/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./av1_rtcd.h" #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/rd.h" #include "av1/encoder/tokenize.h" #if CONFIG_PVQ #include "av1/encoder/encint.h" #include "av1/common/partition.h" #include "av1/encoder/pvq_encoder.h" #endif struct optimize_ctx { ENTROPY_CONTEXT ta[MAX_MB_PLANE][16]; ENTROPY_CONTEXT tl[MAX_MB_PLANE][16]; }; void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; #if CONFIG_AOM_HIGHBITDEPTH if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, x->e_mbd.bd); return; } #endif // CONFIG_AOM_HIGHBITDEPTH aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } #define RDTRUNC(RM, DM, R, D) \ (((1 << (AV1_PROB_COST_SHIFT - 1)) + (R) * (RM)) & \ ((1 << AV1_PROB_COST_SHIFT) - 1)) typedef struct av1_token_state { int rate; int error; int next; int16_t token; short qc; } av1_token_state; #if !CONFIG_PVQ // TODO(jimbankoski): experiment to find optimal RD numbers. static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 }; #define UPDATE_RD_COST() \ { \ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \ if (rd_cost0 == rd_cost1) { \ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); \ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); \ } \ } // This function is a place holder for now but may ultimately need // to scan previous tokens to work out the correct context. static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb, int idx, int token, uint8_t *token_cache) { int bak = token_cache[scan[idx]], pt; token_cache[scan[idx]] = av1_pt_energy_class[token]; pt = get_coef_context(nb, token_cache, idx + 1); token_cache[scan[idx]] = bak; return pt; } static int optimize_b(const AV1_COMMON *const cm, MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(&xd->mi[0]->mbmi); av1_token_state tokens[1025][2]; unsigned best_index[1025][2]; uint8_t token_cache[1024]; const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE type = pd->plane_type; const int default_eob = 1 << (tx_size_1d_log2[tx_size] * 2); const int mul = 1 + (tx_size == TX_32X32); #if CONFIG_AOM_QM int seg_id = xd->mi[0]->mbmi.segment_id; int is_intra = !is_inter_block(&xd->mi[0]->mbmi); const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size]; #endif const int16_t *dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); TX_TYPE tx_type = get_tx_type(type, xd, block); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type); const int16_t *const scan = scan_order->scan; const int16_t *const nb = scan_order->neighbors; int next = eob, sz = 0; int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv; int64_t rd_cost0, rd_cost1; int rate0, rate1, error0, error1; int16_t t0, t1; EXTRABIT e0; int best, band, pt, i, final_eob; #if CONFIG_AOM_HIGHBITDEPTH const int *cat6_high_cost = av1_get_high_cost_table(xd->bd); #else const int *cat6_high_cost = av1_get_high_cost_table(8); #endif assert((!type && !plane) || (type && plane)); assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ if (!ref) rdmult = (rdmult * 9) >> 4; /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = EOB_TOKEN; tokens[eob][0].qc = 0; tokens[eob][1] = tokens[eob][0]; for (i = 0; i < eob; i++) token_cache[scan[i]] = av1_pt_energy_class[av1_get_token(qcoeff[scan[i]])]; for (i = eob; i-- > 0;) { int base_bits, d2, dx; const int rc = scan[i]; #if CONFIG_AOM_QM int iwt = iqmatrix[rc]; #endif int x = qcoeff[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; av1_get_token_extra(x, &t0, &e0); /* Consider both possible successor states. */ if (next < default_eob) { band = band_translate[i + 1]; pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][band][0][pt] [tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][ref][band][0][pt] [tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = av1_get_cost(t0, e0, cat6_high_cost); dx = mul * (dqcoeff[rc] - coeff[rc]); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_AOM_HIGHBITDEPTH d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; #if CONFIG_AOM_QM if ((abs(x) * dequant_ptr[rc != 0] * iwt > ((abs(coeff[rc]) * mul) << AOM_QM_BITS)) && (abs(x) * dequant_ptr[rc != 0] * iwt < ((abs(coeff[rc]) * mul + dequant_ptr[rc != 0]) << AOM_QM_BITS))) #else if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) && (abs(x) * dequant_ptr[rc != 0] < abs(coeff[rc]) * mul + dequant_ptr[rc != 0])) #endif shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; e0 = 0; } else { av1_get_token_extra(x, &t0, &e0); t1 = t0; } if (next < default_eob) { band = band_translate[i + 1]; if (t0 != EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt] [tokens[next][0].token]; } if (t1 != EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache); rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt] [tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = av1_get_cost(t0, e0, cat6_high_cost); if (shortcut) { #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz; } else { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; } #else dx -= (dequant_ptr[rc != 0] + sz) ^ sz; #endif // CONFIG_AOM_HIGHBITDEPTH d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } else { /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ band = band_translate[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][ref][band][1][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][ref][band][1][0][t1]; tokens[next][1].token = ZERO_TOKEN; } best_index[i][0] = best_index[i][1] = 0; /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = band_translate[i + 1]; rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0]; rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = -1; memset(qcoeff, 0, sizeof(*qcoeff) * default_eob); memset(dqcoeff, 0, sizeof(*dqcoeff) * default_eob); for (i = next; i < eob; i = next) { const int x = tokens[i][best].qc; const int rc = scan[i]; #if CONFIG_AOM_QM const int iwt = iqmatrix[rc]; const int dequant = (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; #endif if (x) { final_eob = i; } qcoeff[rc] = x; #if CONFIG_AOM_QM dqcoeff[rc] = (x * dequant) / mul; #else dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul; #endif next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; mb->plane[plane].eobs[block] = final_eob; return final_eob; } #endif // TODO(sarahparker) refactor fwd quant functions to use fwd_txfm fns in // hybrid_fwd_txfm.c void av1_xform_quant_fp(const AV1_COMMON *const cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; #if !CONFIG_PVQ const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; #else struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; #endif PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; int seg_id = xd->mi[0]->mbmi.segment_id; #if CONFIG_AOM_QM int is_intra = !is_inter_block(&xd->mi[0]->mbmi); const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size]; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size]; #endif #if !CONFIG_PVQ const int16_t *src_diff; (void)cm; /* FWD_TXFM_PARAM fwd_txfm_param; fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; */ src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; #else MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block); uint8_t *src, *dst; int16_t *src_int16, *pred; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; int tx_blk_size; int i, j; int skip = 1; PVQ_INFO *pvq_info = NULL; (void)scan_order; (void)qcoeff; if (x->pvq_coded) { assert(block < MAX_PVQ_BLOCKS_IN_SB); pvq_info = &x->pvq[block][plane]; } dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; src_int16 = &p->src_int16[4 * (blk_row * diff_stride + blk_col)]; pred = &pd->pred[4 * (blk_row * diff_stride + blk_col)]; // transform block size in pixels tx_blk_size = tx_size_1d[tx_size]; // copy uint8 orig and predicted block to int16 buffer // in order to use existing VP10 transform functions for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) { src_int16[diff_stride * j + i] = src[src_stride * j + i]; pred[diff_stride * j + i] = dst[dst_stride * j + i]; } #endif #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (tx_size) { case TX_32X32: highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); av1_highbd_quantize_fp_32x32( coeff, 1024, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_16X16: aom_highbd_fdct16x16(src_diff, coeff, diff_stride); av1_highbd_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_8X8: aom_highbd_fdct8x8(src_diff, coeff, diff_stride); av1_highbd_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_4X4: if (xd->lossless[seg_id]) { av1_highbd_fwht4x4(src_diff, coeff, diff_stride); } else { aom_highbd_fdct4x4(src_diff, coeff, diff_stride); } av1_highbd_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; default: assert(0); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH #if !CONFIG_PVQ switch (tx_size) { case TX_32X32: fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); av1_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_16X16: aom_fdct16x16(src_diff, coeff, diff_stride); av1_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_8X8: av1_fdct8x8_quant(src_diff, diff_stride, coeff, 64, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_4X4: if (xd->lossless[seg_id]) { av1_fwht4x4(src_diff, coeff, diff_stride); } else { aom_fdct4x4(src_diff, coeff, diff_stride); } av1_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; default: assert(0); break; } #else // #if !CONFIG_PVQ switch (tx_size) { case TX_32X32: // NOTE: Using x->use_lp32x32fdct == 1 will makes enc and dec mismatched, // because decoder always uses x->use_lp32x32fdct == 0, // forward transform of predicted image. fdct32x32(0, pred, ref_coeff, diff_stride); // forward transform of original image. fdct32x32(0, src_int16, coeff, diff_stride); break; case TX_16X16: aom_fdct16x16(pred, ref_coeff, diff_stride); aom_fdct16x16(src_int16, coeff, diff_stride); break; case TX_8X8: aom_fdct8x8(pred, ref_coeff, diff_stride); aom_fdct8x8(src_int16, coeff, diff_stride); break; case TX_4X4: if (xd->lossless[seg_id]) { av1_fwht4x4(pred, ref_coeff, diff_stride); av1_fwht4x4(src_int16, coeff, diff_stride); } else { aom_fdct4x4(pred, ref_coeff, diff_stride); aom_fdct4x4(src_int16, coeff, diff_stride); } break; default: assert(0); break; } // PVQ for inter mode block if (!x->skip_block) skip = av1_pvq_encode_helper(&x->daala_enc, coeff, // target original vector ref_coeff, // reference vector dqcoeff, // de-quantized vector eob, // End of Block marker pd->dequant, // aom's quantizers plane, // image plane tx_size, // block size in log_2 - 2 tx_type, &x->rate, // rate measured x->pvq_speed, pvq_info); // PVQ info for a block x->pvq_skip[plane] = skip; if (!skip) mbmi->skip = 0; #endif // #if !CONFIG_PVQ } void av1_xform_quant(const AV1_COMMON *const cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; #if !CONFIG_PVQ const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; #else struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; #endif PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; int seg_id = xd->mi[0]->mbmi.segment_id; FWD_TXFM_PARAM fwd_txfm_param; #if CONFIG_AOM_QM int is_intra = !is_inter_block(&xd->mi[0]->mbmi); const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size]; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size]; #endif #if !CONFIG_PVQ const int16_t *src_diff; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; #else MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block); uint8_t *src, *dst; int16_t *src_int16, *pred; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; int tx_blk_size; int i, j; int skip = 1; PVQ_INFO *pvq_info = NULL; (void)scan_order; (void)qcoeff; if (x->pvq_coded) { assert(block < MAX_PVQ_BLOCKS_IN_SB); pvq_info = &x->pvq[block][plane]; } dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; src_int16 = &p->src_int16[4 * (blk_row * diff_stride + blk_col)]; pred = &pd->pred[4 * (blk_row * diff_stride + blk_col)]; // transform block size in pixels tx_blk_size = tx_size_1d[tx_size]; // copy uint8 orig and predicted block to int16 buffer // in order to use existing VP10 transform functions for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) { src_int16[diff_stride * j + i] = src[src_stride * j + i]; pred[diff_stride * j + i] = dst[dst_stride * j + i]; } #endif fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[seg_id]; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); switch (tx_size) { case TX_32X32: aom_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_16X16: aom_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_8X8: aom_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_4X4: aom_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; default: assert(0); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH #if !CONFIG_PVQ fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); switch (tx_size) { case TX_32X32: aom_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_16X16: aom_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_8X8: aom_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; case TX_4X4: aom_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif break; default: assert(0); break; } #else // #if !CONFIG_PVQ fwd_txfm_param.rd_transform = 0; fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param); fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param); // PVQ for inter mode block if (!x->skip_block) skip = av1_pvq_encode_helper(&x->daala_enc, coeff, // target original vector ref_coeff, // reference vector dqcoeff, // de-quantized vector eob, // End of Block marker pd->dequant, // aom's quantizers plane, // image plane tx_size, // block size in log_2 - 2 tx_type, &x->rate, // rate measured x->pvq_speed, pvq_info); // PVQ info for a block x->pvq_skip[plane] = skip; if (!skip) mbmi->skip = 0; #endif // #if !CONFIG_PVQ } static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; const AV1_COMMON *const cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx *const ctx = args->ctx; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; ENTROPY_CONTEXT *a, *l; TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block); #if CONFIG_PVQ int tx_blk_size; int i, j; #endif dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col]; a = &ctx->ta[plane][blk_col]; l = &ctx->tl[plane][blk_row]; if (x->quant_fp) { av1_xform_quant_fp(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size); } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size); } #if !CONFIG_PVQ if (x->optimize) { const int combined_ctx = combine_entropy_contexts(*a, *l); *a = *l = optimize_b(cm, x, plane, block, tx_size, combined_ctx) > 0; } else { *a = *l = p->eobs[block] > 0; } if (p->eobs[block]) *(args->skip) = 0; if (p->eobs[block] == 0) return; #else *a = *l = !x->pvq_skip[plane]; if (!x->pvq_skip[plane]) *(args->skip) = 0; if (x->pvq_skip[plane]) return; // transform block size in pixels tx_blk_size = tx_size_1d[tx_size]; // Since av1 does not have separate function which does inverse transform // but av1_inv_txfm_add_*x*() also does addition of predicted image to // inverse transformed image, // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0; #endif #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (tx_size) { case TX_32X32: av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd, tx_type); break; case TX_16X16: av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd, tx_type); break; case TX_8X8: av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd, tx_type); break; case TX_4X4: // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd, tx_type, xd->lossless[xd->mi[0]->mbmi.segment_id]); break; default: assert(0 && "Invalid transform size"); break; } return; } #endif // CONFIG_AOM_HIGHBITDEPTH switch (tx_size) { case TX_32X32: av1_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride, p->eobs[block], tx_type); break; case TX_16X16: av1_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride, p->eobs[block], tx_type); break; case TX_8X8: av1_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride, p->eobs[block], tx_type); break; case TX_4X4: // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. av1_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, p->eobs[block], tx_type, xd->lossless[xd->mi[0]->mbmi.segment_id]); break; default: assert(0 && "Invalid transform size"); break; } } typedef struct encode_block_pass1_args { AV1_COMMON *cm; MACROBLOCK *x; } encode_block_pass1_args; static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { encode_block_pass1_args *args = (encode_block_pass1_args *)arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col]; av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size); #if !CONFIG_PVQ if (p->eobs[block] > 0) { #else if (!x->pvq_skip[plane]) { #endif #if CONFIG_PVQ { int tx_blk_size; int i, j; // transform block size in pixels tx_blk_size = tx_size_1d[tx_size]; // Since av1 does not have separate function which does inverse transform // but av1_inv_txfm_add_*x*() also does addition of predicted image to // inverse transformed image, // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0; } #endif #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { if (xd->lossless[0]) { av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } else { av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH if (xd->lossless[0]) { av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } else { av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } } } void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { encode_block_pass1_args args = { cm, x }; av1_subtract_plane(x, bsize, 0); av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, &args); } void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { #if !CONFIG_PVQ av1_subtract_plane(x, bsize, plane); #endif if (x->optimize) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); } av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); } } void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; AV1_COMMON *cm = args->cm; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type); PREDICTION_MODE mode; const int bwl = b_width_log2_lookup[plane_bsize]; const int bhl = b_height_log2_lookup[plane_bsize]; const int diff_stride = 4 * (1 << bwl); uint8_t *src, *dst; uint16_t *eob = &p->eobs[block]; int seg_id = xd->mi[0]->mbmi.segment_id; #if CONFIG_AOM_QM int is_intra = !is_inter_block(&xd->mi[0]->mbmi); const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size]; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size]; #endif const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; FWD_TXFM_PARAM fwd_txfm_param; int16_t *src_diff; int tx1d_size = tx_size_1d[tx_size]; #if CONFIG_PVQ tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block); int16_t *src_int16; int tx_blk_size; int i, j; int16_t *pred = &pd->pred[4 * (blk_row * diff_stride + blk_col)]; int skip = 1; PVQ_INFO *pvq_info = NULL; (void)scan_order; (void)qcoeff; if (x->pvq_coded) { assert(block < MAX_PVQ_BLOCKS_IN_SB); pvq_info = &x->pvq[block][plane]; } src_int16 = &p->src_int16[4 * (blk_row * diff_stride + blk_col)]; #endif src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[seg_id]; dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode; av1_predict_intra_block(xd, bwl, bhl, tx_size, mode, dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(tx1d_size, tx1d_size, src_diff, diff_stride, src, src_stride, dst, dst_stride, xd->bd); highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); switch (tx_size) { case TX_32X32: aom_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, xd->bd, tx_type); break; case TX_16X16: aom_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, xd->bd, tx_type); break; case TX_8X8: aom_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, xd->bd, tx_type); break; case TX_4X4: aom_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) // this is like av1_short_idct4x4 but has a special case around // eob<=1 which is significant (not just an optimization) for the // lossless case. av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, xd->bd, tx_type, xd->lossless[seg_id]); break; default: assert(0); return; } if (*eob) *(args->skip) = 0; return; } #endif // CONFIG_AOM_HIGHBITDEPTH aom_subtract_block(tx1d_size, tx1d_size, src_diff, diff_stride, src, src_stride, dst, dst_stride); #if !CONFIG_PVQ fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); switch (tx_size) { case TX_32X32: aom_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) av1_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, tx_type); break; case TX_16X16: aom_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) av1_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, tx_type); break; case TX_8X8: aom_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) av1_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, tx_type); break; case TX_4X4: aom_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, #if !CONFIG_AOM_QM scan_order->iscan); #else scan_order->iscan, qmatrix, iqmatrix); #endif if (*eob) { // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. av1_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, tx_type, xd->lossless[seg_id]); } break; default: assert(0); break; } #else // #if !CONFIG_PVQ // transform block size in pixels tx_blk_size = tx_size_1d[tx_size]; // copy uint8 orig and predicted block to int16 buffer // in order to use existing VP10 transform functions for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) { src_int16[diff_stride * j + i] = src[src_stride * j + i]; pred[diff_stride * j + i] = dst[dst_stride * j + i]; } fwd_txfm_param.rd_transform = 0; fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param); fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param); // PVQ for intra mode block if (!x->skip_block) skip = av1_pvq_encode_helper(&x->daala_enc, coeff, // target original vector ref_coeff, // reference vector dqcoeff, // de-quantized vector eob, // End of Block marker pd->dequant, // aom's quantizers plane, // image plane tx_size, // block size in log_2 - 2 tx_type, &x->rate, // rate measured x->pvq_speed, pvq_info); // PVQ info for a block x->pvq_skip[plane] = skip; if (!skip) mbmi->skip = 0; // Since av1 does not have separate function which does inverse transform // but av1_inv_txfm_add_*x*() also does addition of predicted image to // inverse transformed image, // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros if (!skip) { for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) dst[j * dst_stride + i] = 0; switch (tx_size) { case TX_32X32: av1_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, tx_type); break; case TX_16X16: av1_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, tx_type); break; case TX_8X8: av1_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, tx_type); break; case TX_4X4: // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. av1_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, tx_type, xd->lossless[seg_id]); break; default: assert(0); break; } } #endif // #if !CONFIG_PVQ #if !CONFIG_PVQ if (*eob) *(args->skip) = 0; #else // Note : *(args->skip) == mbmi->skip #endif } void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { const MACROBLOCKD *const xd = &x->e_mbd; struct encode_b_args arg = { cm, x, NULL, &xd->mi[0]->mbmi.skip }; av1_foreach_transformed_block_in_plane(xd, bsize, plane, av1_encode_block_intra, &arg); } #if CONFIG_PVQ int av1_pvq_encode_helper(daala_enc_ctx *daala_enc, tran_low_t *const coeff, tran_low_t *ref_coeff, tran_low_t *const dqcoeff, uint16_t *eob, const int16_t *quant, int plane, int tx_size, TX_TYPE tx_type, int *rate, int speed, PVQ_INFO *pvq_info) { const int tx_blk_size = tx_size_1d[tx_size]; int skip; // TODO(yushin): Enable this later, when pvq_qm_q4 is available in AOM. // int pvq_dc_quant = OD_MAXI(1, // quant * daala_enc->state.pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >> // 4); int quant_shift = tx_size == TX_32X32 ? 1 : 0; // DC quantizer for PVQ int pvq_dc_quant = OD_MAXI(1, quant[0] >> quant_shift); int tell; int has_dc_skip = 1; int i; int off = od_qm_offset(tx_size, plane ? 1 : 0); #if PVQ_CHROMA_RD double save_pvq_lambda; #endif DECLARE_ALIGNED(16, int16_t, coeff_pvq[OD_BSIZE_MAX * OD_BSIZE_MAX]); DECLARE_ALIGNED(16, int16_t, ref_coeff_pvq[OD_BSIZE_MAX * OD_BSIZE_MAX]); DECLARE_ALIGNED(16, int16_t, dqcoeff_pvq[OD_BSIZE_MAX * OD_BSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, in_int32[OD_BSIZE_MAX * OD_BSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, ref_int32[OD_BSIZE_MAX * OD_BSIZE_MAX]); DECLARE_ALIGNED(16, int32_t, out_int32[OD_BSIZE_MAX * OD_BSIZE_MAX]); *eob = 0; tell = od_ec_enc_tell_frac(&daala_enc->ec); // Change coefficient ordering for pvq encoding. od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff, tx_blk_size); od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff, tx_blk_size); // copy int16 inputs to int32 for (i = 0; i < tx_blk_size * tx_blk_size; i++) { ref_int32[i] = ref_coeff_pvq[i]; in_int32[i] = coeff_pvq[i]; } #if PVQ_CHROMA_RD if (plane != 0) { save_pvq_lambda = daala_enc->pvq_norm_lambda; daala_enc->pvq_norm_lambda *= 0.8; } #endif if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */ out_int32[0] = 0; } else { out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant); } skip = od_pvq_encode( daala_enc, ref_int32, in_int32, out_int32, (int)quant[0] >> quant_shift, // scale/quantizer (int)quant[1] >> quant_shift, // scale/quantizer // TODO(yushin): Instead of 0, // use daala_enc->use_activity_masking for activity masking. plane, tx_size, OD_PVQ_BETA[0][plane][tx_size], OD_ROBUST_STREAM, 0, // is_keyframe, 0, 0, 0, // q_scaling, bx, by, daala_enc->state.qm + off, daala_enc->state.qm_inv + off, speed, // speed pvq_info); if (skip && pvq_info) assert(pvq_info->ac_dc_coded == 0); if (!skip && pvq_info) assert(pvq_info->ac_dc_coded > 0); // Encode residue of DC coeff, if required. if (!has_dc_skip || out_int32[0]) { generic_encode(&daala_enc->ec, &daala_enc->state.adapt.model_dc[plane], abs(out_int32[0]) - has_dc_skip, -1, &daala_enc->state.adapt.ex_dc[plane][tx_size][0], 2); } if (out_int32[0]) { od_ec_enc_bits(&daala_enc->ec, out_int32[0] < 0, 1); skip = 0; } // need to save quantized residue of DC coeff // so that final pvq bitstream writing can know whether DC is coded. if (pvq_info) pvq_info->dq_dc_residue = out_int32[0]; out_int32[0] = out_int32[0] * pvq_dc_quant; out_int32[0] += ref_int32[0]; // copy int32 result back to int16 for (i = 0; i < tx_blk_size * tx_blk_size; i++) dqcoeff_pvq[i] = out_int32[i]; // Back to original coefficient order od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq, tx_blk_size); *eob = tx_blk_size * tx_blk_size; *rate = (od_ec_enc_tell_frac(&daala_enc->ec) - tell) << (AV1_PROB_COST_SHIFT - OD_BITRES); assert(*rate >= 0); #if PVQ_CHROMA_RD if (plane != 0) daala_enc->pvq_norm_lambda = save_pvq_lambda; #endif return skip; } void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *max_theta, int *k, od_coeff *y, int nb_bands, const int *off, int *size, int skip_rest, int skip_dir, int bs) { // block size in log_2 -2 int i; const int tx_blk_size = tx_size_1d[bs]; for (i = 0; i < nb_bands; i++) { pvq_info->qg[i] = qg[i]; pvq_info->theta[i] = theta[i]; pvq_info->max_theta[i] = max_theta[i]; pvq_info->k[i] = k[i]; pvq_info->off[i] = off[i]; pvq_info->size[i] = size[i]; } memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff)); pvq_info->nb_bands = nb_bands; pvq_info->skip_rest = skip_rest; pvq_info->skip_dir = skip_dir; pvq_info->bs = bs; } #endif