Commit 5f509163 authored by Yaowu Xu's avatar Yaowu Xu
Browse files

vpx_dsp/bitwriter_buffer.h: vp9_ -> vpx_

Change-Id: I0ac7beaa160a6c2a60a019f6b8ce85e6537bed7d
parent 817be1d2
......@@ -56,9 +56,9 @@ static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
&inter_mode_encodings[INTER_OFFSET(mode)]);
}
static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
static void encode_unsigned_max(struct vpx_write_bit_buffer *wb,
int data, int max) {
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
}
static void prob_diff_update(const vpx_tree_index *tree,
......@@ -693,75 +693,75 @@ static void update_coef_probs(VP9_COMP *cpi, vpx_writer* w) {
}
static void encode_loopfilter(struct loopfilter *lf,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
int i;
// Encode the loop filter level and type
vp9_wb_write_literal(wb, lf->filter_level, 6);
vp9_wb_write_literal(wb, lf->sharpness_level, 3);
vpx_wb_write_literal(wb, lf->filter_level, 6);
vpx_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != lf->last_ref_deltas[i];
vp9_wb_write_bit(wb, changed);
vpx_wb_write_bit(wb, changed);
if (changed) {
lf->last_ref_deltas[i] = delta;
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vpx_wb_write_bit(wb, delta < 0);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != lf->last_mode_deltas[i];
vp9_wb_write_bit(wb, changed);
vpx_wb_write_bit(wb, changed);
if (changed) {
lf->last_mode_deltas[i] = delta;
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vpx_wb_write_bit(wb, delta < 0);
}
}
}
}
}
static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
vp9_wb_write_bit(wb, 1);
vp9_wb_write_literal(wb, abs(delta_q), 4);
vp9_wb_write_bit(wb, delta_q < 0);
vpx_wb_write_bit(wb, 1);
vpx_wb_write_literal(wb, abs(delta_q), 4);
vpx_wb_write_bit(wb, delta_q < 0);
} else {
vp9_wb_write_bit(wb, 0);
vpx_wb_write_bit(wb, 0);
}
}
static void encode_quantization(const VP9_COMMON *const cm,
struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
struct vpx_write_bit_buffer *wb) {
vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
write_delta_q(wb, cm->uv_dc_delta_q);
write_delta_q(wb, cm->uv_ac_delta_q);
}
static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
int i, j;
const struct segmentation *seg = &cm->seg;
vp9_wb_write_bit(wb, seg->enabled);
vpx_wb_write_bit(wb, seg->enabled);
if (!seg->enabled)
return;
// Segmentation map
vp9_wb_write_bit(wb, seg->update_map);
vpx_wb_write_bit(wb, seg->update_map);
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
vp9_choose_segmap_coding_method(cm, xd);
......@@ -769,40 +769,40 @@ static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
for (i = 0; i < SEG_TREE_PROBS; i++) {
const int prob = seg->tree_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
vpx_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
vpx_wb_write_literal(wb, prob, 8);
}
// Write out the chosen coding method.
vp9_wb_write_bit(wb, seg->temporal_update);
vpx_wb_write_bit(wb, seg->temporal_update);
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
const int prob = seg->pred_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
vpx_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
vpx_wb_write_literal(wb, prob, 8);
}
}
}
// Segmentation data
vp9_wb_write_bit(wb, seg->update_data);
vpx_wb_write_bit(wb, seg->update_data);
if (seg->update_data) {
vp9_wb_write_bit(wb, seg->abs_delta);
vpx_wb_write_bit(wb, seg->abs_delta);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
vp9_wb_write_bit(wb, active);
vpx_wb_write_bit(wb, active);
if (active) {
const int data = get_segdata(seg, i, j);
const int data_max = vp9_seg_feature_data_max(j);
if (vp9_is_segfeature_signed(j)) {
encode_unsigned_max(wb, abs(data), data_max);
vp9_wb_write_bit(wb, data < 0);
vpx_wb_write_bit(wb, data < 0);
} else {
encode_unsigned_max(wb, data, data_max);
}
......@@ -850,12 +850,12 @@ static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
}
static void write_interp_filter(INTERP_FILTER filter,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
const int filter_to_literal[] = { 1, 0, 2, 3 };
vp9_wb_write_bit(wb, filter == SWITCHABLE);
vpx_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
vpx_wb_write_literal(wb, filter_to_literal[filter], 2);
}
static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
......@@ -882,22 +882,22 @@ static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
}
static void write_tile_info(const VP9_COMMON *const cm,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
int min_log2_tile_cols, max_log2_tile_cols, ones;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
ones = cm->log2_tile_cols - min_log2_tile_cols;
while (ones--)
vp9_wb_write_bit(wb, 1);
vpx_wb_write_bit(wb, 1);
if (cm->log2_tile_cols < max_log2_tile_cols)
vp9_wb_write_bit(wb, 0);
vpx_wb_write_bit(wb, 0);
// rows
vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
if (cm->log2_tile_rows != 0)
vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
}
static int get_refresh_mask(VP9_COMP *cpi) {
......@@ -969,26 +969,26 @@ static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
}
static void write_display_size(const VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
const int scaling_active = cm->width != cm->display_width ||
cm->height != cm->display_height;
vp9_wb_write_bit(wb, scaling_active);
vpx_wb_write_bit(wb, scaling_active);
if (scaling_active) {
vp9_wb_write_literal(wb, cm->display_width - 1, 16);
vp9_wb_write_literal(wb, cm->display_height - 1, 16);
vpx_wb_write_literal(wb, cm->display_width - 1, 16);
vpx_wb_write_literal(wb, cm->display_height - 1, 16);
}
}
static void write_frame_size(const VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
struct vpx_write_bit_buffer *wb) {
vpx_wb_write_literal(wb, cm->width - 1, 16);
vpx_wb_write_literal(wb, cm->height - 1, 16);
write_display_size(cm, wb);
}
static void write_frame_size_with_refs(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
int found = 0;
......@@ -1011,40 +1011,40 @@ static void write_frame_size_with_refs(VP9_COMP *cpi,
found = cm->width == cfg->y_crop_width &&
cm->height == cfg->y_crop_height;
}
vp9_wb_write_bit(wb, found);
vpx_wb_write_bit(wb, found);
if (found) {
break;
}
}
if (!found) {
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
vpx_wb_write_literal(wb, cm->width - 1, 16);
vpx_wb_write_literal(wb, cm->height - 1, 16);
}
write_display_size(cm, wb);
}
static void write_sync_code(struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
static void write_sync_code(struct vpx_write_bit_buffer *wb) {
vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
}
static void write_profile(BITSTREAM_PROFILE profile,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
switch (profile) {
case PROFILE_0:
vp9_wb_write_literal(wb, 0, 2);
vpx_wb_write_literal(wb, 0, 2);
break;
case PROFILE_1:
vp9_wb_write_literal(wb, 2, 2);
vpx_wb_write_literal(wb, 2, 2);
break;
case PROFILE_2:
vp9_wb_write_literal(wb, 1, 2);
vpx_wb_write_literal(wb, 1, 2);
break;
case PROFILE_3:
vp9_wb_write_literal(wb, 6, 3);
vpx_wb_write_literal(wb, 6, 3);
break;
default:
assert(0);
......@@ -1052,41 +1052,41 @@ static void write_profile(BITSTREAM_PROFILE profile,
}
static void write_bitdepth_colorspace_sampling(
VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
if (cm->profile >= PROFILE_2) {
assert(cm->bit_depth > VPX_BITS_8);
vp9_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
}
vp9_wb_write_literal(wb, cm->color_space, 3);
vpx_wb_write_literal(wb, cm->color_space, 3);
if (cm->color_space != VPX_CS_SRGB) {
vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
vpx_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
vp9_wb_write_bit(wb, cm->subsampling_x);
vp9_wb_write_bit(wb, cm->subsampling_y);
vp9_wb_write_bit(wb, 0); // unused
vpx_wb_write_bit(wb, cm->subsampling_x);
vpx_wb_write_bit(wb, cm->subsampling_y);
vpx_wb_write_bit(wb, 0); // unused
} else {
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
}
} else {
assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
vp9_wb_write_bit(wb, 0); // unused
vpx_wb_write_bit(wb, 0); // unused
}
}
static void write_uncompressed_header(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
struct vpx_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
write_profile(cm->profile, wb);
vp9_wb_write_bit(wb, 0); // show_existing_frame
vp9_wb_write_bit(wb, cm->frame_type);
vp9_wb_write_bit(wb, cm->show_frame);
vp9_wb_write_bit(wb, cm->error_resilient_mode);
vpx_wb_write_bit(wb, 0); // show_existing_frame
vpx_wb_write_bit(wb, cm->frame_type);
vpx_wb_write_bit(wb, cm->show_frame);
vpx_wb_write_bit(wb, cm->error_resilient_mode);
if (cm->frame_type == KEY_FRAME) {
write_sync_code(wb);
......@@ -1102,10 +1102,10 @@ static void write_uncompressed_header(VP9_COMP *cpi,
// show_existing_frame flag which tells the decoder which frame we want to
// show.
if (!cm->show_frame)
vp9_wb_write_bit(wb, cm->intra_only);
vpx_wb_write_bit(wb, cm->intra_only);
if (!cm->error_resilient_mode)
vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
vpx_wb_write_literal(wb, cm->reset_frame_context, 2);
if (cm->intra_only) {
write_sync_code(wb);
......@@ -1115,21 +1115,21 @@ static void write_uncompressed_header(VP9_COMP *cpi,
write_bitdepth_colorspace_sampling(cm, wb);
}
vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
write_frame_size(cm, wb);
} else {
MV_REFERENCE_FRAME ref_frame;
vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
vp9_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
}
write_frame_size_with_refs(cpi, wb);
vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
fix_interp_filter(cm, cpi->td.counts);
write_interp_filter(cm->interp_filter, wb);
......@@ -1137,11 +1137,11 @@ static void write_uncompressed_header(VP9_COMP *cpi,
}
if (!cm->error_resilient_mode) {
vp9_wb_write_bit(wb, cm->refresh_frame_context);
vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
vpx_wb_write_bit(wb, cm->refresh_frame_context);
vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
}
vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
encode_loopfilter(&cm->lf, wb);
encode_quantization(cm, wb);
......@@ -1230,14 +1230,14 @@ static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
uint8_t *data = dest;
size_t first_part_size, uncompressed_hdr_size;
struct vp9_write_bit_buffer wb = {data, 0};
struct vp9_write_bit_buffer saved_wb;
struct vpx_write_bit_buffer wb = {data, 0};
struct vpx_write_bit_buffer saved_wb;
write_uncompressed_header(cpi, &wb);
saved_wb = wb;
vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
uncompressed_hdr_size = vp9_wb_bytes_written(&wb);
uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
data += uncompressed_hdr_size;
vp9_clear_system_state();
......@@ -1245,7 +1245,7 @@ void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
first_part_size = write_compressed_header(cpi, data);
data += first_part_size;
// TODO(jbb): Figure out what to do if first_part_size > 16 bits.
vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
data += encode_tiles(cpi, data);
......
......@@ -12,11 +12,11 @@
#include "./bitwriter_buffer.h"
size_t vp9_wb_bytes_written(const struct vp9_write_bit_buffer *wb) {
size_t vpx_wb_bytes_written(const struct vpx_write_bit_buffer *wb) {
return wb->bit_offset / CHAR_BIT + (wb->bit_offset % CHAR_BIT > 0);
}
void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit) {
void vpx_wb_write_bit(struct vpx_write_bit_buffer *wb, int bit) {
const int off = (int)wb->bit_offset;
const int p = off / CHAR_BIT;
const int q = CHAR_BIT - 1 - off % CHAR_BIT;
......@@ -29,8 +29,8 @@ void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit) {
wb->bit_offset = off + 1;
}
void vp9_wb_write_literal(struct vp9_write_bit_buffer *wb, int data, int bits) {
void vpx_wb_write_literal(struct vpx_write_bit_buffer *wb, int data, int bits) {
int bit;
for (bit = bits - 1; bit >= 0; bit--)
vp9_wb_write_bit(wb, (data >> bit) & 1);
vpx_wb_write_bit(wb, (data >> bit) & 1);
}
......@@ -17,16 +17,16 @@
extern "C" {
#endif
struct vp9_write_bit_buffer {
struct vpx_write_bit_buffer {
uint8_t *bit_buffer;
size_t bit_offset;
};
size_t vp9_wb_bytes_written(const struct vp9_write_bit_buffer *wb);
size_t vpx_wb_bytes_written(const struct vpx_write_bit_buffer *wb);
void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit);
void vpx_wb_write_bit(struct vpx_write_bit_buffer *wb, int bit);
void vp9_wb_write_literal(struct vp9_write_bit_buffer *wb, int data, int bits);
void vpx_wb_write_literal(struct vpx_write_bit_buffer *wb, int data, int bits);
#ifdef __cplusplus
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment