Commit baeb3758 authored by Luc Trudeau's avatar Luc Trudeau Committed by David Michael Barr

[CFL] Load luma as prediction for chroma

Loads the stored reconstructed luma pixels for each trasnform block
inside a prediction block. Supports 4:4:4 and 4:2:0 chroma subsampling
modes.

The CFL_CTX struct is now in cfl.h with appropriate forward declarations

Change-Id: I44c117899414a10a8318d14ecaed402f803de97d
parent c54594f8
......@@ -31,7 +31,9 @@
#include "av1/common/pvq_state.h"
#include "av1/decoder/decint.h"
#endif
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
......@@ -552,19 +554,6 @@ typedef struct RefBuffer {
typedef int16_t EobThresholdMD[TX_SIZES_ALL][TX_TYPES];
#if CONFIG_CFL
typedef struct {
// Pixel buffer containing the luma pixels used as prediction for chroma
uint8_t y_pix[MAX_SB_SQUARE];
// Height and width of the luma prediction block currently in the pixel buffer
int y_height, y_width;
// CfL Performs its own block level DC_PRED for each chromatic plane
int dc_pred[CFL_PRED_PLANES];
} CFL_CTX;
#endif
typedef struct macroblockd {
struct macroblockd_plane plane[MAX_MB_PLANE];
uint8_t bmode_blocks_wl;
......
......@@ -11,6 +11,21 @@
#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/onyxc_int.h"
#include "aom/internal/aom_codec_internal.h"
void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x,
int subsampling_y) {
if (!((subsampling_x == 0 && subsampling_y == 0) ||
(subsampling_x == 1 && subsampling_y == 1))) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Only 4:4:4 and 4:2:0 are currently supported by CfL");
}
memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE);
cfl->subsampling_x = subsampling_x;
cfl->subsampling_y = subsampling_y;
}
// CfL computes its own block-level DC_PRED. This is required to compute both
// alpha_cb and alpha_cr before the prediction are computed.
......@@ -72,14 +87,19 @@ void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
// Predict the current transform block using CfL.
// it is assumed that dst points at the start of the transform block
void cfl_predict_block(uint8_t *dst, int dst_stride, TX_SIZE tx_size,
int dc_pred) {
void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride,
int row, int col, TX_SIZE tx_size, int dc_pred) {
const int tx_block_width = tx_size_wide[tx_size];
const int tx_block_height = tx_size_high[tx_size];
// TODO(ltrudeau) implement alpha
// Place holder for alpha
const double alpha = 0;
const double y_avg = cfl_load(cfl, dst, dst_stride, row, col, tx_size);
for (int j = 0; j < tx_block_height; j++) {
for (int i = 0; i < tx_block_width; i++) {
dst[i] = dc_pred;
dst[i] = (uint8_t)(alpha * y_avg + dc_pred + 0.5);
}
dst += dst_stride;
}
......@@ -117,3 +137,102 @@ void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row,
cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height);
}
}
// Load from the CfL pixel buffer into output
double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row,
int col, TX_SIZE tx_size) {
const int tx_width = tx_size_wide[tx_size];
const int tx_height = tx_size_high[tx_size];
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int tx_off_log2 = tx_size_wide_log2[0];
const uint8_t *y_pix;
int diff_width = 0;
int diff_height = 0;
int pred_row_offset = 0;
int output_row_offset = 0;
int top_left, bot_left;
// TODO(ltrudeau) add support for 4:2:2
if (sub_y == 0 && sub_x == 0) {
y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2];
int uv_width = (col << tx_off_log2) + tx_width;
diff_width = uv_width - cfl->y_width;
int uv_height = (row << tx_off_log2) + tx_width;
diff_height = uv_height - cfl->y_height;
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
// In 4:4:4, pixels match 1 to 1
output[output_row_offset + i] = y_pix[pred_row_offset + i];
}
pred_row_offset += MAX_SB_SIZE;
output_row_offset += output_stride;
}
} else if (sub_y == 1 && sub_x == 1) {
y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (tx_off_log2 + sub_y)];
int uv_width = ((col << tx_off_log2) + tx_width) << sub_x;
diff_width = (uv_width - cfl->y_width) >> sub_x;
int uv_height = ((row << tx_off_log2) + tx_width) << sub_y;
diff_height = (uv_height - cfl->y_height) >> sub_y;
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
top_left = (pred_row_offset + i) << sub_y;
bot_left = top_left + MAX_SB_SIZE;
// In 4:2:0, average pixels in 2x2 grid
output[output_row_offset + i] = OD_SHR_ROUND(
y_pix[top_left] + y_pix[top_left + 1] // Top row
+ y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row
,
2);
}
pred_row_offset += MAX_SB_SIZE;
output_row_offset += output_stride;
}
} else {
assert(0); // Unsupported chroma subsampling
}
// Due to frame boundary issues, it is possible that the total area of
// covered by Chroma exceeds that of Luma. When this happens, we write over
// the broken data by repeating the last columns and/or rows.
//
// Note that in order to manage the case where both rows and columns
// overrun,
// we apply rows first. This way, when the rows overrun the bottom of the
// frame, the columns will be copied over them.
if (diff_width > 0) {
int last_pixel;
output_row_offset = tx_width - diff_width;
for (int j = 0; j < tx_height; j++) {
last_pixel = output_row_offset - 1;
for (int i = 0; i < diff_width; i++) {
output[output_row_offset + i] = output[last_pixel];
}
output_row_offset += output_stride;
}
}
if (diff_height > 0) {
output_row_offset = diff_height * output_stride;
const int last_row_offset = output_row_offset - output_stride;
for (int j = 0; j < diff_height; j++) {
for (int i = 0; i < tx_width; i++) {
output[output_row_offset + i] = output[last_row_offset + i];
}
output_row_offset += output_stride;
}
}
int avg = 0;
output_row_offset = 0;
for (int j = 0; j < tx_height; j++) {
for (int i = 0; i < tx_width; i++) {
avg += output[output_row_offset + i];
}
output_row_offset += output_stride;
}
return avg / (double)(tx_width * tx_height);
}
......@@ -12,15 +12,41 @@
#ifndef AV1_COMMON_CFL_H_
#define AV1_COMMON_CFL_H_
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
// Forward declaration of AV1_COMMON, in order to avoid creating a cyclic
// dependency by importing av1/common/onyxc_int.h
typedef struct AV1Common AV1_COMMON;
// Forward declaration of MACROBLOCK, in order to avoid creating a cyclic
// dependency by importing av1/common/blockd.h
typedef struct macroblockd MACROBLOCKD;
typedef struct {
// Pixel buffer containing the luma pixels used as prediction for chroma
uint8_t y_pix[MAX_SB_SQUARE];
// Height and width of the luma prediction block currently in the pixel buffer
int y_height, y_width;
// Chroma subsampling
int subsampling_x, subsampling_y;
// CfL Performs its own block level DC_PRED for each chromatic plane
int dc_pred[CFL_PRED_PLANES];
} CFL_CTX;
void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x,
int subsampling_y);
void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
void cfl_predict_block(uint8_t *dst, int dst_stride, TX_SIZE tx_size,
int dc_pred);
void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride,
int row, int col, TX_SIZE tx_size, int dc_pred);
void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row,
int col, TX_SIZE tx_size);
double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row,
int col, TX_SIZE tx_size);
#endif // AV1_COMMON_CFL_H_
......@@ -35,6 +35,9 @@
#if CONFIG_PVQ
#include "av1/common/pvq.h"
#endif
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
......@@ -535,7 +538,8 @@ static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
#endif
#if CONFIG_CFL
xd->cfl = cfl;
memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE);
cfl_init(cfl, cm, xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y);
#endif
xd->above_context[i] = cm->above_context[i];
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
......
......@@ -2308,7 +2308,7 @@ void av1_predict_intra_block_facade(MACROBLOCKD *xd, int plane, int block_idx,
// is signaled.
cfl_dc_pred(xd, get_plane_block_size(block_idx, pd), tx_size);
}
cfl_predict_block(dst, pd->dst.stride, tx_size,
cfl_predict_block(xd->cfl, dst, pd->dst.stride, blk_row, blk_col, tx_size,
xd->cfl->dc_pred[plane - 1]);
}
#endif
......
......@@ -5051,8 +5051,10 @@ void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
#endif // #if CONFIG_EC_ADAPT
#if CONFIG_CFL
td->mb.e_mbd.cfl = &this_tile->cfl;
memset(&this_tile->cfl.y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE);
MACROBLOCKD *const xd = &td->mb.e_mbd;
xd->cfl = &this_tile->cfl;
cfl_init(xd->cfl, cm, xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y);
#endif
#if CONFIG_PVQ
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment