/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. * */ #include #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "./aom_scale_rtcd.h" #include "av1/common/onyxc_int.h" #include "av1/common/restoration.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" static int domaintxfmrf_vtable[DOMAINTXFMRF_ITERS][DOMAINTXFMRF_PARAMS][256]; static const int domaintxfmrf_params[DOMAINTXFMRF_PARAMS] = { 32, 40, 48, 56, 64, 68, 72, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 134, 136, 138, 140, 142, 146, 150, 154, 158, 162, 166, 170, 174 }; const sgr_params_type sgr_params[SGRPROJ_PARAMS] = { // r1, eps1, r2, eps2 { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 }, { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 }, }; typedef void (*restore_func_type)(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst8, int dst_stride); #if CONFIG_AOM_HIGHBITDEPTH typedef void (*restore_func_highbd_type)(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride); #endif // CONFIG_AOM_HIGHBITDEPTH int av1_alloc_restoration_struct(RestorationInfo *rst_info, int width, int height) { const int ntiles = av1_get_rest_ntiles(width, height, NULL, NULL, NULL, NULL); rst_info->restoration_type = (RestorationType *)aom_realloc( rst_info->restoration_type, sizeof(*rst_info->restoration_type) * ntiles); rst_info->wiener_info = (WienerInfo *)aom_realloc( rst_info->wiener_info, sizeof(*rst_info->wiener_info) * ntiles); assert(rst_info->wiener_info != NULL); rst_info->sgrproj_info = (SgrprojInfo *)aom_realloc( rst_info->sgrproj_info, sizeof(*rst_info->sgrproj_info) * ntiles); assert(rst_info->sgrproj_info != NULL); rst_info->domaintxfmrf_info = (DomaintxfmrfInfo *)aom_realloc( rst_info->domaintxfmrf_info, sizeof(*rst_info->domaintxfmrf_info) * ntiles); assert(rst_info->domaintxfmrf_info != NULL); return ntiles; } void av1_free_restoration_struct(RestorationInfo *rst_info) { aom_free(rst_info->restoration_type); rst_info->restoration_type = NULL; aom_free(rst_info->wiener_info); rst_info->wiener_info = NULL; aom_free(rst_info->sgrproj_info); rst_info->sgrproj_info = NULL; aom_free(rst_info->domaintxfmrf_info); rst_info->domaintxfmrf_info = NULL; } static void GenDomainTxfmRFVtable() { int i, j; const double sigma_s = sqrt(2.0); for (i = 0; i < DOMAINTXFMRF_ITERS; ++i) { const int nm = (1 << (DOMAINTXFMRF_ITERS - i - 1)); const double A = exp(-DOMAINTXFMRF_MULT / (sigma_s * nm)); for (j = 0; j < DOMAINTXFMRF_PARAMS; ++j) { const double sigma_r = (double)domaintxfmrf_params[j] / DOMAINTXFMRF_SIGMA_SCALE; const double scale = sigma_s / sigma_r; int k; for (k = 0; k < 256; ++k) { domaintxfmrf_vtable[i][j][k] = RINT(DOMAINTXFMRF_VTABLE_PREC * pow(A, 1.0 + k * scale)); } } } } void av1_loop_restoration_precal() { GenDomainTxfmRFVtable(); } static void loop_restoration_init(RestorationInternal *rst, int kf) { rst->keyframe = kf; } void extend_frame(uint8_t *data, int width, int height, int stride) { uint8_t *data_p; int i; for (i = 0; i < height; ++i) { data_p = data + i * stride; memset(data_p - WIENER_HALFWIN, data_p[0], WIENER_HALFWIN); memset(data_p + width, data_p[width - 1], WIENER_HALFWIN); } data_p = data - WIENER_HALFWIN; for (i = -WIENER_HALFWIN; i < 0; ++i) { memcpy(data_p + i * stride, data_p, width + 2 * WIENER_HALFWIN); } for (i = height; i < height + WIENER_HALFWIN; ++i) { memcpy(data_p + i * stride, data_p + (height - 1) * stride, width + 2 * WIENER_HALFWIN); } } static void loop_copy_tile(uint8_t *data, int tile_idx, int subtile_idx, int subtile_bits, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int i; int h_start, h_end, v_start, v_end; av1_get_rest_tile_limits(tile_idx, subtile_idx, subtile_bits, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); for (i = v_start; i < v_end; ++i) memcpy(dst + i * dst_stride + h_start, data + i * stride + h_start, h_end - h_start); } static void loop_wiener_filter_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int i, j; int h_start, h_end, v_start, v_end; DECLARE_ALIGNED(16, InterpKernel, hkernel); DECLARE_ALIGNED(16, InterpKernel, vkernel); if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } // TODO(david.barker): Store hfilter/vfilter as an InterpKernel // instead of the current format. Then this can be removed. assert(WIENER_WIN == SUBPEL_TAPS - 1); for (i = 0; i < WIENER_WIN; ++i) { hkernel[i] = rst->rsi->wiener_info[tile_idx].hfilter[i]; vkernel[i] = rst->rsi->wiener_info[tile_idx].vfilter[i]; } hkernel[WIENER_WIN] = 0; vkernel[WIENER_WIN] = 0; hkernel[3] -= 128; vkernel[3] -= 128; av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); // Convolve the whole tile (done in blocks here to match the requirements // of the vectorized convolve functions, but the result is equivalent) for (i = v_start; i < v_end; i += MAX_SB_SIZE) for (j = h_start; j < h_end; j += MAX_SB_SIZE) { int w = AOMMIN(MAX_SB_SIZE, (h_end - j + 15) & ~15); int h = AOMMIN(MAX_SB_SIZE, (v_end - i + 15) & ~15); const uint8_t *data_p = data + i * stride + j; uint8_t *dst_p = dst + i * dst_stride + j; aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, hkernel, 16, vkernel, 16, w, h); } } static void loop_wiener_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; extend_frame(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } /* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1) over the input. The window is of size (2r + 1)x(2r + 1), and we specialize to r = 1, 2, 3. A default function is used for r > 3. Each loop follows the same format: We keep a window's worth of input in individual variables and select data out of that as appropriate. */ static void boxsum1(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c; // Vertical sum over 3-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[src_stride + j]; c = src[2 * src_stride + j]; dst[j] = a + b; for (i = 1; i < height - 2; ++i) { // Loop invariant: At the start of each iteration, // a = src[(i - 1) * src_stride + j] // b = src[(i ) * src_stride + j] // c = src[(i + 1) * src_stride + j] dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = src[(i + 2) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c; dst[(i + 1) * dst_stride + j] = b + c; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[src_stride + j] * src[src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; dst[j] = a + b; for (i = 1; i < height - 2; ++i) { dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c; dst[(i + 1) * dst_stride + j] = b + c; } } // Horizontal sum over 3-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; dst[i * dst_stride] = a + b; for (j = 1; j < width - 2; ++j) { // Loop invariant: At the start of each iteration, // a = src[i * src_stride + (j - 1)] // b = src[i * src_stride + (j )] // c = src[i * src_stride + (j + 1)] dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = dst[i * dst_stride + (j + 2)]; } dst[i * dst_stride + j] = a + b + c; dst[i * dst_stride + (j + 1)] = b + c; } } static void boxsum2(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c, d, e; // Vertical sum over 5-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[src_stride + j]; c = src[2 * src_stride + j]; d = src[3 * src_stride + j]; e = src[4 * src_stride + j]; dst[j] = a + b + c; dst[dst_stride + j] = a + b + c + d; for (i = 2; i < height - 3; ++i) { // Loop invariant: At the start of each iteration, // a = src[(i - 2) * src_stride + j] // b = src[(i - 1) * src_stride + j] // c = src[(i ) * src_stride + j] // d = src[(i + 1) * src_stride + j] // e = src[(i + 2) * src_stride + j] dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = src[(i + 3) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[(i + 1) * dst_stride + j] = b + c + d + e; dst[(i + 2) * dst_stride + j] = c + d + e; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[src_stride + j] * src[src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; d = src[3 * src_stride + j] * src[3 * src_stride + j]; e = src[4 * src_stride + j] * src[4 * src_stride + j]; dst[j] = a + b + c; dst[dst_stride + j] = a + b + c + d; for (i = 2; i < height - 3; ++i) { dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[(i + 1) * dst_stride + j] = b + c + d + e; dst[(i + 2) * dst_stride + j] = c + d + e; } } // Horizontal sum over 5-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; d = dst[i * dst_stride + 3]; e = dst[i * dst_stride + 4]; dst[i * dst_stride] = a + b + c; dst[i * dst_stride + 1] = a + b + c + d; for (j = 2; j < width - 3; ++j) { // Loop invariant: At the start of each iteration, // a = src[i * src_stride + (j - 2)] // b = src[i * src_stride + (j - 1)] // c = src[i * src_stride + (j )] // d = src[i * src_stride + (j + 1)] // e = src[i * src_stride + (j + 2)] dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = dst[i * dst_stride + (j + 3)]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[i * dst_stride + (j + 1)] = b + c + d + e; dst[i * dst_stride + (j + 2)] = c + d + e; } } static void boxsum3(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c, d, e, f, g; // Vertical sum over 7-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[1 * src_stride + j]; c = src[2 * src_stride + j]; d = src[3 * src_stride + j]; e = src[4 * src_stride + j]; f = src[5 * src_stride + j]; g = src[6 * src_stride + j]; dst[j] = a + b + c + d; dst[dst_stride + j] = a + b + c + d + e; dst[2 * dst_stride + j] = a + b + c + d + e + f; for (i = 3; i < height - 4; ++i) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = src[(i + 4) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; dst[(i + 2) * dst_stride + j] = c + d + e + f + g; dst[(i + 3) * dst_stride + j] = d + e + f + g; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[1 * src_stride + j] * src[1 * src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; d = src[3 * src_stride + j] * src[3 * src_stride + j]; e = src[4 * src_stride + j] * src[4 * src_stride + j]; f = src[5 * src_stride + j] * src[5 * src_stride + j]; g = src[6 * src_stride + j] * src[6 * src_stride + j]; dst[j] = a + b + c + d; dst[dst_stride + j] = a + b + c + d + e; dst[2 * dst_stride + j] = a + b + c + d + e + f; for (i = 3; i < height - 4; ++i) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; dst[(i + 2) * dst_stride + j] = c + d + e + f + g; dst[(i + 3) * dst_stride + j] = d + e + f + g; } } // Horizontal sum over 7-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; d = dst[i * dst_stride + 3]; e = dst[i * dst_stride + 4]; f = dst[i * dst_stride + 5]; g = dst[i * dst_stride + 6]; dst[i * dst_stride] = a + b + c + d; dst[i * dst_stride + 1] = a + b + c + d + e; dst[i * dst_stride + 2] = a + b + c + d + e + f; for (j = 3; j < width - 4; ++j) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = dst[i * dst_stride + (j + 4)]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g; dst[i * dst_stride + (j + 2)] = c + d + e + f + g; dst[i * dst_stride + (j + 3)] = d + e + f + g; } } // Generic version for any r. To be removed after experiments are done. static void boxsumr(int32_t *src, int width, int height, int src_stride, int r, int sqr, int32_t *dst, int dst_stride) { int32_t *tmp = aom_malloc(width * height * sizeof(*tmp)); int tmp_stride = width; int i, j; if (sqr) { for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j]; for (j = 0; j < width; ++j) for (i = 1; i < height; ++i) tmp[i * tmp_stride + j] = tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j] * src[i * src_stride + j]; } else { memcpy(tmp, src, sizeof(*tmp) * width); for (j = 0; j < width; ++j) for (i = 1; i < height; ++i) tmp[i * tmp_stride + j] = tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j]; } for (i = 0; i <= r; ++i) memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride], sizeof(*tmp) * width); for (i = r + 1; i < height - r; ++i) for (j = 0; j < width; ++j) dst[i * dst_stride + j] = tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j]; for (i = height - r; i < height; ++i) for (j = 0; j < width; ++j) dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j]; for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride]; for (i = 0; i < height; ++i) for (j = 1; j < width; ++j) tmp[i * tmp_stride + j] = tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j]; for (j = 0; j <= r; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r]; for (j = r + 1; j < width - r; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1]; for (j = width - r; j < width; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1]; aom_free(tmp); } static void boxsum(int32_t *src, int width, int height, int src_stride, int r, int sqr, int32_t *dst, int dst_stride) { if (r == 1) boxsum1(src, width, height, src_stride, sqr, dst, dst_stride); else if (r == 2) boxsum2(src, width, height, src_stride, sqr, dst, dst_stride); else if (r == 3) boxsum3(src, width, height, src_stride, sqr, dst, dst_stride); else boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride); } static void boxnum(int width, int height, int r, int8_t *num, int num_stride) { int i, j; for (i = 0; i <= r; ++i) { for (j = 0; j <= r; ++j) { num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j); num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j]; num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j]; num[(height - 1 - i) * num_stride + (width - 1 - j)] = num[i * num_stride + j]; } } for (j = 0; j <= r; ++j) { const int val = (2 * r + 1) * (r + 1 + j); for (i = r + 1; i < height - r; ++i) { num[i * num_stride + j] = val; num[i * num_stride + (width - 1 - j)] = val; } } for (i = 0; i <= r; ++i) { const int val = (2 * r + 1) * (r + 1 + i); for (j = r + 1; j < width - r; ++j) { num[i * num_stride + j] = val; num[(height - 1 - i) * num_stride + j] = val; } } for (i = r + 1; i < height - r; ++i) { for (j = r + 1; j < width - r; ++j) { num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1); } } } void decode_xq(int *xqd, int *xq) { xq[0] = -xqd[0]; xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1]; } #define APPROXIMATE_SGR 1 void av1_selfguided_restoration(int32_t *dgd, int width, int height, int stride, int bit_depth, int r, int eps, int32_t *tmpbuf) { int32_t *A = tmpbuf; int32_t *B = A + RESTORATION_TILEPELS_MAX; int8_t num[RESTORATION_TILEPELS_MAX]; int i, j; eps <<= 2 * (bit_depth - 8); // Don't filter tiles with dimensions < 5 on any axis if ((width < 5) || (height < 5)) return; boxsum(dgd, width, height, stride, r, 0, B, width); boxsum(dgd, width, height, stride, r, 1, A, width); boxnum(width, height, r, num, width); // The following loop is optimized assuming r <= 2. If we allow // r > 2, then the loop will need modifying. assert(r <= 3); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int n = num[k]; // Assuming that we only allow up to 12-bit depth and r <= 2, // we calculate p = n^2 * Var(n-pixel block of original image) // (where n = 2 * r + 1 <= 5). // // There is an inequality which gives a bound on the variance: // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances // In this case, since each pixel is in the range [0, 2^12), // the variance is at most 1/4 * (2^12)^2 = 2^22. // Then p <= 25^2 * 2^22 < 2^32, and also q <= p + 25^2 * 68 < 2^32. // // The point of all this is to guarantee that q < 2^32, so that // platforms with a 64-bit by 32-bit divide unit (eg, x86) // can do the division by q more efficiently. const uint32_t p = (uint32_t)((uint64_t)A[k] * n - (uint64_t)B[k] * B[k]); const uint32_t q = (uint32_t)(p + n * n * eps); assert((uint64_t)A[k] * n - (uint64_t)B[k] * B[k] < (25 * 25U << 22)); A[k] = (int32_t)(((uint64_t)p << SGRPROJ_SGR_BITS) + (q >> 1)) / q; B[k] = ((SGRPROJ_SGR - A[k]) * B[k] + (n >> 1)) / n; } } #if APPROXIMATE_SGR i = 0; j = 0; { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k + width] + A[k + width + 1]; const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k + width] + B[k + width + 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } i = 0; j = width - 1; { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k + width] + A[k + width - 1]; const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k + width] + B[k + width - 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } i = height - 1; j = 0; { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k - width] + A[k - width + 1]; const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k - width] + B[k - width + 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } i = height - 1; j = width - 1; { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k - width] + A[k - width - 1]; const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k - width] + B[k - width - 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } i = 0; for (j = 1; j < width - 1; ++j) { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k + width] + A[k + width - 1] + A[k + width + 1]; const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k + width] + B[k + width - 1] + B[k + width + 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } i = height - 1; for (j = 1; j < width - 1; ++j) { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k - width] + A[k - width - 1] + A[k - width + 1]; const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k - width] + B[k - width - 1] + B[k - width + 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } j = 0; for (i = 1; i < height - 1; ++i) { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - width] + A[k + width]) + A[k + 1] + A[k - width + 1] + A[k + width + 1]; const int32_t b = B[k] + 2 * (B[k - width] + B[k + width]) + B[k + 1] + B[k - width + 1] + B[k + width + 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } j = width - 1; for (i = 1; i < height - 1; ++i) { const int k = i * width + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - width] + A[k + width]) + A[k - 1] + A[k - width - 1] + A[k + width - 1]; const int32_t b = B[k] + 2 * (B[k - width] + B[k + width]) + B[k - 1] + B[k - width - 1] + B[k + width - 1]; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } for (i = 1; i < height - 1; ++i) { for (j = 1; j < width - 1; ++j) { const int k = i * width + j; const int l = i * stride + j; const int nb = 5; const int32_t a = (A[k] + A[k - 1] + A[k + 1] + A[k - width] + A[k + width]) * 4 + (A[k - 1 - width] + A[k - 1 + width] + A[k + 1 - width] + A[k + 1 + width]) * 3; const int32_t b = (B[k] + B[k - 1] + B[k + 1] + B[k - width] + B[k + width]) * 4 + (B[k - 1 - width] + B[k - 1 + width] + B[k + 1 - width] + B[k + 1 + width]) * 3; const int32_t v = (((a * dgd[l] + b) << SGRPROJ_RST_BITS) + (1 << nb) / 2) >> nb; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } } #else if (r > 1) boxnum(width, height, r = 1, num, width); boxsum(A, width, height, width, r, 0, A, width); boxsum(B, width, height, width, r, 0, B, width); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int l = i * stride + j; const int n = num[k]; const int32_t v = (((A[k] * dgd[l] + B[k]) << SGRPROJ_RST_BITS) + (n >> 1)) / n; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS); } } #endif // APPROXIMATE_SGR } static void apply_selfguided_restoration(uint8_t *dat, int width, int height, int stride, int bit_depth, int eps, int *xqd, uint8_t *dst, int dst_stride, int32_t *tmpbuf) { int xq[2]; int32_t *flt1 = tmpbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int32_t *tmpbuf2 = flt2 + RESTORATION_TILEPELS_MAX; int i, j; assert(width * height <= RESTORATION_TILEPELS_MAX); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { flt1[i * width + j] = dat[i * stride + j]; flt2[i * width + j] = dat[i * stride + j]; } } av1_selfguided_restoration(flt1, width, height, width, bit_depth, sgr_params[eps].r1, sgr_params[eps].e1, tmpbuf2); av1_selfguided_restoration(flt2, width, height, width, bit_depth, sgr_params[eps].r2, sgr_params[eps].e2, tmpbuf2); decode_xq(xqd, xq); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int l = i * stride + j; const int m = i * dst_stride + j; const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[k] - u; const int32_t f2 = (int32_t)flt2[k] - u; const int64_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int16_t w = (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); dst[m] = clip_pixel(w); } } } static void loop_sgrproj_filter_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; uint8_t *data_p, *dst_p; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); data_p = data + h_start + v_start * stride; dst_p = dst + h_start + v_start * dst_stride; apply_selfguided_restoration(data_p, h_end - h_start, v_end - v_start, stride, 8, rst->rsi->sgrproj_info[tile_idx].ep, rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); } static void loop_sgrproj_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } static void apply_domaintxfmrf(int iter, int param, uint8_t *diff_right, uint8_t *diff_down, int width, int height, int32_t *dat, int dat_stride) { int i, j, acc; // Do first row separately, to initialize the top to bottom filter i = 0; { // left to right acc = dat[i * dat_stride] * DOMAINTXFMRF_VTABLE_PREC; dat[i * dat_stride] = acc; for (j = 1; j < width; ++j) { const int in = dat[i * dat_stride + j]; const int diff = diff_right[i * width + j - 1]; // Left absolute difference const int v = domaintxfmrf_vtable[iter][param][diff]; acc = in * (DOMAINTXFMRF_VTABLE_PREC - v) + ROUND_POWER_OF_TWO(v * acc, DOMAINTXFMRF_VTABLE_PRECBITS); dat[i * dat_stride + j] = acc; } // right to left for (j = width - 2; j >= 0; --j) { const int in = dat[i * dat_stride + j]; const int diff = diff_right[i * width + j]; // Right absolute difference const int v = domaintxfmrf_vtable[iter][param][diff]; acc = ROUND_POWER_OF_TWO(in * (DOMAINTXFMRF_VTABLE_PREC - v) + acc * v, DOMAINTXFMRF_VTABLE_PRECBITS); dat[i * dat_stride + j] = acc; } } for (i = 1; i < height; ++i) { // left to right acc = dat[i * dat_stride] * DOMAINTXFMRF_VTABLE_PREC; dat[i * dat_stride] = acc; for (j = 1; j < width; ++j) { const int in = dat[i * dat_stride + j]; const int diff = diff_right[i * width + j - 1]; // Left absolute difference const int v = domaintxfmrf_vtable[iter][param][diff]; acc = in * (DOMAINTXFMRF_VTABLE_PREC - v) + ROUND_POWER_OF_TWO(v * acc, DOMAINTXFMRF_VTABLE_PRECBITS); dat[i * dat_stride + j] = acc; } // right to left for (j = width - 2; j >= 0; --j) { const int in = dat[i * dat_stride + j]; const int diff = diff_right[i * width + j]; // Right absolute difference const int v = domaintxfmrf_vtable[iter][param][diff]; acc = ROUND_POWER_OF_TWO(in * (DOMAINTXFMRF_VTABLE_PREC - v) + acc * v, DOMAINTXFMRF_VTABLE_PRECBITS); dat[i * dat_stride + j] = acc; } // top to bottom for (j = 0; j < width; ++j) { const int in = dat[i * dat_stride + j]; const int in_above = dat[(i - 1) * dat_stride + j]; const int diff = diff_down[(i - 1) * width + j]; // Upward absolute difference const int v = domaintxfmrf_vtable[iter][param][diff]; acc = ROUND_POWER_OF_TWO(in * (DOMAINTXFMRF_VTABLE_PREC - v) + in_above * v, DOMAINTXFMRF_VTABLE_PRECBITS); dat[i * dat_stride + j] = acc; } } for (j = 0; j < width; ++j) { // bottom to top + output rounding acc = dat[(height - 1) * dat_stride + j]; dat[(height - 1) * dat_stride + j] = ROUND_POWER_OF_TWO(acc, DOMAINTXFMRF_VTABLE_PRECBITS); for (i = height - 2; i >= 0; --i) { const int in = dat[i * dat_stride + j]; const int diff = diff_down[i * width + j]; // Downward absolute difference const int v = domaintxfmrf_vtable[iter][param][diff]; acc = ROUND_POWER_OF_TWO(in * (DOMAINTXFMRF_VTABLE_PREC - v) + acc * v, DOMAINTXFMRF_VTABLE_PRECBITS); dat[i * dat_stride + j] = ROUND_POWER_OF_TWO(acc, DOMAINTXFMRF_VTABLE_PRECBITS); } } } void av1_domaintxfmrf_restoration(uint8_t *dgd, int width, int height, int stride, int param, uint8_t *dst, int dst_stride, int32_t *tmpbuf) { int32_t *dat = tmpbuf; uint8_t *diff_right = (uint8_t *)(tmpbuf + RESTORATION_TILEPELS_MAX); uint8_t *diff_down = diff_right + RESTORATION_TILEPELS_MAX; int i, j, t; for (i = 0; i < height; ++i) { int cur_px = dgd[i * stride]; for (j = 0; j < width - 1; ++j) { const int next_px = dgd[i * stride + j + 1]; diff_right[i * width + j] = abs(cur_px - next_px); cur_px = next_px; } } for (j = 0; j < width; ++j) { int cur_px = dgd[j]; for (i = 0; i < height - 1; ++i) { const int next_px = dgd[(i + 1) * stride + j]; diff_down[i * width + j] = abs(cur_px - next_px); cur_px = next_px; } } for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { dat[i * width + j] = dgd[i * stride + j]; } } for (t = 0; t < DOMAINTXFMRF_ITERS; ++t) { apply_domaintxfmrf(t, param, diff_right, diff_down, width, height, dat, width); } for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { dst[i * dst_stride + j] = clip_pixel(dat[i * width + j]); } } } static void loop_domaintxfmrf_filter_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; int32_t *tmpbuf = (int32_t *)rst->tmpbuf; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); av1_domaintxfmrf_restoration( data + h_start + v_start * stride, h_end - h_start, v_end - v_start, stride, rst->rsi->domaintxfmrf_info[tile_idx].sigma_r, dst + h_start + v_start * dst_stride, dst_stride, tmpbuf); } static void loop_domaintxfmrf_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_domaintxfmrf_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } static void loop_switchable_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; extend_frame(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_DOMAINTXFMRF) { loop_domaintxfmrf_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } } #if CONFIG_AOM_HIGHBITDEPTH void extend_frame_highbd(uint16_t *data, int width, int height, int stride) { uint16_t *data_p; int i, j; for (i = 0; i < height; ++i) { data_p = data + i * stride; for (j = -WIENER_HALFWIN; j < 0; ++j) data_p[j] = data_p[0]; for (j = width; j < width + WIENER_HALFWIN; ++j) data_p[j] = data_p[width - 1]; } data_p = data - WIENER_HALFWIN; for (i = -WIENER_HALFWIN; i < 0; ++i) { memcpy(data_p + i * stride, data_p, (width + 2 * WIENER_HALFWIN) * sizeof(uint16_t)); } for (i = height; i < height + WIENER_HALFWIN; ++i) { memcpy(data_p + i * stride, data_p + (height - 1) * stride, (width + 2 * WIENER_HALFWIN) * sizeof(uint16_t)); } } static void loop_copy_tile_highbd(uint16_t *data, int tile_idx, int subtile_idx, int subtile_bits, int width, int height, int stride, RestorationInternal *rst, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int i; int h_start, h_end, v_start, v_end; av1_get_rest_tile_limits(tile_idx, subtile_idx, subtile_bits, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); for (i = v_start; i < v_end; ++i) memcpy(dst + i * dst_stride + h_start, data + i * stride + h_start, (h_end - h_start) * sizeof(*dst)); } static void loop_wiener_filter_tile_highbd(uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; int i, j; DECLARE_ALIGNED(16, InterpKernel, hkernel); DECLARE_ALIGNED(16, InterpKernel, vkernel); if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } // TODO(david.barker): Store hfilter/vfilter as an InterpKernel // instead of the current format. Then this can be removed. assert(WIENER_WIN == SUBPEL_TAPS - 1); for (i = 0; i < WIENER_WIN; ++i) { hkernel[i] = rst->rsi->wiener_info[tile_idx].hfilter[i]; vkernel[i] = rst->rsi->wiener_info[tile_idx].vfilter[i]; } hkernel[WIENER_WIN] = 0; vkernel[WIENER_WIN] = 0; hkernel[3] -= 128; vkernel[3] -= 128; av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); // Convolve the whole tile (done in blocks here to match the requirements // of the vectorized convolve functions, but the result is equivalent) for (i = v_start; i < v_end; i += MAX_SB_SIZE) for (j = h_start; j < h_end; j += MAX_SB_SIZE) { int w = AOMMIN(MAX_SB_SIZE, (h_end - j + 15) & ~15); int h = AOMMIN(MAX_SB_SIZE, (v_end - i + 15) & ~15); const uint16_t *data_p = data + i * stride + j; uint16_t *dst_p = dst + i * dst_stride + j; aom_highbd_convolve8_add_src(CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, hkernel, 16, vkernel, 16, w, h, bit_depth); } } static void loop_wiener_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); int tile_idx; extend_frame_highbd(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } static void apply_selfguided_restoration_highbd( uint16_t *dat, int width, int height, int stride, int bit_depth, int eps, int *xqd, uint16_t *dst, int dst_stride, int32_t *tmpbuf) { int xq[2]; int32_t *flt1 = tmpbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int32_t *tmpbuf2 = flt2 + RESTORATION_TILEPELS_MAX; int i, j; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { assert(i * width + j < RESTORATION_TILEPELS_MAX); flt1[i * width + j] = dat[i * stride + j]; flt2[i * width + j] = dat[i * stride + j]; } } av1_selfguided_restoration(flt1, width, height, width, bit_depth, sgr_params[eps].r1, sgr_params[eps].e1, tmpbuf2); av1_selfguided_restoration(flt2, width, height, width, bit_depth, sgr_params[eps].r2, sgr_params[eps].e2, tmpbuf2); decode_xq(xqd, xq); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int l = i * stride + j; const int m = i * dst_stride + j; const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[k] - u; const int32_t f2 = (int32_t)flt2[k] - u; const int64_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int16_t w = (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); dst[m] = (uint16_t)clip_pixel_highbd(w, bit_depth); } } } static void loop_sgrproj_filter_tile_highbd(uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; uint16_t *data_p, *dst_p; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); data_p = data + h_start + v_start * stride; dst_p = dst + h_start + v_start * dst_stride; apply_selfguided_restoration_highbd( data_p, h_end - h_start, v_end - v_start, stride, bit_depth, rst->rsi->sgrproj_info[tile_idx].ep, rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); } static void loop_sgrproj_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { int tile_idx; uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } static void apply_domaintxfmrf_hor_highbd(int iter, int param, uint16_t *img, int width, int height, int img_stride, int32_t *dat, int dat_stride, int bd) { const int shift = (bd - 8); int i, j, acc, old_px; for (i = 0; i < height; ++i) { // left to right acc = dat[i * dat_stride] * DOMAINTXFMRF_VTABLE_PREC; dat[i * dat_stride] = acc; old_px = img[i * img_stride] >> shift; for (j = 1; j < width; ++j) { const int cur_px = img[i * img_stride + j] >> shift; const int v = domaintxfmrf_vtable[iter][param][abs(cur_px - old_px)]; acc = dat[i * dat_stride + j] * (DOMAINTXFMRF_VTABLE_PREC - v) + ((v * acc + DOMAINTXFMRF_VTABLE_PREC / 2) >> DOMAINTXFMRF_VTABLE_PRECBITS); dat[i * dat_stride + j] = acc; old_px = cur_px; } // right to left for (j = width - 2; j >= 0; --j) { const int cur_px = img[i * img_stride + j] >> shift; const int v = domaintxfmrf_vtable[iter][param][abs(cur_px - old_px)]; acc = (dat[i * dat_stride + j] * (DOMAINTXFMRF_VTABLE_PREC - v) + v * acc + DOMAINTXFMRF_VTABLE_PREC / 2) >> DOMAINTXFMRF_VTABLE_PRECBITS; dat[i * dat_stride + j] = acc; old_px = cur_px; } } } static void apply_domaintxfmrf_ver_highbd(int iter, int param, uint16_t *img, int width, int height, int img_stride, int32_t *dat, int dat_stride, int bd) { const int shift = (bd - 8); int i, j, old_px; for (j = 0; j < width; ++j) { // top to bottom acc = dat[j]; old_px = img[j] >> shift; for (i = 1; i < height; ++i) { const int cur_px = img[i * img_stride + j] >> shift; const int v = domaintxfmrf_vtable[iter][param][abs(cur_px - old_px)]; acc = (dat[i * dat_stride + j] * (DOMAINTXFMRF_VTABLE_PREC - v) + (acc * v + DOMAINTXFMRF_VTABLE_PREC / 2)) >> DOMAINTXFMRF_VTABLE_PRECBITS; dat[i * dat_stride + j] = acc; old_px = cur_px; } // bottom to top dat[(height - 1) * dat_stride + j] = ROUND_POWER_OF_TWO(acc, DOMAINTXFMRF_VTABLE_PRECBITS); for (i = height - 2; i >= 0; --i) { const int cur_px = img[i * img_stride + j] >> shift; const int v = domaintxfmrf_vtable[iter][param][abs(old_px - cur_px)]; acc = (dat[i * dat_stride + j] * (DOMAINTXFMRF_VTABLE_PREC - v) + acc * v + DOMAINTXFMRF_VTABLE_PREC / 2) >> DOMAINTXFMRF_VTABLE_PRECBITS; dat[i * dat_stride + j] = ROUND_POWER_OF_TWO(acc, DOMAINTXFMRF_VTABLE_PRECBITS); old_px = cur_px; } } } void av1_domaintxfmrf_restoration_highbd(uint16_t *dgd, int width, int height, int stride, int param, int bit_depth, uint16_t *dst, int dst_stride, int32_t *tmpbuf) { int32_t *dat = tmpbuf; int i, j, t; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { dat[i * width + j] = dgd[i * stride + j]; } } for (t = 0; t < DOMAINTXFMRF_ITERS; ++t) { apply_domaintxfmrf_hor_highbd(t, param, dgd, width, height, stride, dat, width, bit_depth); apply_domaintxfmrf_ver_highbd(t, param, dgd, width, height, stride, dat, width, bit_depth); } for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { dst[i * dst_stride + j] = clip_pixel_highbd(dat[i * width + j], bit_depth); } } } static void loop_domaintxfmrf_filter_tile_highbd( uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; int32_t *tmpbuf = (int32_t *)rst->tmpbuf; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); av1_domaintxfmrf_restoration_highbd( data + h_start + v_start * stride, h_end - h_start, v_end - v_start, stride, rst->rsi->domaintxfmrf_info[tile_idx].sigma_r, bit_depth, dst + h_start + v_start * dst_stride, dst_stride, tmpbuf); } static void loop_domaintxfmrf_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { int tile_idx; uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_domaintxfmrf_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } static void loop_switchable_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); int tile_idx; extend_frame_highbd(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_DOMAINTXFMRF) { loop_domaintxfmrf_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } } #endif // CONFIG_AOM_HIGHBITDEPTH static void loop_restoration_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, int start_mi_row, int end_mi_row, int components_pattern, RestorationInfo *rsi, YV12_BUFFER_CONFIG *dst) { const int ywidth = frame->y_crop_width; const int ystride = frame->y_stride; const int uvwidth = frame->uv_crop_width; const int uvstride = frame->uv_stride; const int ystart = start_mi_row << MI_SIZE_LOG2; const int uvstart = ystart >> cm->subsampling_y; int yend = end_mi_row << MI_SIZE_LOG2; int uvend = yend >> cm->subsampling_y; restore_func_type restore_funcs[RESTORE_TYPES] = { NULL, loop_wiener_filter, loop_sgrproj_filter, loop_domaintxfmrf_filter, loop_switchable_filter }; #if CONFIG_AOM_HIGHBITDEPTH restore_func_highbd_type restore_funcs_highbd[RESTORE_TYPES] = { NULL, loop_wiener_filter_highbd, loop_sgrproj_filter_highbd, loop_domaintxfmrf_filter_highbd, loop_switchable_filter_highbd }; #endif // CONFIG_AOM_HIGHBITDEPTH restore_func_type restore_func; #if CONFIG_AOM_HIGHBITDEPTH restore_func_highbd_type restore_func_highbd; #endif // CONFIG_AOM_HIGHBITDEPTH YV12_BUFFER_CONFIG dst_; yend = AOMMIN(yend, cm->height); uvend = AOMMIN(uvend, cm->subsampling_y ? (cm->height + 1) >> 1 : cm->height); if (components_pattern == (1 << AOM_PLANE_Y)) { // Only y if (rsi[0].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_y(frame, dst); return; } } else if (components_pattern == (1 << AOM_PLANE_U)) { // Only U if (rsi[1].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_u(frame, dst); return; } } else if (components_pattern == (1 << AOM_PLANE_V)) { // Only V if (rsi[2].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_v(frame, dst); return; } } else if (components_pattern == ((1 << AOM_PLANE_Y) | (1 << AOM_PLANE_U) | (1 << AOM_PLANE_V))) { // All components if (rsi[0].frame_restoration_type == RESTORE_NONE && rsi[1].frame_restoration_type == RESTORE_NONE && rsi[2].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_frame(frame, dst); return; } } if (!dst) { dst = &dst_; memset(dst, 0, sizeof(YV12_BUFFER_CONFIG)); if (aom_realloc_frame_buffer( dst, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL) < 0) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate restoration dst buffer"); } if ((components_pattern >> AOM_PLANE_Y) & 1) { if (rsi[0].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( cm->width, cm->height, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[0]; restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_AOM_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->y_buffer + ystart * ystride, ywidth, yend - ystart, ystride, &cm->rst_internal, cm->bit_depth, dst->y_buffer + ystart * dst->y_stride, dst->y_stride); else #endif // CONFIG_AOM_HIGHBITDEPTH restore_func(frame->y_buffer + ystart * ystride, ywidth, yend - ystart, ystride, &cm->rst_internal, dst->y_buffer + ystart * dst->y_stride, dst->y_stride); } else { aom_yv12_copy_y(frame, dst); } } if ((components_pattern >> AOM_PLANE_U) & 1) { if (rsi[AOM_PLANE_U].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( cm->width >> cm->subsampling_x, cm->height >> cm->subsampling_y, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[AOM_PLANE_U]; restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_AOM_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->u_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, cm->bit_depth, dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); else #endif // CONFIG_AOM_HIGHBITDEPTH restore_func(frame->u_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); } else { aom_yv12_copy_u(frame, dst); } } if ((components_pattern >> AOM_PLANE_V) & 1) { if (rsi[AOM_PLANE_V].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( cm->width >> cm->subsampling_x, cm->height >> cm->subsampling_y, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[AOM_PLANE_V]; restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_AOM_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->v_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, cm->bit_depth, dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); else #endif // CONFIG_AOM_HIGHBITDEPTH restore_func(frame->v_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); } else { aom_yv12_copy_v(frame, dst); } } if (dst == &dst_) { if ((components_pattern >> AOM_PLANE_Y) & 1) aom_yv12_copy_y(dst, frame); if ((components_pattern >> AOM_PLANE_U) & 1) aom_yv12_copy_u(dst, frame); if ((components_pattern >> AOM_PLANE_V) & 1) aom_yv12_copy_v(dst, frame); aom_free_frame_buffer(dst); } } void av1_loop_restoration_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, RestorationInfo *rsi, int components_pattern, int partial_frame, YV12_BUFFER_CONFIG *dst) { int start_mi_row, end_mi_row, mi_rows_to_filter; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial_frame && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; loop_restoration_init(&cm->rst_internal, cm->frame_type == KEY_FRAME); loop_restoration_rows(frame, cm, start_mi_row, end_mi_row, components_pattern, rsi, dst); }