiasCheck) {
RunSignBiasCheck();
}
INSTANTIATE_TEST_CASE_P(VP9, FwdTrans8x8Test, ::testing::Range(0, 4));
TEST_P(FwdTrans8x8DCT, RoundTripErrorCheck) {
RunRoundTripErrorCheck();
}
TEST_P(FwdTrans8x8DCT, ExtremalCheck) {
RunExtremalCheck();
}
class FwdTrans8x8HT : public FwdTrans8x8TestBase,
public PARAMS(fht_t, iht_t, int) {
public:
virtual ~FwdTrans8x8HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 8;
fwd_txfm_ref = fht8x8_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, int stride) {
fwd_txfm_(in, out, stride, tx_type_);
}
void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, tx_type_);
}
fht_t fwd_txfm_;
iht_t inv_txfm_;
};
TEST_P(FwdTrans8x8HT, SignBiasCheck) {
RunSignBiasCheck();
}
TEST_P(FwdTrans8x8HT, RoundTripErrorCheck) {
RunRoundTripErrorCheck();
}
TEST_P(FwdTrans8x8HT, ExtremalCheck) {
RunExtremalCheck();
}
using std::tr1::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vp9_short_fdct8x8_c, &vp9_short_idct8x8_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_short_fht8x8_c, &vp9_short_iht8x8_add_c, 0),
make_tuple(&vp9_short_fht8x8_c, &vp9_short_iht8x8_add_c, 1),
make_tuple(&vp9_short_fht8x8_c, &vp9_short_iht8x8_add_c, 2),
make_tuple(&vp9_short_fht8x8_c, &vp9_short_iht8x8_add_c, 3)));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vp9_short_fdct8x8_sse2, &vp9_short_idct8x8_add_sse2, 0)));
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_short_fht8x8_sse2, &vp9_short_iht8x8_add_sse2, 0),
make_tuple(&vp9_short_fht8x8_sse2, &vp9_short_iht8x8_add_sse2, 1),
make_tuple(&vp9_short_fht8x8_sse2, &vp9_short_iht8x8_add_sse2, 2),
make_tuple(&vp9_short_fht8x8_sse2, &vp9_short_iht8x8_add_sse2, 3)));
#endif
} // namespace
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment