/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vpx_scale_rtcd.h" #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp10/common/blockd.h" #include "vp10/common/reconinter.h" #include "vp10/common/reconintra.h" #if CONFIG_OBMC #include "vp10/common/onyxc_int.h" #endif // CONFIG_OBMC #if CONFIG_EXT_INTER static int get_masked_weight(int m) { #define SMOOTHER_LEN 32 static const uint8_t smoothfn[2 * SMOOTHER_LEN + 1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 21, 24, 28, 32, 36, 40, 43, 47, 50, 52, 55, 56, 58, 59, 60, 61, 62, 62, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; if (m < -SMOOTHER_LEN) return 0; else if (m > SMOOTHER_LEN) return (1 << WEDGE_WEIGHT_BITS); else return smoothfn[m + SMOOTHER_LEN]; } #define WEDGE_OBLIQUE 1 #define WEDGE_STRAIGHT 0 #define WEDGE_PARMS 5 // [negative][transpose][reverse] DECLARE_ALIGNED(16, static uint8_t, wedge_mask_obl[2][2][2][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); // [negative][transpose] DECLARE_ALIGNED(16, static uint8_t, wedge_mask_str[2][2][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); // Equation of line: f(x, y) = a[0]*(x - a[2]*w/4) + a[1]*(y - a[3]*h/4) = 0 void vp10_init_wedge_masks() { int i, j; const int w = MASK_MASTER_SIZE; const int h = MASK_MASTER_SIZE; const int stride = MASK_MASTER_STRIDE; const int a[4] = {2, 1, 2, 2}; for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { int x = (2 * j + 1 - (a[2] * w) / 2); int y = (2 * i + 1 - (a[3] * h) / 2); int m = (a[0] * x + a[1] * y) / 2; wedge_mask_obl[1][0][0][i * stride + j] = wedge_mask_obl[1][1][0][j * stride + i] = get_masked_weight(m); wedge_mask_obl[1][0][1][i * stride + w - 1 - j] = wedge_mask_obl[1][1][1][(w - 1 - j) * stride + i] = (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m); wedge_mask_obl[0][0][0][i * stride + j] = wedge_mask_obl[0][1][0][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m); wedge_mask_obl[0][0][1][i * stride + w - 1 - j] = wedge_mask_obl[0][1][1][(w - 1 - j) * stride + i] = get_masked_weight(m); wedge_mask_str[1][0][i * stride + j] = wedge_mask_str[1][1][j * stride + i] = get_masked_weight(x); wedge_mask_str[0][0][i * stride + j] = wedge_mask_str[0][1][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(x); } } static const int wedge_params_sml[1 << WEDGE_BITS_SML] [WEDGE_PARMS] = { {WEDGE_OBLIQUE, 1, 1, 2, 2}, {WEDGE_OBLIQUE, 1, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 2, 2}, {WEDGE_OBLIQUE, 0, 0, 2, 2}, }; static const int wedge_params_med_hgtw[1 << WEDGE_BITS_MED] [WEDGE_PARMS] = { {WEDGE_OBLIQUE, 1, 1, 2, 2}, {WEDGE_OBLIQUE, 1, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 2, 2}, {WEDGE_OBLIQUE, 0, 0, 2, 2}, {WEDGE_OBLIQUE, 1, 1, 2, 1}, {WEDGE_OBLIQUE, 1, 1, 2, 3}, {WEDGE_OBLIQUE, 1, 0, 2, 1}, {WEDGE_OBLIQUE, 1, 0, 2, 3}, }; static const int wedge_params_med_hltw[1 << WEDGE_BITS_MED] [WEDGE_PARMS] = { {WEDGE_OBLIQUE, 1, 1, 2, 2}, {WEDGE_OBLIQUE, 1, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 2, 2}, {WEDGE_OBLIQUE, 0, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 1, 2}, {WEDGE_OBLIQUE, 0, 1, 3, 2}, {WEDGE_OBLIQUE, 0, 0, 1, 2}, {WEDGE_OBLIQUE, 0, 0, 3, 2}, }; static const int wedge_params_med_heqw[1 << WEDGE_BITS_MED] [WEDGE_PARMS] = { {WEDGE_OBLIQUE, 1, 1, 2, 2}, {WEDGE_OBLIQUE, 1, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 2, 2}, {WEDGE_OBLIQUE, 0, 0, 2, 2}, {WEDGE_STRAIGHT, 1, 0, 2, 1}, {WEDGE_STRAIGHT, 1, 0, 2, 3}, {WEDGE_STRAIGHT, 0, 0, 1, 2}, {WEDGE_STRAIGHT, 0, 0, 3, 2}, }; static const int wedge_params_big_hgtw[1 << WEDGE_BITS_BIG] [WEDGE_PARMS] = { {WEDGE_OBLIQUE, 1, 1, 2, 2}, {WEDGE_OBLIQUE, 1, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 2, 2}, {WEDGE_OBLIQUE, 0, 0, 2, 2}, {WEDGE_OBLIQUE, 1, 1, 2, 1}, {WEDGE_OBLIQUE, 1, 1, 2, 3}, {WEDGE_OBLIQUE, 1, 0, 2, 1}, {WEDGE_OBLIQUE, 1, 0, 2, 3}, {WEDGE_OBLIQUE, 0, 1, 1, 2}, {WEDGE_OBLIQUE, 0, 1, 3, 2}, {WEDGE_OBLIQUE, 0, 0, 1, 2}, {WEDGE_OBLIQUE, 0, 0, 3, 2}, {WEDGE_STRAIGHT, 1, 0, 2, 1}, {WEDGE_STRAIGHT, 1, 0, 2, 2}, {WEDGE_STRAIGHT, 1, 0, 2, 3}, {WEDGE_STRAIGHT, 0, 0, 2, 2}, }; static const int wedge_params_big_hltw[1 << WEDGE_BITS_BIG] [WEDGE_PARMS] = { {WEDGE_OBLIQUE, 1, 1, 2, 2}, {WEDGE_OBLIQUE, 1, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 2, 2}, {WEDGE_OBLIQUE, 0, 0, 2, 2}, {WEDGE_OBLIQUE, 1, 1, 2, 1}, {WEDGE_OBLIQUE, 1, 1, 2, 3}, {WEDGE_OBLIQUE, 1, 0, 2, 1}, {WEDGE_OBLIQUE, 1, 0, 2, 3}, {WEDGE_OBLIQUE, 0, 1, 1, 2}, {WEDGE_OBLIQUE, 0, 1, 3, 2}, {WEDGE_OBLIQUE, 0, 0, 1, 2}, {WEDGE_OBLIQUE, 0, 0, 3, 2}, {WEDGE_STRAIGHT, 0, 0, 1, 2}, {WEDGE_STRAIGHT, 0, 0, 2, 2}, {WEDGE_STRAIGHT, 0, 0, 3, 2}, {WEDGE_STRAIGHT, 1, 0, 2, 2}, }; static const int wedge_params_big_heqw[1 << WEDGE_BITS_BIG] [WEDGE_PARMS] = { {WEDGE_OBLIQUE, 1, 1, 2, 2}, {WEDGE_OBLIQUE, 1, 0, 2, 2}, {WEDGE_OBLIQUE, 0, 1, 2, 2}, {WEDGE_OBLIQUE, 0, 0, 2, 2}, {WEDGE_OBLIQUE, 1, 1, 2, 1}, {WEDGE_OBLIQUE, 1, 1, 2, 3}, {WEDGE_OBLIQUE, 1, 0, 2, 1}, {WEDGE_OBLIQUE, 1, 0, 2, 3}, {WEDGE_OBLIQUE, 0, 1, 1, 2}, {WEDGE_OBLIQUE, 0, 1, 3, 2}, {WEDGE_OBLIQUE, 0, 0, 1, 2}, {WEDGE_OBLIQUE, 0, 0, 3, 2}, {WEDGE_STRAIGHT, 1, 0, 2, 1}, {WEDGE_STRAIGHT, 1, 0, 2, 3}, {WEDGE_STRAIGHT, 0, 0, 1, 2}, {WEDGE_STRAIGHT, 0, 0, 3, 2}, }; static const int *get_wedge_params_lookup[BLOCK_SIZES] = { NULL, NULL, NULL, &wedge_params_sml[0][0], &wedge_params_med_hgtw[0][0], &wedge_params_med_hltw[0][0], &wedge_params_med_heqw[0][0], &wedge_params_med_hgtw[0][0], &wedge_params_med_hltw[0][0], &wedge_params_med_heqw[0][0], &wedge_params_big_hgtw[0][0], &wedge_params_big_hltw[0][0], &wedge_params_big_heqw[0][0], #if CONFIG_EXT_PARTITION &wedge_params_big_hgtw[0][0], &wedge_params_big_hltw[0][0], &wedge_params_big_heqw[0][0], #endif // CONFIG_EXT_PARTITION }; static const uint8_t *get_wedge_mask_inplace(const int *a, int neg, int h, int w) { const uint8_t *master; const int woff = (a[3] * w) >> 2; const int hoff = (a[4] * h) >> 2; if (!a) return NULL; master = (a[0] ? wedge_mask_obl[neg][a[1]][a[2]] : wedge_mask_str[neg][a[1]]) + MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + MASK_MASTER_SIZE / 2 - woff; return master; } static const int *get_wedge_params(int wedge_index, BLOCK_SIZE sb_type) { const int *a = NULL; if (wedge_index != WEDGE_NONE) { return get_wedge_params_lookup[sb_type] + WEDGE_PARMS * wedge_index; } return a; } const uint8_t *vp10_get_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int h, int w) { const int *a = get_wedge_params(wedge_index, sb_type); return get_wedge_mask_inplace(a, wedge_sign, h, w); } #if CONFIG_SUPERTX const uint8_t *get_soft_mask_extend(int wedge_index, int wedge_sign, int plane, BLOCK_SIZE sb_type, int wedge_offset_y, int wedge_offset_x) { int subh = (plane ? 2 : 4) << b_height_log2_lookup[sb_type]; int subw = (plane ? 2 : 4) << b_width_log2_lookup[sb_type]; const int *a = get_wedge_params(wedge_index, sb_type); if (a) { const uint8_t *mask = get_wedge_mask_inplace(a, wedge_sign, subh, subw); mask -= (wedge_offset_x + wedge_offset_y * MASK_MASTER_STRIDE); return mask; } else { return NULL; } } static void build_masked_compound_extend(uint8_t *dst, int dst_stride, uint8_t *dst2, int dst2_stride, int plane, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int wedge_offset_y, int wedge_offset_x, int h, int w) { int i, j; const uint8_t *mask = get_soft_mask_extend( wedge_index, wedge_sign, plane, sb_type, wedge_offset_y, wedge_offset_x); for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m + dst2[i * dst2_stride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } #if CONFIG_VP9_HIGHBITDEPTH static void build_masked_compound_extend_highbd( uint8_t *dst_8, int dst_stride, uint8_t *dst2_8, int dst2_stride, int plane, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int wedge_offset_y, int wedge_offset_x, int h, int w) { int i, j; const uint8_t *mask = get_soft_mask_extend( wedge_index, wedge_sign, plane, sb_type, wedge_offset_y, wedge_offset_x); uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8); uint16_t *dst2 = CONVERT_TO_SHORTPTR(dst2_8); for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m + dst2[i * dst2_stride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } #endif // CONFIG_VP9_HIGHBITDEPTH #else // CONFIG_SUPERTX static void build_masked_compound(uint8_t *dst, int dst_stride, uint8_t *dst2, int dst2_stride, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int h, int w) { int i, j; const uint8_t *mask = vp10_get_soft_mask(wedge_index, wedge_sign, sb_type, h, w); for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m + dst2[i * dst2_stride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } #if CONFIG_VP9_HIGHBITDEPTH static void build_masked_compound_highbd(uint8_t *dst_8, int dst_stride, uint8_t *dst2_8, int dst2_stride, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int h, int w) { int i, j; const uint8_t *mask = vp10_get_soft_mask(wedge_index, wedge_sign, sb_type, h, w); uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8); uint16_t *dst2 = CONVERT_TO_SHORTPTR(dst2_8); for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m + dst2[i * dst2_stride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_SUPERTX void vp10_make_masked_inter_predictor( const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, const INTERP_FILTER interp_filter, int xs, int ys, #if CONFIG_SUPERTX int plane, int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX const MACROBLOCKD *xd) { const MODE_INFO *mi = xd->mi[0]; #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_dst_[2 * MAX_SB_SQUARE]); uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? CONVERT_TO_BYTEPTR(tmp_dst_) : tmp_dst_; vp10_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, subpel_y, sf, w, h, 0, interp_filter, xs, ys, xd); #if CONFIG_SUPERTX if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_extend_highbd( dst, dst_stride, tmp_dst, MAX_SB_SIZE, plane, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_y, wedge_offset_x, h, w); else build_masked_compound_extend( dst, dst_stride, tmp_dst, MAX_SB_SIZE, plane, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_y, wedge_offset_x, h, w); #else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd( dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w); else build_masked_compound( dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w); #endif // CONFIG_SUPERTX #else // CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_dst[MAX_SB_SQUARE]); vp10_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, subpel_y, sf, w, h, 0, interp_filter, xs, ys, xd); #if CONFIG_SUPERTX build_masked_compound_extend( dst, dst_stride, tmp_dst, MAX_SB_SIZE, plane, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_y, wedge_offset_x, h, w); #else build_masked_compound( dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w); #endif // CONFIG_SUPERTX #endif // CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_EXT_INTER #if CONFIG_VP9_HIGHBITDEPTH void vp10_highbd_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, const INTERP_FILTER interp_filter, enum mv_precision precision, int x, int y, int bd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH void vp10_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, const INTERP_FILTER interp_filter, enum mv_precision precision, int x, int y) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4); } void build_inter_predictors(MACROBLOCKD *xd, int plane, #if CONFIG_OBMC int mi_col_offset, int mi_row_offset, #endif // CONFIG_OBMC int block, int bw, int bh, int x, int y, int w, int h, #if CONFIG_SUPERTX && CONFIG_EXT_INTER int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_OBMC const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset]; #else const MODE_INFO *mi = xd->mi[0]; #endif // CONFIG_OBMC const int is_compound = has_second_ref(&mi->mbmi); const INTERP_FILTER interp_filter = mi->mbmi.interp_filter; int ref; for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = vp10_is_scaled(sf); if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); #if CONFIG_EXT_INTER if (ref && is_interinter_wedge_used(mi->mbmi.sb_type) && mi->mbmi.use_wedge_interinter) vp10_make_masked_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, interp_filter, xs, ys, #if CONFIG_SUPERTX plane, wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX xd); else #endif // CONFIG_EXT_INTER vp10_make_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, xs, ys, xd); } } void vp10_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir, int ic, int mi_row, int mi_col) { struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi[0]; const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2]; int ref; const int is_compound = has_second_ref(&mi->mbmi); const INTERP_FILTER interp_filter = mi->mbmi.interp_filter; for (ref = 0; ref < 1 + is_compound; ++ref) { const uint8_t *pre = &pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_highbd_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd->bd); } else { vp10_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); } #else vp10_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); #endif // CONFIG_VP9_HIGHBITDEPTH } } static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = 4 * num_4x4_blocks_wide_lookup[bsize] >> pd->subsampling_x; const int bh = 4 * num_4x4_blocks_high_lookup[bsize] >> pd->subsampling_y; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int pw = 8 >> (have_vsplit | pd->subsampling_x); const int ph = 8 >> (have_hsplit | pd->subsampling_y); int x, y; assert(bp != PARTITION_NONE && bp < PARTITION_TYPES); assert(bsize == BLOCK_8X8); assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } else { build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } } void vp10_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int plane) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) { if (plane == 0) { vp10_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, bsize); } else { vp10_build_interintra_predictors_sbc(xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, plane, bsize); } } #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors_sbuv(xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors(xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer}; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride}; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &planes[i]; setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } } void vp10_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf) { if (src != NULL) { int i; uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer}; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride}; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col, sf, pd->subsampling_x, pd->subsampling_y); } } } #if CONFIG_SUPERTX static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1 }; static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36, 28, 19, 11, 3, 0, 0, 0, 0 }; static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 60, 54, 46, 36, 28, 18, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static void generate_1dmask(int length, uint8_t *mask, int plane) { switch (length) { case 8: memcpy(mask, plane ? mask_8_uv : mask_8, length); break; case 16: memcpy(mask, plane ? mask_16_uv : mask_16, length); break; case 32: memcpy(mask, plane ? mask_32_uv : mask_32, length); break; default: assert(0); } } void vp10_build_masked_inter_predictor_complex( MACROBLOCKD *xd, uint8_t *dst, int dst_stride, uint8_t *dst2, int dst2_stride, const struct macroblockd_plane *pd, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, int plane) { int i, j; uint8_t mask[MAX_TX_SIZE]; int top_w = 4 << b_width_log2_lookup[top_bsize]; int top_h = 4 << b_height_log2_lookup[top_bsize]; int w = 4 << b_width_log2_lookup[bsize]; int h = 4 << b_height_log2_lookup[bsize]; int w_offset = (mi_col - mi_col_ori) * MI_SIZE; int h_offset = (mi_row - mi_row_ori) * MI_SIZE; #if CONFIG_VP9_HIGHBITDEPTH uint16_t *dst16= CONVERT_TO_SHORTPTR(dst); uint16_t *dst216 = CONVERT_TO_SHORTPTR(dst2); int b_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_VP9_HIGHBITDEPTH assert(bsize <= BLOCK_32X32); top_w >>= pd->subsampling_x; top_h >>= pd->subsampling_y; w >>= pd->subsampling_x; h >>= pd->subsampling_y; w_offset >>= pd->subsampling_x; h_offset >>= pd->subsampling_y; switch (partition) { case PARTITION_HORZ: { #if CONFIG_VP9_HIGHBITDEPTH if (b_hdb) { uint16_t *dst_tmp = dst16 + h_offset * dst_stride; uint16_t *dst2_tmp = dst216 + h_offset * dst2_stride; generate_1dmask(h, mask + h_offset, plane && xd->plane[plane].subsampling_y); for (i = h_offset; i < h_offset + h; i++) { for (j = 0; j < top_w; j++) { const int m = mask[i]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m + dst2_tmp[j] * (64 - m), 6); } dst_tmp += dst_stride; dst2_tmp += dst2_stride; } for (; i < top_h; i ++) { memcpy(dst_tmp, dst2_tmp, top_w * sizeof(uint16_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH uint8_t *dst_tmp = dst + h_offset * dst_stride; uint8_t *dst2_tmp = dst2 + h_offset * dst2_stride; generate_1dmask(h, mask + h_offset, plane && xd->plane[plane].subsampling_y); for (i = h_offset; i < h_offset + h; i++) { for (j = 0; j < top_w; j++) { const int m = mask[i]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m + dst2_tmp[j] * (64 - m), 6); } dst_tmp += dst_stride; dst2_tmp += dst2_stride; } for (; i < top_h; i ++) { memcpy(dst_tmp, dst2_tmp, top_w * sizeof(uint8_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } break; case PARTITION_VERT: { #if CONFIG_VP9_HIGHBITDEPTH if (b_hdb) { uint16_t *dst_tmp = dst16; uint16_t *dst2_tmp = dst216; generate_1dmask(w, mask + w_offset, plane && xd->plane[plane].subsampling_x); for (i = 0; i < top_h; i++) { for (j = w_offset; j < w_offset + w; j++) { const int m = mask[j]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m + dst2_tmp[j] * (64 - m), 6); } memcpy(dst_tmp + j, dst2_tmp + j, (top_w - w_offset - w) * sizeof(uint16_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH uint8_t *dst_tmp = dst; uint8_t *dst2_tmp = dst2; generate_1dmask(w, mask + w_offset, plane && xd->plane[plane].subsampling_x); for (i = 0; i < top_h; i++) { for (j = w_offset; j < w_offset + w; j++) { const int m = mask[j]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m + dst2_tmp[j] * (64 - m), 6); } memcpy(dst_tmp + j, dst2_tmp + j, (top_w - w_offset - w) * sizeof(uint8_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } break; default: assert(0); } (void) xd; } void vp10_build_inter_predictors_sb_sub8x8_extend( MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize, int block) { // Prediction function used in supertx: // Use the mv at current block (which is less than 8x8) // to get prediction of a block located at (mi_row, mi_col) at size of bsize // bsize can be larger than 8x8. // block (0-3): the sub8x8 location of current block int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_EXT_INTER const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; #endif // CONFIG_EXT_INTER // For sub8x8 uv: // Skip uv prediction in supertx except the first block (block = 0) int max_plane = block ? 1 : MAX_MB_PLANE; for (plane = 0; plane < max_plane; plane++) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC block, bw, bh, 0, 0, bw, bh, #if CONFIG_EXT_INTER wedge_offset_x >> (xd->plane[plane].subsampling_x), wedge_offset_y >> (xd->plane[plane].subsampling_y), #endif // CONFIG_SUPERTX mi_x, mi_y); } #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors(xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sb_extend(MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_EXT_INTER const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; #endif // CONFIG_EXT_INTER for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size( bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { int x, y; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors( xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, #if CONFIG_EXT_INTER wedge_offset_x >> (xd->plane[plane].subsampling_x), wedge_offset_y >> (xd->plane[plane].subsampling_y), #endif // CONFIG_EXT_INTER mi_x, mi_y); } else { build_inter_predictors( xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC 0, bw, bh, 0, 0, bw, bh, #if CONFIG_EXT_INTER wedge_offset_x >> (xd->plane[plane].subsampling_x), wedge_offset_y >> (xd->plane[plane].subsampling_y), #endif // CONFIG_EXT_INTER mi_x, mi_y); } } } #endif // CONFIG_SUPERTX #if CONFIG_OBMC // obmc_mask_N[is_neighbor_predictor][overlap_position] static const uint8_t obmc_mask_1[2][1] = { { 55}, { 9} }; static const uint8_t obmc_mask_2[2][2] = { { 45, 62}, { 19, 2} }; static const uint8_t obmc_mask_4[2][4] = { { 39, 50, 59, 64}, { 25, 14, 5, 0} }; static const uint8_t obmc_mask_8[2][8] = { { 36, 42, 48, 53, 57, 61, 63, 64}, { 28, 22, 16, 11, 7, 3, 1, 0} }; static const uint8_t obmc_mask_16[2][16] = { { 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 63, 64, 64, 64}, { 30, 27, 24, 21, 18, 15, 12, 10, 8, 6, 4, 3, 1, 0, 0, 0} }; static const uint8_t obmc_mask_32[2][32] = { { 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 60, 61, 62, 62, 63, 63, 64, 64, 64, 64, 64 }, { 31, 29, 28, 26, 24, 23, 21, 20, 19, 17, 16, 14, 13, 12, 11, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0 } }; #if CONFIG_EXT_PARTITION static const uint8_t obmc_mask_64[2][64] = { { 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }, { 31, 30, 29, 29, 28, 27, 26, 25, 24, 24, 23, 22, 21, 20, 20, 20, 19, 18, 17, 17, 16, 15, 14, 13, 13, 13, 12, 12, 11, 10, 9, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 4, 4, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, } }; #endif // CONFIG_EXT_PARTITION void setup_obmc_mask(int length, const uint8_t *mask[2]) { switch (length) { case 1: mask[0] = obmc_mask_1[0]; mask[1] = obmc_mask_1[1]; break; case 2: mask[0] = obmc_mask_2[0]; mask[1] = obmc_mask_2[1]; break; case 4: mask[0] = obmc_mask_4[0]; mask[1] = obmc_mask_4[1]; break; case 8: mask[0] = obmc_mask_8[0]; mask[1] = obmc_mask_8[1]; break; case 16: mask[0] = obmc_mask_16[0]; mask[1] = obmc_mask_16[1]; break; case 32: mask[0] = obmc_mask_32[0]; mask[1] = obmc_mask_32[1]; break; #if CONFIG_EXT_PARTITION case 64: mask[0] = obmc_mask_64[0]; mask[1] = obmc_mask_64[1]; break; #endif // CONFIG_EXT_PARTITION default: mask[0] = NULL; mask[1] = NULL; assert(0); break; } } // This function combines motion compensated predictions that is generated by // top/left neighboring blocks' inter predictors with the regular inter // prediction. We assume the original prediction (bmc) is stored in // xd->plane[].dst.buf void vp10_build_obmc_inter_prediction(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, int use_tmp_dst_buf, uint8_t *final_buf[MAX_MB_PLANE], int final_stride[MAX_MB_PLANE], uint8_t *tmp_buf1[MAX_MB_PLANE], int tmp_stride1[MAX_MB_PLANE], uint8_t *tmp_buf2[MAX_MB_PLANE], int tmp_stride2[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int plane, i, mi_step; #if CONFIG_EXT_TILE int above_available = mi_row > 0 && (mi_row - 1 >= tile->mi_row_start); #else int above_available = mi_row > 0; #endif // CONFIG_EXT_TILE #if CONFIG_VP9_HIGHBITDEPTH int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_VP9_HIGHBITDEPTH if (use_tmp_dst_buf) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int bw = (xd->n8_w * 8) >> pd->subsampling_x; int bh = (xd->n8_h * 8) >> pd->subsampling_y; int row; #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) { uint16_t *final_buf16 = CONVERT_TO_SHORTPTR(final_buf[plane]); uint16_t *bmc_buf16 = CONVERT_TO_SHORTPTR(pd->dst.buf); for (row = 0; row < bh; ++row) memcpy(final_buf16 + row * final_stride[plane], bmc_buf16 + row * pd->dst.stride, bw * sizeof(uint16_t)); } else { #endif for (row = 0; row < bh; ++row) memcpy(final_buf[plane] + row * final_stride[plane], pd->dst.buf + row * pd->dst.stride, bw); #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } } // handle above row for (i = 0; above_available && i < VPXMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { int mi_row_offset = -1; int mi_col_offset = i; int overlap; MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *above_mbmi = &above_mi->mbmi; mi_step = VPXMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]); if (!is_neighbor_overlappable(above_mbmi)) continue; overlap = num_4x4_blocks_high_lookup[bsize] << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int bw = (mi_step * MI_SIZE) >> pd->subsampling_x; int bh = overlap >> pd->subsampling_y; int row, col; int dst_stride = use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride; uint8_t *dst = use_tmp_dst_buf ? &final_buf[plane][(i * MI_SIZE) >> pd->subsampling_x] : &pd->dst.buf[(i * MI_SIZE) >> pd->subsampling_x]; int tmp_stride = tmp_stride1[plane]; uint8_t *tmp = &tmp_buf1[plane][(i * MI_SIZE) >> pd->subsampling_x]; const uint8_t *mask[2]; setup_obmc_mask(bh, mask); #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) { uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst16[col] = ROUND_POWER_OF_TWO(mask[0][row] * dst16[col] + mask[1][row] * tmp16[col], 6); dst16 += dst_stride; tmp16 += tmp_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst[col] = ROUND_POWER_OF_TWO(mask[0][row] * dst[col] + mask[1][row] * tmp[col], 6); dst += dst_stride; tmp += tmp_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } } // each mi in the above row if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) return; // handle left column for (i = 0; i < VPXMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { int mi_row_offset = i; int mi_col_offset = -1; int overlap; MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *left_mbmi = &left_mi->mbmi; mi_step = VPXMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]); if (!is_neighbor_overlappable(left_mbmi)) continue; overlap = num_4x4_blocks_wide_lookup[bsize] << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int bw = overlap >> pd->subsampling_x; int bh = (mi_step * MI_SIZE) >> pd->subsampling_y; int row, col; int dst_stride = use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride; uint8_t *dst = use_tmp_dst_buf ? &final_buf[plane][(i * MI_SIZE * dst_stride) >> pd->subsampling_y] : &pd->dst.buf[(i * MI_SIZE * dst_stride) >> pd->subsampling_y]; int tmp_stride = tmp_stride2[plane]; uint8_t *tmp = &tmp_buf2[plane] [(i * MI_SIZE * tmp_stride) >> pd->subsampling_y]; const uint8_t *mask[2]; setup_obmc_mask(bw, mask); #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) { uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst16[col] = ROUND_POWER_OF_TWO(mask[0][col] * dst16[col] + mask[1][col] * tmp16[col], 6); dst16 += dst_stride; tmp16 += tmp_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst[col] = ROUND_POWER_OF_TWO(mask[0][col] * dst[col] + mask[1][col] * tmp[col], 6); dst += dst_stride; tmp += tmp_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } } // each mi in the left column } #if CONFIG_EXT_INTER void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { if (is_interintra_pred(mbmi)) { mbmi->ref_frame[1] = NONE; } else if (has_second_ref(mbmi) && is_interinter_wedge_used(mbmi->sb_type) && mbmi->use_wedge_interinter) { mbmi->use_wedge_interinter = 0; mbmi->ref_frame[1] = NONE; } return; } #endif // CONFIG_EXT_INTER void vp10_build_prediction_by_above_preds(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { #if CONFIG_EXT_TILE const TileInfo *const tile = &xd->tile; #endif // CONFIG_EXT_TILE BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; #if CONFIG_EXT_TILE if (mi_row == 0 || (mi_row - 1) < tile->mi_row_start) #else if (mi_row == 0) #endif // CONFIG_EXT_TILE return; for (i = 0; i < VPXMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { int mi_row_offset = -1; int mi_col_offset = i; int mi_x, mi_y, bw, bh; MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *above_mbmi = &above_mi->mbmi; #if CONFIG_EXT_INTER MB_MODE_INFO backup_mbmi; #endif // CONFIG_EXT_INTER mi_step = VPXMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]); if (!is_neighbor_overlappable(above_mbmi)) continue; #if CONFIG_EXT_INTER backup_mbmi = *above_mbmi; modify_neighbor_predictor_for_obmc(above_mbmi); #endif // CONFIG_EXT_INTER for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, tmp_buf[j], tmp_stride[j], 0, i, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) { MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!vp10_is_valid_scale(&ref_buf->sf))) vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); vp10_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i, &ref_buf->sf); } xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); mi_x = (mi_col + i) << MI_SIZE_LOG2; mi_y = mi_row << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = (mi_step * 8) >> pd->subsampling_x; bh = VPXMAX((num_4x4_blocks_high_lookup[bsize] * 2) >> pd->subsampling_y, 4); if (above_mbmi->sb_type < BLOCK_8X8) { const PARTITION_TYPE bp = BLOCK_8X8 - above_mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int pw = 8 >> (have_vsplit | pd->subsampling_x); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y == 0 && !pd->subsampling_y) continue; build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh, 4 * x, 0, pw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } else { build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } #if CONFIG_EXT_INTER *above_mbmi = backup_mbmi; #endif // CONFIG_EXT_INTER } xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); } void vp10_build_prediction_by_left_preds(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) return; for (i = 0; i < VPXMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { int mi_row_offset = i; int mi_col_offset = -1; int mi_x, mi_y, bw, bh; MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *left_mbmi = &left_mi->mbmi; #if CONFIG_EXT_INTER MB_MODE_INFO backup_mbmi; #endif // CONFIG_EXT_INTER mi_step = VPXMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]); if (!is_neighbor_overlappable(left_mbmi)) continue; #if CONFIG_EXT_INTER backup_mbmi = *left_mbmi; modify_neighbor_predictor_for_obmc(left_mbmi); #endif // CONFIG_EXT_INTER for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, tmp_buf[j], tmp_stride[j], i, 0, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) { MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!vp10_is_valid_scale(&ref_buf->sf))) vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); vp10_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col, &ref_buf->sf); } xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); mi_x = mi_col << MI_SIZE_LOG2; mi_y = (mi_row + i) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = VPXMAX((num_4x4_blocks_wide_lookup[bsize] * 2) >> pd->subsampling_x, 4); bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; if (left_mbmi->sb_type < BLOCK_8X8) { const PARTITION_TYPE bp = BLOCK_8X8 - left_mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int ph = 8 >> (have_hsplit | pd->subsampling_y); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x == 0 && !pd->subsampling_x) continue; build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh, 0, 4 * y, bw, ph, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } else { build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } #if CONFIG_EXT_INTER *left_mbmi = backup_mbmi; #endif // CONFIG_EXT_INTER } xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); } #endif // CONFIG_OBMC #if CONFIG_EXT_INTER #if CONFIG_EXT_PARTITION static const int ii_weights1d[MAX_SB_SIZE] = { 128, 127, 125, 124, 123, 122, 120, 119, 118, 117, 116, 115, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 103, 102, 101, 100, 99, 98, 97, 97, 96, 95, 94, 94, 93, 92, 91, 91, 90, 89, 89, 88, 87, 87, 86, 86, 85, 84, 84, 83, 83, 82, 82, 81, 81, 80, 80, 79, 79, 78, 78, 77, 77, 76, 76, 75, 75, 75, 74, 74, 73, 73, 73, 72, 72, 72, 71, 71, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 67, 67, 67, 67, 66, 66, 66, 66, 65, 65, 65, 65, 64, 64, 64, 64, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 61, 61, 61, 61, 61, 61, 60, 60, 60, 60, 60, 60, 60, }; static int ii_size_scales[BLOCK_SIZES] = { 32, 16, 16, 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1 }; #else static const int ii_weights1d[MAX_SB_SIZE] = { 102, 100, 97, 95, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 73, 71, 69, 68, 67, 65, 64, 62, 61, 60, 59, 58, 57, 55, 54, 53, 52, 52, 51, 50, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 36, 35, 35, 35, 34, 34, }; static int ii_size_scales[BLOCK_SIZES] = { 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1 }; #endif // CONFIG_EXT_PARTITION static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred, int compstride, uint8_t *interpred, int interstride, uint8_t *intrapred, int intrastride) { static const int scale_bits = 8; static const int scale_max = 256; static const int scale_round = 127; const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; if (use_wedge_interintra) { if (is_interinter_wedge_used(bsize)) { const uint8_t *mask = vp10_get_soft_mask(wedge_index, wedge_sign, bsize, bh, bw); for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; comppred[i * compstride + j] = (intrapred[i * intrastride + j] * m + interpred[i * interstride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D63_PRED: case II_D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] * 3 + ii_weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D207_PRED: case II_D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[j * size_scale] * 3 + ii_weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_TM_PRED: case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = (interpred[i * interstride + j] + intrapred[i * intrastride + j]) >> 1; } } break; } } #if CONFIG_VP9_HIGHBITDEPTH static void combine_interintra_highbd(INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred8, int compstride, uint8_t *interpred8, int interstride, uint8_t *intrapred8, int intrastride, int bd) { static const int scale_bits = 8; static const int scale_max = 256; static const int scale_round = 127; const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8); uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8); uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8); (void) bd; if (use_wedge_interintra) { if (is_interinter_wedge_used(bsize)) { const uint8_t *mask = vp10_get_soft_mask(wedge_index, wedge_sign, bsize, bh, bw); for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int m = mask[i * MASK_MASTER_STRIDE + j]; comppred[i * compstride + j] = (intrapred[i * intrastride + j] * m + interpred[i * interstride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) + (1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS; } } } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D63_PRED: case II_D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] * 3 + ii_weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D207_PRED: case II_D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[j * size_scale] * 3 + ii_weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case II_TM_PRED: case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = (interpred[i * interstride + j] + intrapred[i * intrastride + j]) >> 1; } } break; } } #endif // CONFIG_VP9_HIGHBITDEPTH // Break down rectangular intra prediction for joint spatio-temporal prediction // into two square intra predictions. static void build_intra_predictors_for_interintra( MACROBLOCKD *xd, uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, BLOCK_SIZE bsize, int plane) { BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bwl = b_width_log2_lookup[plane_bsize]; const int bhl = b_height_log2_lookup[plane_bsize]; TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; if (bwl == bhl) { vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); } else if (bwl < bhl) { uint8_t *src_2 = ref + (4 << bwl)*ref_stride; uint8_t *dst_2 = dst + (4 << bwl)*dst_stride; vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *src_216 = CONVERT_TO_SHORTPTR(src_2); uint16_t *dst_216 = CONVERT_TO_SHORTPTR(dst_2); memcpy(src_216 - ref_stride, dst_216 - dst_stride, sizeof(*src_216) * (4 << bhl)); } else #endif // CONFIG_VP9_HIGHBITDEPTH { memcpy(src_2 - ref_stride, dst_2 - dst_stride, sizeof(*src_2) * (4 << bhl)); } vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, src_2, ref_stride, dst_2, dst_stride, 0, 1 << bwl, plane); } else { int i; uint8_t *src_2 = ref + (4 << bhl); uint8_t *dst_2 = dst + (4 << bhl); vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *src_216 = CONVERT_TO_SHORTPTR(src_2); uint16_t *dst_216 = CONVERT_TO_SHORTPTR(dst_2); for (i = 0; i < (4 << bwl); ++i) src_216[i * ref_stride - 1] = dst_216[i * dst_stride - 1]; } else #endif // CONFIG_VP9_HIGHBITDEPTH { for (i = 0; i < (4 << bwl); ++i) src_2[i * ref_stride - 1] = dst_2[i * dst_stride - 1]; } vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, src_2, ref_stride, dst_2, dst_stride, 1 << bhl, 0, plane); } } // Mapping of interintra to intra mode for use in the intra component static const int interintra_to_intra_mode[INTERINTRA_MODES] = { DC_PRED, V_PRED, H_PRED, D45_PRED, D135_PRED, D117_PRED, D153_PRED, D207_PRED, D63_PRED, TM_PRED }; void vp10_build_intra_predictors_for_interintra( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, uint8_t *dst, int dst_stride) { build_intra_predictors_for_interintra( xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, dst, dst_stride, interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode], bsize, plane); } void vp10_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, uint8_t *inter_pred, int inter_stride, uint8_t *intra_pred, int intra_stride) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { combine_interintra_highbd(xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH combine_interintra(xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride); } void vp10_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, int ystride, BLOCK_SIZE bsize) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra( xd, bsize, 0, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, 0, ypred, ystride, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra( xd, bsize, 0, intrapredictor, MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor, MAX_SB_SIZE); } } void vp10_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred, int ustride, int plane, BLOCK_SIZE bsize) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra( xd, bsize, plane, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, plane, upred, ustride, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra( xd, bsize, plane, uintrapredictor, MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor, MAX_SB_SIZE); } } void vp10_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BLOCK_SIZE bsize) { vp10_build_interintra_predictors_sbc(xd, upred, ustride, 1, bsize); vp10_build_interintra_predictors_sbc(xd, vpred, vstride, 2, bsize); } void vp10_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BLOCK_SIZE bsize) { vp10_build_interintra_predictors_sby(xd, ypred, ystride, bsize); vp10_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, bsize); } // Builds the inter-predictor for the single ref case // for use in the encoder to search the wedges efficiently. static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, int block, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, int ref, uint8_t *const ext_dst, int ext_dst_stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MODE_INFO *mi = xd->mi[0]; const INTERP_FILTER interp_filter = mi->mbmi.interp_filter; const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #if CONFIG_VP9_HIGHBITDEPTH uint8_t *const dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst) : ext_dst) + ext_dst_stride * y + x; #else uint8_t *const dst = ext_dst + ext_dst_stride * y + x; #endif const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = vp10_is_scaled(sf); if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); vp10_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x, subpel_y, sf, w, h, 0, interp_filter, xs, ys, xd); } void vp10_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]) { const int plane_from = 0; const int plane_to = 2; int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { int x, y; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors_single_buf(xd, plane, y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } else { build_inter_predictors_single_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } } } static void build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, int plane, int block, int bw, int bh, int x, int y, int w, int h, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX int mi_x, int mi_y, uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MODE_INFO *mi = xd->mi[0]; const int is_compound = has_second_ref(&mi->mbmi); int ref; (void) block; (void) bw; (void) bh; (void) mi_x; (void) mi_y; for (ref = 0; ref < 1 + is_compound; ++ref) { struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; if (ref && is_interinter_wedge_used(mi->mbmi.sb_type) && mi->mbmi.use_wedge_interinter) { #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_dst_[2 * MAX_SB_SQUARE]); uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? CONVERT_TO_BYTEPTR(tmp_dst_) : tmp_dst_; #else DECLARE_ALIGNED(16, uint8_t, tmp_dst[MAX_SB_SQUARE]); #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int k; for (k = 0; k < h; ++k) memcpy(tmp_dst_ + 2 * MAX_SB_SIZE * k, ext_dst1 + ext_dst_stride1 * 2 * k, w * 2); } else { int k; for (k = 0; k < h; ++k) memcpy(tmp_dst_ + MAX_SB_SIZE * k, ext_dst1 + ext_dst_stride1 * k, w); } #else { int k; for (k = 0; k < h; ++k) memcpy(tmp_dst + MAX_SB_SIZE * k, ext_dst1 + ext_dst_stride1 * k, w); } #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_SUPERTX #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { build_masked_compound_extend_highbd( dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE, plane, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_y, wedge_offset_x, h, w); } else { build_masked_compound_extend( dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE, plane, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_y, wedge_offset_x, h, w); } #else build_masked_compound_extend(dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE, plane, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_y, wedge_offset_x, h, w); #endif // CONFIG_VP9_HIGHBITDEPTH #else // CONFIG_SUPERTX #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd(dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w); else #endif // CONFIG_VP9_HIGHBITDEPTH build_masked_compound(dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w); #endif // CONFIG_SUPERTX } else { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int k; for (k = 0; k < h; ++k) memcpy(CONVERT_TO_SHORTPTR(dst + dst_buf->stride * k), ext_dst0 + ext_dst_stride0 * 2 * k, w * 2); } else { int k; for (k = 0; k < h; ++k) memcpy(dst + dst_buf->stride * k, ext_dst0 + ext_dst_stride0 * k, w); } #else { int k; for (k = 0; k < h; ++k) memcpy(dst + dst_buf->stride * k, ext_dst0 + ext_dst_stride0 * k, w); } #endif // CONFIG_VP9_HIGHBITDEPTH } } } void vp10_build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]) { const int plane_from = 0; const int plane_to = 2; int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { int i = 0, x, y; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_wedge_inter_predictor_from_buf(xd, plane, i++, bw, bh, 4 * x, 4 * y, 4, 4, #if CONFIG_SUPERTX 0, 0, #endif mi_x, mi_y, ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } else { build_wedge_inter_predictor_from_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif mi_x, mi_y, ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } } } #endif // CONFIG_EXT_INTER