/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vpx_scale_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_config.h" #include "aom/vpx_integer.h" #include "aom_dsp/blend.h" #include "av1/common/blockd.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #if CONFIG_OBMC #include "av1/common/onyxc_int.h" #endif // CONFIG_OBMC #if CONFIG_GLOBAL_MOTION #include "av1/common/warped_motion.h" #endif // CONFIG_GLOBAL_MOTION #if CONFIG_EXT_INTER #define NSMOOTHERS 1 static int get_masked_weight(int m, int smoothness) { #define SMOOTHER_LEN 32 static const uint8_t smoothfn[NSMOOTHERS][2 * SMOOTHER_LEN + 1] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 7, 13, 21, 32, 43, 51, 57, 60, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, } }; if (m < -SMOOTHER_LEN) return 0; else if (m > SMOOTHER_LEN) return (1 << WEDGE_WEIGHT_BITS); else return smoothfn[smoothness][m + SMOOTHER_LEN]; } // [smoother][negative][direction] DECLARE_ALIGNED( 16, static uint8_t, wedge_mask_obl[NSMOOTHERS][2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); DECLARE_ALIGNED(16, static uint8_t, wedge_signflip_lookup[BLOCK_SIZES][MAX_WEDGE_TYPES]); // 3 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. DECLARE_ALIGNED(16, static uint8_t, wedge_mask_buf[2 * MAX_WEDGE_TYPES * 3 * MAX_WEDGE_SQUARE]); static wedge_masks_type wedge_masks[BLOCK_SIZES][2]; // Some unused wedge codebooks left temporarily to facilitate experiments. // To be removed when setteld. static wedge_code_type wedge_codebook_8_hgtw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, }; static wedge_code_type wedge_codebook_8_hltw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static wedge_code_type wedge_codebook_8_heqw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, }; #if !USE_LARGE_WEDGE_CODEBOOK static const wedge_code_type wedge_codebook_16_hgtw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_hltw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_heqw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; const wedge_params_type wedge_params_lookup[BLOCK_SIZES] = { { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[3], 0, wedge_masks[3] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[4], 0, wedge_masks[4] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[5], 0, wedge_masks[5] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[6], 0, wedge_masks[6] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[7], 0, wedge_masks[7] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[8], 0, wedge_masks[8] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[9], 0, wedge_masks[9] }, { 0, wedge_codebook_8_hgtw, wedge_signflip_lookup[10], 0, wedge_masks[10] }, { 0, wedge_codebook_8_hltw, wedge_signflip_lookup[11], 0, wedge_masks[11] }, { 0, wedge_codebook_8_heqw, wedge_signflip_lookup[12], 0, wedge_masks[12] }, #if CONFIG_EXT_PARTITION { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #endif // CONFIG_EXT_PARTITION }; #else static const wedge_code_type wedge_codebook_32_hgtw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; static const wedge_code_type wedge_codebook_32_hltw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; static const wedge_code_type wedge_codebook_32_heqw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; const wedge_params_type wedge_params_lookup[BLOCK_SIZES] = { { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 5, wedge_codebook_32_heqw, wedge_signflip_lookup[3], 0, wedge_masks[3] }, { 5, wedge_codebook_32_hgtw, wedge_signflip_lookup[4], 0, wedge_masks[4] }, { 5, wedge_codebook_32_hltw, wedge_signflip_lookup[5], 0, wedge_masks[5] }, { 5, wedge_codebook_32_heqw, wedge_signflip_lookup[6], 0, wedge_masks[6] }, { 5, wedge_codebook_32_hgtw, wedge_signflip_lookup[7], 0, wedge_masks[7] }, { 5, wedge_codebook_32_hltw, wedge_signflip_lookup[8], 0, wedge_masks[8] }, { 5, wedge_codebook_32_heqw, wedge_signflip_lookup[9], 0, wedge_masks[9] }, { 0, wedge_codebook_8_hgtw, wedge_signflip_lookup[10], 0, wedge_masks[10] }, { 0, wedge_codebook_8_hltw, wedge_signflip_lookup[11], 0, wedge_masks[11] }, { 0, wedge_codebook_8_heqw, wedge_signflip_lookup[12], 0, wedge_masks[12] }, #if CONFIG_EXT_PARTITION { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #endif // CONFIG_EXT_PARTITION }; #endif // USE_LARGE_WEDGE_CODEBOOK static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, BLOCK_SIZE sb_type) { const uint8_t *master; const int bh = 4 << b_height_log2_lookup[sb_type]; const int bw = 4 << b_width_log2_lookup[sb_type]; const wedge_code_type *a = wedge_params_lookup[sb_type].codebook + wedge_index; const int smoother = wedge_params_lookup[sb_type].smoother; int woff, hoff; const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index]; assert(wedge_index >= 0 && wedge_index < (1 << get_wedge_bits_lookup(sb_type))); woff = (a->x_offset * bw) >> 3; hoff = (a->y_offset * bh) >> 3; master = wedge_mask_obl[smoother][neg ^ wsignflip][a->direction] + MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + MASK_MASTER_SIZE / 2 - woff; return master; } const uint8_t *vp10_get_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int offset_x, int offset_y) { const uint8_t *mask = get_wedge_mask_inplace(wedge_index, wedge_sign, sb_type); if (mask) mask -= (offset_x + offset_y * MASK_MASTER_STRIDE); return mask; } static void init_wedge_master_masks() { int i, j, s; const int w = MASK_MASTER_SIZE; const int h = MASK_MASTER_SIZE; const int stride = MASK_MASTER_STRIDE; const int a[2] = { 2, 1 }; const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]); for (s = 0; s < NSMOOTHERS; s++) { for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { int x = (2 * j + 1 - w); int y = (2 * i + 1 - h); int m = (int)rint((a[0] * x + a[1] * y) / asqrt); wedge_mask_obl[s][1][WEDGE_OBLIQUE63][i * stride + j] = wedge_mask_obl[s][1][WEDGE_OBLIQUE27][j * stride + i] = get_masked_weight(m, s); wedge_mask_obl[s][1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[s][1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m, s); wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j] = wedge_mask_obl[s][0][WEDGE_OBLIQUE27][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m, s); wedge_mask_obl[s][0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[s][0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = get_masked_weight(m, s); wedge_mask_obl[s][1][WEDGE_VERTICAL][i * stride + j] = wedge_mask_obl[s][1][WEDGE_HORIZONTAL][j * stride + i] = get_masked_weight(x, s); wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j] = wedge_mask_obl[s][0][WEDGE_HORIZONTAL][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(x, s); } } } // If the signs for the wedges for various blocksizes are // inconsistent flip the sign flag. Do it only once for every // wedge codebook. static void init_wedge_signs() { BLOCK_SIZE sb_type; memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup)); for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES; ++sb_type) { const int bw = 4 * num_4x4_blocks_wide_lookup[sb_type]; const int bh = 4 * num_4x4_blocks_high_lookup[sb_type]; const wedge_params_type wedge_params = wedge_params_lookup[sb_type]; const int wbits = wedge_params.bits; const int wtypes = 1 << wbits; int i, w; if (wbits == 0) continue; for (w = 0; w < wtypes; ++w) { const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type); int sum = 0; for (i = 0; i < bw; ++i) sum += mask[i]; for (i = 0; i < bh; ++i) sum += mask[i * MASK_MASTER_STRIDE]; sum = (sum + (bw + bh) / 2) / (bw + bh); wedge_params.signflip[w] = (sum < 32); } } } static void init_wedge_masks() { uint8_t *dst = wedge_mask_buf; BLOCK_SIZE bsize; memset(wedge_masks, 0, sizeof(wedge_masks)); for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES; ++bsize) { const uint8_t *mask; const int bw = 4 * num_4x4_blocks_wide_lookup[bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[bsize]; const wedge_params_type *wedge_params = &wedge_params_lookup[bsize]; const int wbits = wedge_params->bits; const int wtypes = 1 << wbits; int w; if (wbits == 0) continue; for (w = 0; w < wtypes; ++w) { mask = get_wedge_mask_inplace(w, 0, bsize); vpx_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[0][w] = dst; dst += bw * bh; mask = get_wedge_mask_inplace(w, 1, bsize); vpx_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[1][w] = dst; dst += bw * bh; } assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); } } // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 void vp10_init_wedge_masks() { init_wedge_master_masks(); init_wedge_signs(); init_wedge_masks(); } #if CONFIG_SUPERTX static void build_masked_compound_wedge_extend( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y, int h, int w) { const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = vp10_get_soft_mask(wedge_index, wedge_sign, sb_type, wedge_offset_x, wedge_offset_y); vpx_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, MASK_MASTER_STRIDE, h, w, subh, subw); } #if CONFIG_VP9_HIGHBITDEPTH static void build_masked_compound_wedge_extend_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y, int h, int w, int bd) { const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = vp10_get_soft_mask(wedge_index, wedge_sign, sb_type, wedge_offset_x, wedge_offset_y); vpx_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, MASK_MASTER_STRIDE, h, w, subh, subw, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // CONFIG_SUPERTX static void build_masked_compound_wedge(uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int h, int w) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = vp10_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); vpx_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, 4 * num_4x4_blocks_wide_lookup[sb_type], h, w, subh, subw); } #if CONFIG_VP9_HIGHBITDEPTH static void build_masked_compound_wedge_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int h, int w, int bd) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = vp10_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); vpx_highbd_blend_a64_mask( dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, 4 * num_4x4_blocks_wide_lookup[sb_type], h, w, subh, subw, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH void vp10_make_masked_inter_predictor(const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, #if CONFIG_DUAL_FILTER const INTERP_FILTER *interp_filter, #else const INTERP_FILTER interp_filter, #endif int xs, int ys, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX const MACROBLOCKD *xd) { const MODE_INFO *mi = xd->mi[0]; // The prediction filter types used here should be those for // the second reference block. #if CONFIG_DUAL_FILTER INTERP_FILTER tmp_ipf[4] = { interp_filter[2], interp_filter[3], interp_filter[2], interp_filter[3], }; #else INTERP_FILTER tmp_ipf = interp_filter; #endif // CONFIG_DUAL_FILTER #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_dst_[2 * MAX_SB_SQUARE]); uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? CONVERT_TO_BYTEPTR(tmp_dst_) : tmp_dst_; vp10_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, subpel_y, sf, w, h, 0, tmp_ipf, xs, ys, xd); #if CONFIG_SUPERTX if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_wedge_extend_highbd( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd); else build_masked_compound_wedge_extend( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w); #else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_wedge_highbd( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w, xd->bd); else build_masked_compound_wedge(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w); #endif // CONFIG_SUPERTX #else // CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_dst[MAX_SB_SQUARE]); vp10_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, subpel_y, sf, w, h, 0, tmp_ipf, xs, ys, xd); #if CONFIG_SUPERTX build_masked_compound_wedge_extend( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w); #else build_masked_compound_wedge(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.interinter_wedge_index, mi->mbmi.interinter_wedge_sign, mi->mbmi.sb_type, h, w); #endif // CONFIG_SUPERTX #endif // CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_EXT_INTER #if CONFIG_VP9_HIGHBITDEPTH void vp10_highbd_build_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, #if CONFIG_DUAL_FILTER const INTERP_FILTER *interp_filter, #else const INTERP_FILTER interp_filter, #endif enum mv_precision precision, int x, int y, int bd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH void vp10_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, #if CONFIG_DUAL_FILTER const INTERP_FILTER *interp_filter, #else const INTERP_FILTER interp_filter, #endif enum mv_precision precision, int x, int y) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4); } void build_inter_predictors(MACROBLOCKD *xd, int plane, #if CONFIG_OBMC int mi_col_offset, int mi_row_offset, #endif // CONFIG_OBMC int block, int bw, int bh, int x, int y, int w, int h, #if CONFIG_SUPERTX && CONFIG_EXT_INTER int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_OBMC const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset]; #else const MODE_INFO *mi = xd->mi[0]; #endif // CONFIG_OBMC const int is_compound = has_second_ref(&mi->mbmi); int ref; #if CONFIG_GLOBAL_MOTION Global_Motion_Params *gm[2]; int is_global[2]; for (ref = 0; ref < 1 + is_compound; ++ref) { gm[ref] = &xd->global_motion[mi->mbmi.ref_frame[ref]]; is_global[ref] = (get_y_mode(mi, block) == ZEROMV && get_gmtype(gm[ref]) > GLOBAL_ZERO); } // TODO(sarahparker) remove these once gm works with all experiments (void)gm; (void)is_global; #endif // CONFIG_GLOBAL_MOTION // TODO(sarahparker) enable the use of DUAL_FILTER in warped motion functions // in order to allow GLOBAL_MOTION and DUAL_FILTER to work together #if CONFIG_DUAL_FILTER if (mi->mbmi.sb_type < BLOCK_8X8 && plane > 0) { // block size in log2 const int b4_wl = b_width_log2_lookup[mi->mbmi.sb_type]; const int b4_hl = b_height_log2_lookup[mi->mbmi.sb_type]; const int b8_sl = b_width_log2_lookup[BLOCK_8X8]; // block size const int b4_w = 1 << b4_wl; const int b4_h = 1 << b4_hl; const int b8_s = 1 << b8_sl; int idx, idy; const int x_base = x; const int y_base = y; // processing unit size const int x_step = w >> (b8_sl - b4_wl); const int y_step = h >> (b8_sl - b4_hl); for (idy = 0; idy < b8_s; idy += b4_h) { for (idx = 0; idx < b8_s; idx += b4_w) { const int chr_idx = (idy * 2) + idx; for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *dst = dst_buf->buf; const MV mv = mi->bmi[chr_idx].as_mv[ref].as_mv; const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = vp10_is_scaled(sf); x = x_base + idx * x_step; y = y_base + idy * y_step; dst += dst_buf->stride * y + x; if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + y * pre_buf->stride + x; scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); #if CONFIG_EXT_INTER if (ref && is_interinter_wedge_used(mi->mbmi.sb_type) && mi->mbmi.use_wedge_interinter) vp10_make_masked_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, mi->mbmi.interp_filter, xs, ys, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX xd); else #endif // CONFIG_EXT_INTER vp10_make_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, x_step, y_step, ref, mi->mbmi.interp_filter, xs, ys, xd); } } } return; } #endif for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = vp10_is_scaled(sf); if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); #if CONFIG_EXT_INTER if (ref && is_interinter_wedge_used(mi->mbmi.sb_type) && mi->mbmi.use_wedge_interinter) vp10_make_masked_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, mi->mbmi.interp_filter, xs, ys, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX xd); else #else // CONFIG_EXT_INTER #if CONFIG_GLOBAL_MOTION if (is_global[ref]) vp10_warp_plane(&(gm[ref]->motion_params), #if CONFIG_VP9_HIGHBITDEPTH xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, #endif // CONFIG_VP9_HIGHBITDEPTH pre_buf->buf0, pre_buf->width, pre_buf->height, pre_buf->stride, dst, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, w, h, dst_buf->stride, pd->subsampling_x, pd->subsampling_y, xs, ys); else #endif // CONFIG_GLOBAL_MOTION #endif // CONFIG_EXT_INTER vp10_make_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, mi->mbmi.interp_filter, xs, ys, xd); } } void vp10_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir, int ic, int mi_row, int mi_col) { struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi[0]; const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2]; int ref; const int is_compound = has_second_ref(&mi->mbmi); for (ref = 0; ref < 1 + is_compound; ++ref) { const uint8_t *pre = &pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_highbd_build_inter_predictor( pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, mi->mbmi.interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd->bd); } else { vp10_build_inter_predictor( pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, mi->mbmi.interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); } #else vp10_build_inter_predictor( pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, mi->mbmi.interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); #endif // CONFIG_VP9_HIGHBITDEPTH } } static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = 4 * num_4x4_blocks_wide_lookup[bsize] >> pd->subsampling_x; const int bh = 4 * num_4x4_blocks_high_lookup[bsize] >> pd->subsampling_y; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int pw = 8 >> (have_vsplit | pd->subsampling_x); const int ph = 8 >> (have_hsplit | pd->subsampling_y); int x, y; assert(bp != PARTITION_NONE && bp < PARTITION_TYPES); assert(bsize == BLOCK_8X8); assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } else { build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } } void vp10_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int plane) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) { if (plane == 0) { vp10_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, bsize); } else { vp10_build_interintra_predictors_sbc(xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, plane, bsize); } } #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors_sbuv( xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors( xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride }; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &planes[i]; setup_pred_plane(&pd->dst, buffers[i], widths[i], heights[i], strides[i], mi_row, mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } } void vp10_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf) { if (src != NULL) { int i; uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride }; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; setup_pred_plane(&pd->pre[idx], buffers[i], widths[i], heights[i], strides[i], mi_row, mi_col, sf, pd->subsampling_x, pd->subsampling_y); } } } #if CONFIG_SUPERTX static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1 }; static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36, 28, 19, 11, 3, 0, 0, 0, 0 }; static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 60, 54, 46, 36, 28, 18, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t *get_supertx_mask(int length, int plane) { switch (length) { case 8: return plane ? mask_8_uv : mask_8; case 16: return plane ? mask_16_uv : mask_16; case 32: return plane ? mask_32_uv : mask_32; default: assert(0); } return NULL; } void vp10_build_masked_inter_predictor_complex( MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre, int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, int plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int ssx = pd->subsampling_x; const int ssy = pd->subsampling_y; const int top_w = (4 << b_width_log2_lookup[top_bsize]) >> ssx; const int top_h = (4 << b_height_log2_lookup[top_bsize]) >> ssy; const int w = (4 << b_width_log2_lookup[bsize]) >> ssx; const int h = (4 << b_height_log2_lookup[bsize]) >> ssy; const int w_offset = ((mi_col - mi_col_ori) * MI_SIZE) >> ssx; const int h_offset = ((mi_row - mi_row_ori) * MI_SIZE) >> ssy; int w_remain, h_remain; #if CONFIG_VP9_HIGHBITDEPTH const int is_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_VP9_HIGHBITDEPTH assert(bsize <= BLOCK_32X32); assert(IMPLIES(plane == 0, ssx == 0)); assert(IMPLIES(plane == 0, ssy == 0)); switch (partition) { case PARTITION_HORZ: { const uint8_t *const mask = get_supertx_mask(h, ssy); w_remain = top_w; h_remain = top_h - h_offset - h; dst += h_offset * dst_stride; pre += h_offset * pre_stride; #if CONFIG_VP9_HIGHBITDEPTH if (is_hdb) vpx_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, h, top_w, xd->bd); else #endif // CONFIG_VP9_HIGHBITDEPTH vpx_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, h, top_w); dst += h * dst_stride; pre += h * pre_stride; break; } case PARTITION_VERT: { const uint8_t *const mask = get_supertx_mask(w, ssx); w_remain = top_w - w_offset - w; h_remain = top_h; dst += w_offset; pre += w_offset; #if CONFIG_VP9_HIGHBITDEPTH if (is_hdb) vpx_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, top_h, w, xd->bd); else #endif // CONFIG_VP9_HIGHBITDEPTH vpx_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, top_h, w); dst += w; pre += w; break; } default: { assert(0); return; } } if (w_remain == 0 || h_remain == 0) { return; } #if CONFIG_VP9_HIGHBITDEPTH if (is_hdb) { dst = (uint8_t *)CONVERT_TO_SHORTPTR(dst); pre = (const uint8_t *)CONVERT_TO_SHORTPTR(pre); dst_stride *= 2; pre_stride *= 2; w_remain *= 2; } #endif // CONFIG_VP9_HIGHBITDEPTH do { memcpy(dst, pre, w_remain * sizeof(uint8_t)); dst += dst_stride; pre += pre_stride; } while (--h_remain); } void vp10_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize, int block) { // Prediction function used in supertx: // Use the mv at current block (which is less than 8x8) // to get prediction of a block located at (mi_row, mi_col) at size of bsize // bsize can be larger than 8x8. // block (0-3): the sub8x8 location of current block int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_EXT_INTER const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; #endif // CONFIG_EXT_INTER // For sub8x8 uv: // Skip uv prediction in supertx except the first block (block = 0) int max_plane = block ? 1 : MAX_MB_PLANE; for (plane = 0; plane < max_plane; plane++) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC block, bw, bh, 0, 0, bw, bh, #if CONFIG_EXT_INTER wedge_offset_x, wedge_offset_y, #endif // CONFIG_EXT_INTER mi_x, mi_y); } #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors( xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sb_extend(MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_EXT_INTER const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; #endif // CONFIG_EXT_INTER for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { int x, y; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, #if CONFIG_EXT_INTER wedge_offset_x, wedge_offset_y, #endif // CONFIG_EXT_INTER mi_x, mi_y); } else { build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC 0, bw, bh, 0, 0, bw, bh, #if CONFIG_EXT_INTER wedge_offset_x, wedge_offset_y, #endif // CONFIG_EXT_INTER mi_x, mi_y); } } } #endif // CONFIG_SUPERTX #if CONFIG_OBMC // obmc_mask_N[overlap_position] static const uint8_t obmc_mask_1[1] = { 55 }; static const uint8_t obmc_mask_2[2] = { 45, 62 }; static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 }; static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 63, 64 }; static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 63, 64, 64, 64 }; static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 60, 61, 62, 62, 63, 63, 64, 64, 64, 64, 64 }; #if CONFIG_EXT_PARTITION static const uint8_t obmc_mask_64[64] = { 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; #endif // CONFIG_EXT_PARTITION const uint8_t *vp10_get_obmc_mask(int length) { switch (length) { case 1: return obmc_mask_1; case 2: return obmc_mask_2; case 4: return obmc_mask_4; case 8: return obmc_mask_8; case 16: return obmc_mask_16; case 32: return obmc_mask_32; #if CONFIG_EXT_PARTITION case 64: return obmc_mask_64; #endif // CONFIG_EXT_PARTITION default: assert(0); return NULL; } } // This function combines motion compensated predictions that is generated by // top/left neighboring blocks' inter predictors with the regular inter // prediction. We assume the original prediction (bmc) is stored in // xd->plane[].dst.buf void vp10_build_obmc_inter_prediction(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]) { const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int plane, i; #if CONFIG_VP9_HIGHBITDEPTH const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_VP9_HIGHBITDEPTH // handle above row if (xd->up_available) { const int overlap = num_4x4_blocks_high_lookup[bsize] * 2; const int miw = VPXMIN(xd->n8_w, cm->mi_cols - mi_col); const int mi_row_offset = -1; assert(miw > 0); i = 0; do { // for each mi in the above row const int mi_col_offset = i; const MB_MODE_INFO *const above_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; const int mi_step = VPXMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]); if (is_neighbor_overlappable(above_mbmi)) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x; const int bh = overlap >> pd->subsampling_y; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[(i * MI_SIZE) >> pd->subsampling_x]; const int tmp_stride = above_stride[plane]; const uint8_t *const tmp = &above[plane][(i * MI_SIZE) >> pd->subsampling_x]; const uint8_t *const mask = vp10_get_obmc_mask(bh); #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) vpx_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_VP9_HIGHBITDEPTH vpx_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } i += mi_step; } while (i < miw); } // handle left column if (xd->left_available) { const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2; const int mih = VPXMIN(xd->n8_h, cm->mi_rows - mi_row); const int mi_col_offset = -1; assert(mih > 0); i = 0; do { // for each mi in the left column const int mi_row_offset = i; const MB_MODE_INFO *const left_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; const int mi_step = VPXMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]); if (is_neighbor_overlappable(left_mbmi)) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = overlap >> pd->subsampling_x; const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[(i * MI_SIZE * dst_stride) >> pd->subsampling_y]; const int tmp_stride = left_stride[plane]; const uint8_t *const tmp = &left[plane][(i * MI_SIZE * tmp_stride) >> pd->subsampling_y]; const uint8_t *const mask = vp10_get_obmc_mask(bw); #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) vpx_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_VP9_HIGHBITDEPTH vpx_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } i += mi_step; } while (i < mih); } } #if CONFIG_EXT_INTER void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { if (is_interintra_pred(mbmi)) { mbmi->ref_frame[1] = NONE; } else if (has_second_ref(mbmi) && is_interinter_wedge_used(mbmi->sb_type) && mbmi->use_wedge_interinter) { mbmi->use_wedge_interinter = 0; mbmi->ref_frame[1] = NONE; } return; } #endif // CONFIG_EXT_INTER void vp10_build_prediction_by_above_preds(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; if (mi_row <= tile->mi_row_start) return; for (i = 0; i < VPXMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { int mi_row_offset = -1; int mi_col_offset = i; int mi_x, mi_y, bw, bh; MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *above_mbmi = &above_mi->mbmi; #if CONFIG_EXT_INTER MB_MODE_INFO backup_mbmi; #endif // CONFIG_EXT_INTER mi_step = VPXMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]); if (!is_neighbor_overlappable(above_mbmi)) continue; #if CONFIG_EXT_INTER backup_mbmi = *above_mbmi; modify_neighbor_predictor_for_obmc(above_mbmi); #endif // CONFIG_EXT_INTER for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], 0, i, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) { MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!vp10_is_valid_scale(&ref_buf->sf))) vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); vp10_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i, &ref_buf->sf); } xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); mi_x = (mi_col + i) << MI_SIZE_LOG2; mi_y = mi_row << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = (mi_step * 8) >> pd->subsampling_x; bh = VPXMAX((num_4x4_blocks_high_lookup[bsize] * 2) >> pd->subsampling_y, 4); if (above_mbmi->sb_type < BLOCK_8X8) { const PARTITION_TYPE bp = BLOCK_8X8 - above_mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int pw = 8 >> (have_vsplit | pd->subsampling_x); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y == 0 && !pd->subsampling_y) continue; build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh, 4 * x, 0, pw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } else { build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } #if CONFIG_EXT_INTER *above_mbmi = backup_mbmi; #endif // CONFIG_EXT_INTER } xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); } void vp10_build_prediction_by_left_preds(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int i, j, mi_step, ref; if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) return; for (i = 0; i < VPXMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { int mi_row_offset = i; int mi_col_offset = -1; int mi_x, mi_y, bw, bh; MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *left_mbmi = &left_mi->mbmi; #if CONFIG_EXT_INTER MB_MODE_INFO backup_mbmi; #endif // CONFIG_EXT_INTER mi_step = VPXMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]); if (!is_neighbor_overlappable(left_mbmi)) continue; #if CONFIG_EXT_INTER backup_mbmi = *left_mbmi; modify_neighbor_predictor_for_obmc(left_mbmi); #endif // CONFIG_EXT_INTER for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], i, 0, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) { MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!vp10_is_valid_scale(&ref_buf->sf))) vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); vp10_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col, &ref_buf->sf); } xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); mi_x = mi_col << MI_SIZE_LOG2; mi_y = (mi_row + i) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = VPXMAX((num_4x4_blocks_wide_lookup[bsize] * 2) >> pd->subsampling_x, 4); bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; if (left_mbmi->sb_type < BLOCK_8X8) { const PARTITION_TYPE bp = BLOCK_8X8 - left_mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int ph = 8 >> (have_hsplit | pd->subsampling_y); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x == 0 && !pd->subsampling_x) continue; build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh, 0, 4 * y, bw, ph, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } else { build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX && CONFIG_EXT_INTER 0, 0, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER mi_x, mi_y); } } #if CONFIG_EXT_INTER *left_mbmi = backup_mbmi; #endif // CONFIG_EXT_INTER } xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); } #endif // CONFIG_OBMC #if CONFIG_EXT_INTER #if CONFIG_EXT_PARTITION static const int ii_weights1d[MAX_SB_SIZE] = { 102, 100, 97, 95, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 73, 71, 69, 68, 67, 65, 64, 62, 61, 60, 59, 58, 57, 55, 54, 53, 52, 52, 51, 50, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 36, 35, 35, 35, 34, 34, 34, 33, 33, 33, 33, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, }; static int ii_size_scales[BLOCK_SIZES] = { 32, 16, 16, 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1 }; #else static const int ii_weights1d[MAX_SB_SIZE] = { 102, 100, 97, 95, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 73, 71, 69, 68, 67, 65, 64, 62, 61, 60, 59, 58, 57, 55, 54, 53, 52, 52, 51, 50, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 36, 35, 35, 35, 34, 34, }; static int ii_size_scales[BLOCK_SIZES] = { 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1 }; #endif // CONFIG_EXT_PARTITION static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred, int compstride, const uint8_t *interpred, int interstride, const uint8_t *intrapred, int intrastride) { const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = vp10_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; vpx_blend_a64_mask( comppred, compstride, intrapred, intrastride, interpred, interstride, mask, 4 * num_4x4_blocks_wide_lookup[bsize], bh, bw, subh, subw); } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D63_PRED: case II_D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] * 3 + ii_weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D207_PRED: case II_D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[j * size_scale] * 3 + ii_weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_TM_PRED: case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = VPX_BLEND_AVG( intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; } } #if CONFIG_VP9_HIGHBITDEPTH static void combine_interintra_highbd( INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred8, int compstride, const uint8_t *interpred8, int interstride, const uint8_t *intrapred8, int intrastride, int bd) { const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8); const uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8); const uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8); if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = vp10_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; vpx_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, interpred8, interstride, mask, bw, bh, bw, subh, subw, bd); } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D63_PRED: case II_D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] * 3 + ii_weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D207_PRED: case II_D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[j * size_scale] * 3 + ii_weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = VPX_BLEND_A256(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_TM_PRED: case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = VPX_BLEND_AVG( interpred[i * interstride + j], intrapred[i * intrastride + j]); } } break; } } #endif // CONFIG_VP9_HIGHBITDEPTH // Break down rectangular intra prediction for joint spatio-temporal prediction // into two square intra predictions. static void build_intra_predictors_for_interintra(MACROBLOCKD *xd, uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, BLOCK_SIZE bsize, int plane) { BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bwl = b_width_log2_lookup[plane_bsize]; const int bhl = b_height_log2_lookup[plane_bsize]; const int pxbw = 4 << bwl; const int pxbh = 4 << bhl; TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; if (bwl == bhl) { vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); } else if (bwl < bhl) { uint8_t *src_2 = ref + pxbw * ref_stride; uint8_t *dst_2 = dst + pxbw * dst_stride; vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *src_216 = CONVERT_TO_SHORTPTR(src_2); uint16_t *dst_216 = CONVERT_TO_SHORTPTR(dst_2); memcpy(src_216 - ref_stride, dst_216 - dst_stride, sizeof(*src_216) * pxbw); } else #endif // CONFIG_VP9_HIGHBITDEPTH { memcpy(src_2 - ref_stride, dst_2 - dst_stride, sizeof(*src_2) * pxbw); } vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, src_2, ref_stride, dst_2, dst_stride, 0, 1 << bwl, plane); } else { // bwl > bhl int i; uint8_t *src_2 = ref + pxbh; uint8_t *dst_2 = dst + pxbh; vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *src_216 = CONVERT_TO_SHORTPTR(src_2); uint16_t *dst_216 = CONVERT_TO_SHORTPTR(dst_2); for (i = 0; i < pxbh; ++i) src_216[i * ref_stride - 1] = dst_216[i * dst_stride - 1]; } else #endif // CONFIG_VP9_HIGHBITDEPTH { for (i = 0; i < pxbh; ++i) src_2[i * ref_stride - 1] = dst_2[i * dst_stride - 1]; } vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, src_2, ref_stride, dst_2, dst_stride, 1 << bhl, 0, plane); } } // Mapping of interintra to intra mode for use in the intra component static const int interintra_to_intra_mode[INTERINTRA_MODES] = { DC_PRED, V_PRED, H_PRED, D45_PRED, D135_PRED, D117_PRED, D153_PRED, D207_PRED, D63_PRED, TM_PRED }; void vp10_build_intra_predictors_for_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, uint8_t *dst, int dst_stride) { build_intra_predictors_for_interintra( xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, dst, dst_stride, interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode], bsize, plane); } void vp10_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { combine_interintra_highbd( xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH combine_interintra(xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride); } void vp10_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, int ystride, BLOCK_SIZE bsize) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra( xd, bsize, 0, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, 0, ypred, ystride, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra(xd, bsize, 0, intrapredictor, MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor, MAX_SB_SIZE); } } void vp10_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred, int ustride, int plane, BLOCK_SIZE bsize) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra( xd, bsize, plane, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, plane, upred, ustride, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]); vp10_build_intra_predictors_for_interintra(xd, bsize, plane, uintrapredictor, MAX_SB_SIZE); vp10_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor, MAX_SB_SIZE); } } void vp10_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BLOCK_SIZE bsize) { vp10_build_interintra_predictors_sbc(xd, upred, ustride, 1, bsize); vp10_build_interintra_predictors_sbc(xd, vpred, vstride, 2, bsize); } void vp10_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BLOCK_SIZE bsize) { vp10_build_interintra_predictors_sby(xd, ypred, ystride, bsize); vp10_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, bsize); } // Builds the inter-predictor for the single ref case // for use in the encoder to search the wedges efficiently. static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, int block, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, int ref, uint8_t *const ext_dst, int ext_dst_stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MODE_INFO *mi = xd->mi[0]; const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #if CONFIG_VP9_HIGHBITDEPTH uint8_t *const dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst) : ext_dst) + ext_dst_stride * y + x; #else uint8_t *const dst = ext_dst + ext_dst_stride * y + x; #endif const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = vp10_is_scaled(sf); if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); vp10_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x, subpel_y, sf, w, h, 0, mi->mbmi.interp_filter, xs, ys, xd); } void vp10_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { int x, y; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors_single_buf( xd, plane, y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } else { build_inter_predictors_single_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } } } static void build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int is_compound = has_second_ref(mbmi); MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; if (is_compound && is_interinter_wedge_used(mbmi->sb_type) && mbmi->use_wedge_interinter) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_wedge_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign, mbmi->sb_type, h, w, xd->bd); else #endif // CONFIG_VP9_HIGHBITDEPTH build_masked_compound_wedge( dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign, mbmi->sb_type, h, w); } else { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) vpx_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, xd->bd); else #endif // CONFIG_VP9_HIGHBITDEPTH vpx_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h); } } void vp10_build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]) { int plane; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { int x, y; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_wedge_inter_predictor_from_buf( xd, plane, 4 * x, 4 * y, 4, 4, ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } else { const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; build_wedge_inter_predictor_from_buf( xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } } } #endif // CONFIG_EXT_INTER