/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./av1_rtcd.h" #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/quantize.h" #include "av1/encoder/rd.h" #include "av1/encoder/tokenize.h" void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; #if CONFIG_AOM_HIGHBITDEPTH if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, x->e_mbd.bd); return; } #endif // CONFIG_AOM_HIGHBITDEPTH aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } typedef struct av1_token_state { int rate; int64_t error; int next; int16_t token; tran_low_t qc; tran_low_t dqc; } av1_token_state; // These numbers are empirically obtained. static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { { 10, 6 }, { 8, 5 }, }; #define UPDATE_RD_COST() \ { \ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \ } int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(&xd->mi[0]->mbmi); av1_token_state tokens[MAX_TX_SQUARE + 1][2]; unsigned best_index[MAX_TX_SQUARE + 1][2]; uint8_t token_cache[MAX_TX_SQUARE]; const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE plane_type = pd->plane_type; const int default_eob = tx_size_2d[tx_size]; const int16_t *const dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); const int16_t *const scan = scan_order->scan; const int16_t *const nb = scan_order->neighbors; #if CONFIG_AOM_QM int seg_id = xd->mi[0]->mbmi.segment_id; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size]; #endif const int shift = get_tx_scale(xd, tx_type, tx_size); #if CONFIG_NEW_QUANT int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type); const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq]; #else const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift }; #endif // CONFIG_NEW_QUANT int next = eob, sz = 0; const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; const int64_t rddiv = mb->rddiv; int64_t rd_cost0, rd_cost1; int rate0, rate1; int64_t error0, error1; int16_t t0, t1; int best, band = (eob < default_eob) ? band_translate[eob] : band_translate[eob - 1]; int pt, i, final_eob; #if CONFIG_AOM_HIGHBITDEPTH const int *cat6_high_cost = av1_get_high_cost_table(xd->bd); #else const int *cat6_high_cost = av1_get_high_cost_table(8); #endif unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref]; const uint16_t *band_counts = &band_count_table[tx_size][band]; uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1; int shortcut = 0; int next_shortcut = 0; assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); token_costs += band; assert((!plane_type && !plane) || (plane_type && plane)); assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = EOB_TOKEN; tokens[eob][0].qc = 0; tokens[eob][1] = tokens[eob][0]; for (i = 0; i < eob; i++) { const int rc = scan[i]; tokens[i][0].rate = av1_get_token_cost(qcoeff[rc], &t0, cat6_high_cost); tokens[i][0].token = t0; token_cache[rc] = av1_pt_energy_class[t0]; } for (i = eob; i-- > 0;) { int base_bits, dx; int64_t d2; const int rc = scan[i]; #if CONFIG_AOM_QM int iwt = iqmatrix[rc]; #endif int x = qcoeff[rc]; next_shortcut = shortcut; /* Only add a trellis state for non-zero coefficients. */ if (UNLIKELY(x)) { error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if (next_shortcut) { /* Consider both possible successor states. */ if (next < default_eob) { pt = get_coef_context(nb, token_cache, i + 1); rate0 += (*token_costs)[0][pt][tokens[next][0].token]; rate1 += (*token_costs)[0][pt][tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; } else { if (next < default_eob) { pt = get_coef_context(nb, token_cache, i + 1); rate0 += (*token_costs)[0][pt][tokens[next][0].token]; } best = 0; } dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_AOM_HIGHBITDEPTH d2 = (int64_t)dx * dx; tokens[i][0].rate += (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].qc = x; tokens[i][0].dqc = dqcoeff[rc]; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; // The threshold of 3 is empirically obtained. if (UNLIKELY(abs(x) > 3)) { shortcut = 0; } else { #if CONFIG_NEW_QUANT shortcut = ((av1_dequant_abscoeff_nuq(abs(x), dequant_ptr[rc != 0], dequant_val[band_translate[i]]) > (abs(coeff[rc]) << shift)) && (av1_dequant_abscoeff_nuq(abs(x) - 1, dequant_ptr[rc != 0], dequant_val[band_translate[i]]) < (abs(coeff[rc]) << shift))); #else // CONFIG_NEW_QUANT #if CONFIG_AOM_QM if ((abs(x) * dequant_ptr[rc != 0] * iwt > ((abs(coeff[rc]) << shift) << AOM_QM_BITS)) && (abs(x) * dequant_ptr[rc != 0] * iwt < (((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]) << AOM_QM_BITS))) #else if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) && (abs(x) * dequant_ptr[rc != 0] < (abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])) #endif // CONFIG_AOM_QM shortcut = 1; else shortcut = 0; #endif // CONFIG_NEW_QUANT } if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } else { tokens[i][1] = tokens[i][0]; best_index[i][1] = best_index[i][0]; next = i; if (UNLIKELY(!(--band_left))) { --band_counts; band_left = *band_counts; --token_costs; } continue; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; base_bits = 0; } else { base_bits = av1_get_token_cost(x, &t0, cat6_high_cost); t1 = t0; } if (next_shortcut) { if (LIKELY(next < default_eob)) { if (t0 != EOB_TOKEN) { token_cache[rc] = av1_pt_energy_class[t0]; pt = get_coef_context(nb, token_cache, i + 1); rate0 += (*token_costs)[!x][pt][tokens[next][0].token]; } if (t1 != EOB_TOKEN) { token_cache[rc] = av1_pt_energy_class[t1]; pt = get_coef_context(nb, token_cache, i + 1); rate1 += (*token_costs)[!x][pt][tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; } else { // The two states in next stage are identical. if (next < default_eob && t0 != EOB_TOKEN) { token_cache[rc] = av1_pt_energy_class[t0]; pt = get_coef_context(nb, token_cache, i + 1); rate0 += (*token_costs)[!x][pt][tokens[next][0].token]; } best = 0; } #if CONFIG_NEW_QUANT dx = av1_dequant_coeff_nuq(x, dequant_ptr[rc != 0], dequant_val[band_translate[i]]) - (coeff[rc] << shift); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_AOM_HIGHBITDEPTH #else // CONFIG_NEW_QUANT #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz; } else { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; } #else dx -= (dequant_ptr[rc != 0] + sz) ^ sz; #endif // CONFIG_AOM_HIGHBITDEPTH #endif // CONFIG_NEW_QUANT d2 = (int64_t)dx * dx; tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; if (x) { #if CONFIG_NEW_QUANT tokens[i][1].dqc = av1_dequant_abscoeff_nuq( abs(x), dequant_ptr[rc != 0], dequant_val[band_translate[i]]); tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift) : tokens[i][1].dqc; if (sz) tokens[i][1].dqc = -tokens[i][1].dqc; #else tran_low_t offset = dq_step[rc != 0]; // The 32x32 transform coefficient uses half quantization step size. // Account for the rounding difference in the dequantized coefficeint // value when the quantization index is dropped from an even number // to an odd number. if (shift & x) offset += (dequant_ptr[rc != 0] & 0x01); if (sz == 0) tokens[i][1].dqc = dqcoeff[rc] - offset; else tokens[i][1].dqc = dqcoeff[rc] + offset; #endif // CONFIG_NEW_QUANT } else { tokens[i][1].dqc = 0; } best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } else { /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ t0 = tokens[next][0].token; t1 = tokens[next][1].token; pt = get_coef_context(nb, token_cache, i + 1); /* Update the cost of each path if we're past the EOB token. */ if (t0 != EOB_TOKEN) { tokens[next][0].rate += (*token_costs)[1][pt][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != EOB_TOKEN) { tokens[next][1].rate += (*token_costs)[1][pt][t1]; tokens[next][1].token = ZERO_TOKEN; } best_index[i][0] = best_index[i][1] = 0; shortcut = (tokens[next][0].rate != tokens[next][1].rate); /* Don't update next, because we didn't add a new node. */ } if (UNLIKELY(!(--band_left))) { --band_counts; band_left = *band_counts; --token_costs; } } /* Now pick the best path through the whole trellis. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += (*token_costs)[0][ctx][t0]; rate1 += (*token_costs)[0][ctx][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = -1; for (i = next; i < eob; i = next) { const int x = tokens[i][best].qc; const int rc = scan[i]; if (x) final_eob = i; qcoeff[rc] = x; dqcoeff[rc] = tokens[i][best].dqc; next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; mb->plane[plane].eobs[block] = final_eob; assert(final_eob <= default_eob); return final_eob; } #if CONFIG_AOM_HIGHBITDEPTH typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_HIGHBD = 1, QUANT_FUNC_LAST = 2 } QUANT_FUNC; static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_LAST][QUANT_FUNC_LAST] = { { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, { NULL, NULL } }; #else typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_LAST = 1 } QUANT_FUNC; static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_LAST] [QUANT_FUNC_LAST] = { { av1_quantize_fp_facade }, { av1_quantize_b_facade }, { av1_quantize_dc_facade }, { NULL } }; #endif static FWD_TXFM_OPT fwd_txfm_opt_list[AV1_XFORM_QUANT_LAST] = { FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_DC, FWD_TXFM_OPT_NORMAL }; void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, AV1_XFORM_QUANT xform_quant_idx) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const int is_inter = is_inter_block(&xd->mi[0]->mbmi); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; #if CONFIG_AOM_QM int seg_id = xd->mi[0]->mbmi.segment_id; const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size]; const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size]; #endif const int16_t *src_diff; const int tx2d_size = tx_size_2d[tx_size]; FWD_TXFM_PARAM fwd_txfm_param; QUANT_PARAM qparam; fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[xform_quant_idx]; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; qparam.log_scale = get_tx_scale(xd, tx_type, tx_size); #if CONFIG_AOM_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { if (LIKELY(!x->skip_block)) { quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam #if CONFIG_AOM_QM , qmatrix, iqmatrix #endif // CONFIG_AOM_QM ); } else { av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); } } return; } #endif // CONFIG_AOM_HIGHBITDEPTH fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { if (LIKELY(!x->skip_block)) { quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam #if CONFIG_AOM_QM , qmatrix, iqmatrix #endif // CONFIG_AOM_QM ); } else { av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); } } } #if CONFIG_NEW_QUANT void av1_xform_quant_nuq(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const int is_inter = is_inter_block(&xd->mi[0]->mbmi); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; const uint8_t *band = get_band_translate(tx_size); FWD_TXFM_PARAM fwd_txfm_param; assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_FP]; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; // TODO(sarahparker) add all of these new quant quantize functions // to quant_func_list, just trying to get this expr to work for now #if CONFIG_AOM_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { highbd_quantize_32x32_nuq( coeff, tx_size_2d[tx_size], x->skip_block, p->quant, p->quant_shift, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } else { highbd_quantize_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant, p->quant_shift, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { quantize_32x32_nuq(coeff, 1024, x->skip_block, p->quant, p->quant_shift, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } else { quantize_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant, p->quant_shift, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } } void av1_xform_quant_fp_nuq(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int is_inter = is_inter_block(&xd->mi[0]->mbmi); PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter); int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; const uint8_t *band = get_band_translate(tx_size); FWD_TXFM_PARAM fwd_txfm_param; assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_FP]; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; // TODO(sarahparker) add all of these new quant quantize functions // to quant_func_list, just trying to get this expr to work for now #if CONFIG_AOM_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { highbd_quantize_32x32_fp_nuq( coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } else { highbd_quantize_fp_nuq( coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { quantize_32x32_fp_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } else { quantize_fp_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq], (const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff, dqcoeff, eob, scan_order->scan, band); } } void av1_xform_quant_dc_nuq(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; const int is_inter = is_inter_block(&xd->mi[0]->mbmi); int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type); FWD_TXFM_PARAM fwd_txfm_param; assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_DC]; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; // TODO(sarahparker) add all of these new quant quantize functions // to quant_func_list, just trying to get this expr to work for now #if CONFIG_AOM_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { highbd_quantize_dc_32x32_nuq( coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0], p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } else { highbd_quantize_dc_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0], p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { quantize_dc_32x32_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0], p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } else { quantize_dc_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0], p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } } void av1_xform_quant_dc_fp_nuq(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; const int is_inter = is_inter_block(&xd->mi[0]->mbmi); int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type); FWD_TXFM_PARAM fwd_txfm_param; assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_DC]; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; // TODO(sarahparker) add all of these new quant quantize functions // to quant_func_list, just trying to get this expr to work for now #if CONFIG_AOM_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { highbd_quantize_dc_32x32_fp_nuq( coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } else { highbd_quantize_dc_fp_nuq( coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (tx_size == TX_32X32) { quantize_dc_32x32_fp_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } else { quantize_dc_fp_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0], pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob); } } #endif // CONFIG_NEW_QUANT static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; int ctx; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; ENTROPY_CONTEXT *a, *l; INV_TXFM_PARAM inv_txfm_param; #if CONFIG_VAR_TX int i; const int bwl = b_width_log2_lookup[plane_bsize]; #endif dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col]; a = &args->ta[blk_col]; l = &args->tl[blk_row]; #if CONFIG_VAR_TX ctx = get_entropy_context(tx_size, a, l); #else ctx = combine_entropy_contexts(*a, *l); #endif #if CONFIG_VAR_TX // Assert not magic number (uninitialized). assert(x->blk_skip[plane][(blk_row << bwl) + blk_col] != 234); if (x->blk_skip[plane][(blk_row << bwl) + blk_col] == 0) { #else { #endif #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx); #else av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT } #if CONFIG_VAR_TX else { p->eobs[block] = 0; } #endif if (p->eobs[block]) { *a = *l = av1_optimize_b(cm, x, plane, block, tx_size, ctx) > 0; } else { *a = *l = p->eobs[block] > 0; } #if CONFIG_VAR_TX for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0]; for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0]; #endif if (p->eobs[block]) *(args->skip) = 0; if (p->eobs[block] == 0) return; // inverse transform parameters inv_txfm_param.tx_type = get_tx_type(pd->plane_type, xd, block, tx_size); inv_txfm_param.tx_size = tx_size; inv_txfm_param.eob = p->eobs[block]; inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { inv_txfm_param.bd = xd->bd; highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param); return; } #endif // CONFIG_AOM_HIGHBITDEPTH inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param); } #if CONFIG_VAR_TX static void encode_block_inter(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); TX_SIZE plane_tx_size; const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; plane_tx_size = plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] : mbmi->inter_tx_size[tx_row][tx_col]; if (tx_size == plane_tx_size) { encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; // This is the square transform block partition entry point. int bsl = tx_size_wide_unit[sub_txs]; int i; assert(bsl > 0); #if CONFIG_EXT_TX assert(tx_size < TX_SIZES); #endif // CONFIG_EXT_TX for (i = 0; i < 4; ++i) { const int offsetr = blk_row + ((i >> 1) * bsl); const int offsetc = blk_col + ((i & 0x01) * bsl); int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs]; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, arg); block += step; } } } #endif typedef struct encode_block_pass1_args { AV1_COMMON *cm; MACROBLOCK *x; } encode_block_pass1_args; static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { encode_block_pass1_args *args = (encode_block_pass1_args *)arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; #if CONFIG_NEW_QUANT int ctx; #endif // CONFIG_NEW_QUANT dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col]; #if CONFIG_NEW_QUANT ctx = 0; av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx); #else av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_B); #endif // CONFIG_NEW_QUANT if (p->eobs[block] > 0) { #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } else { av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } return; } #endif // CONFIG_AOM_HIGHBITDEPTH if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } else { av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } } } void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { encode_block_pass1_args args = { cm, x }; av1_subtract_plane(x, bsize, 0); av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, &args); } void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { #if CONFIG_VAR_TX // TODO(jingning): Clean this up. const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; int idx, idy; int block = 0; int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; av1_get_entropy_contexts(bsize, TX_4X4, pd, ctx.ta[plane], ctx.tl[plane]); #else const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); #endif av1_subtract_plane(x, bsize, plane); arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; #if CONFIG_VAR_TX #if CONFIG_EXT_TX && CONFIG_RECT_TX if (is_rect_tx(mbmi->tx_size)) { av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); } else { #endif for (idy = 0; idy < mi_height; idy += bh) { for (idx = 0; idx < mi_width; idx += bw) { encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size, &arg); block += step; } } #if CONFIG_EXT_TX && CONFIG_RECT_TX } #endif #else av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); #endif } } #if CONFIG_SUPERTX void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_VAR_TX const TX_SIZE tx_size = TX_4X4; #else const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; #endif av1_subtract_plane(x, bsize, plane); av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); } } #endif // CONFIG_SUPERTX void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); PREDICTION_MODE mode; const int diff_stride = block_size_wide[plane_bsize]; uint8_t *src, *dst; int16_t *src_diff; uint16_t *eob = &p->eobs[block]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_width = tx_size_wide[tx_size]; const int tx1d_height = tx_size_high[tx_size]; ENTROPY_CONTEXT *a = NULL, *l = NULL; int ctx; INV_TXFM_PARAM inv_txfm_param; assert(tx1d_width == tx1d_height); dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode; av1_predict_intra_block(xd, pd->width, pd->height, tx_size, mode, dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride, xd->bd); } else { aom_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride); } #else aom_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride); #endif // CONFIG_AOM_HIGHBITDEPTH a = &args->ta[blk_col]; l = &args->tl[blk_row]; ctx = combine_entropy_contexts(*a, *l); if (args->enable_optimize_b) { #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, ctx); #else // CONFIG_NEW_QUANT av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT if (p->eobs[block]) { *a = *l = av1_optimize_b(cm, x, plane, block, tx_size, ctx) > 0; } else { *a = *l = 0; } } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_B); *a = *l = p->eobs[block] > 0; } if (*eob) { // inverse transform inv_txfm_param.tx_type = tx_type; inv_txfm_param.tx_size = tx_size; inv_txfm_param.eob = *eob; inv_txfm_param.lossless = xd->lossless[mbmi->segment_id]; #if CONFIG_AOM_HIGHBITDEPTH inv_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param); } else { inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param); } #else inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param); #endif // CONFIG_AOM_HIGHBITDEPTH *(args->skip) = 0; } } void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int plane, int enable_optimize_b) { const MACROBLOCKD *const xd = &x->e_mbd; ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE]; ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE]; struct encode_b_args arg = { cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b }; if (enable_optimize_b) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(&xd->mi[0]->mbmi, pd) : xd->mi[0]->mbmi.tx_size; av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl); } av1_foreach_transformed_block_in_plane(xd, bsize, plane, av1_encode_block_intra, &arg); }