/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_RECONINTER_H_ #define AV1_COMMON_RECONINTER_H_ #include "av1/common/filter.h" #include "av1/common/onyxc_int.h" #include "av1/common/convolve.h" #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #include "av1/common/warped_motion.h" #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #include "aom/aom_integer.h" #ifdef __cplusplus extern "C" { #endif static INLINE void inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif int xs, int ys) { #if CONFIG_DUAL_FILTER InterpFilterParams interp_filter_params_x = av1_get_interp_filter_params(interp_filter[1 + 2 * conv_params->ref]); InterpFilterParams interp_filter_params_y = av1_get_interp_filter_params(interp_filter[0 + 2 * conv_params->ref]); #else InterpFilterParams interp_filter_params = av1_get_interp_filter_params(interp_filter); #endif #if CONFIG_DUAL_FILTER if (interp_filter_params_x.taps == SUBPEL_TAPS && interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2 && conv_params->round == CONVOLVE_OPT_ROUND) { const int16_t *kernel_x = av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x); const int16_t *kernel_y = av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y); #else if (interp_filter_params.taps == SUBPEL_TAPS && w > 2 && h > 2 && conv_params->round == CONVOLVE_OPT_ROUND) { const int16_t *kernel_x = av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x); const int16_t *kernel_y = av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y); #endif sf->predict[subpel_x != 0][subpel_y != 0][conv_params->ref]( src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h); } else { // ref_idx > 0 means this is the second reference frame // first reference frame's prediction result is already in dst // therefore we need to average the first and second results av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter, subpel_x, xs, subpel_y, ys, conv_params); } } #if CONFIG_AOM_HIGHBITDEPTH static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, int ref, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif int xs, int ys, int bd) { #if CONFIG_DUAL_FILTER InterpFilterParams interp_filter_params_x = av1_get_interp_filter_params(interp_filter[1 + 2 * ref]); InterpFilterParams interp_filter_params_y = av1_get_interp_filter_params(interp_filter[0 + 2 * ref]); #else InterpFilterParams interp_filter_params = av1_get_interp_filter_params(interp_filter); #endif #if CONFIG_DUAL_FILTER if (interp_filter_params_x.taps == SUBPEL_TAPS && interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) { const int16_t *kernel_x = av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x); const int16_t *kernel_y = av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y); #else if (interp_filter_params.taps == SUBPEL_TAPS && w > 2 && h > 2) { const int16_t *kernel_x = av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x); const int16_t *kernel_y = av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y); #endif // CONFIG_DUAL_FILTER sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref]( src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, bd); } else { // ref > 0 means this is the second reference frame // first reference frame's prediction result is already in dst // therefore we need to average the first and second results int avg = ref > 0; av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter, subpel_x, xs, subpel_y, ys, avg, bd); } } #endif // CONFIG_AOM_HIGHBITDEPTH #if CONFIG_EXT_INTER // Set to one to use larger codebooks #define USE_LARGE_WEDGE_CODEBOOK 0 #if USE_LARGE_WEDGE_CODEBOOK #define MAX_WEDGE_TYPES (1 << 5) #else #define MAX_WEDGE_TYPES (1 << 4) #endif #define MAX_WEDGE_SIZE_LOG2 5 // 32x32 #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2) #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE) #define WEDGE_WEIGHT_BITS 6 #define WEDGE_NONE -1 // Angles are with respect to horizontal anti-clockwise typedef enum { WEDGE_HORIZONTAL = 0, WEDGE_VERTICAL = 1, WEDGE_OBLIQUE27 = 2, WEDGE_OBLIQUE63 = 3, WEDGE_OBLIQUE117 = 4, WEDGE_OBLIQUE153 = 5, WEDGE_DIRECTIONS } WedgeDirectionType; // 3-tuple: {direction, x_offset, y_offset} typedef struct { WedgeDirectionType direction; int x_offset; int y_offset; } wedge_code_type; typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES]; typedef struct { int bits; const wedge_code_type *codebook; uint8_t *signflip; int smoother; wedge_masks_type *masks; } wedge_params_type; extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES]; static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].bits; } static INLINE int is_interinter_wedge_used(BLOCK_SIZE sb_type) { (void)sb_type; return wedge_params_lookup[sb_type].bits > 0; } static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) { const int wbits = wedge_params_lookup[sb_type].bits; return (wbits > 0) ? wbits + 1 : 0; } static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) { (void)sb_type; return wedge_params_lookup[sb_type].bits > 0; } static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].bits; } #if CONFIG_COMPOUND_SEGMENT void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w); #if CONFIG_AOM_HIGHBITDEPTH void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd); #endif // CONFIG_AOM_HIGHBITDEPTH #endif // CONFIG_COMPOUND_SEGMENT #endif // CONFIG_EXT_INTER void build_inter_predictors(MACROBLOCKD *xd, int plane, #if CONFIG_MOTION_VAR int mi_col_offset, int mi_row_offset, #endif // CONFIG_MOTION_VAR int block, int bw, int bh, int x, int y, int w, int h, #if CONFIG_SUPERTX && CONFIG_EXT_INTER int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER int mi_x, int mi_y); static INLINE void av1_make_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif #if CONFIG_GLOBAL_MOTION int is_global, int p_col, int p_row, int plane, int ref, #endif // CONFIG_GLOBAL_MOTION int xs, int ys, const MACROBLOCKD *xd) { (void)xd; #if CONFIG_GLOBAL_MOTION if (is_global) { const MODE_INFO *mi = xd->mi[0]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct buf_2d *const pre_buf = &pd->pre[ref]; WarpedMotionParams *gm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; av1_warp_plane(gm, #if CONFIG_AOM_HIGHBITDEPTH xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, #endif // CONFIG_AOM_HIGHBITDEPTH pre_buf->buf0, pre_buf->width, pre_buf->height, pre_buf->stride, dst, p_col, p_row, w, h, dst_stride, pd->subsampling_x, pd->subsampling_y, xs, ys, ref); return; } #endif // CONFIG_GLOBAL_MOTION #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, conv_params->ref, interp_filter, xs, ys, xd->bd); return; } #endif // CONFIG_AOM_HIGHBITDEPTH inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, conv_params, interp_filter, xs, ys); } #if CONFIG_EXT_INTER void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif int xs, int ys, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX #if CONFIG_COMPOUND_SEGMENT || CONFIG_GLOBAL_MOTION int plane, #endif // CONFIG_COMPOUND_SEGMENT || CONFIG_GLOBAL_MOTION #if CONFIG_GLOBAL_MOTION int is_global, int p_col, int p_row, int ref, #endif // CONFIG_GLOBAL_MOTION MACROBLOCKD *xd); #endif // CONFIG_EXT_INTER static INLINE int round_mv_comp_q4(int value) { return (value < 0 ? value - 2 : value + 2) / 4; } static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { MV res = { round_mv_comp_q4( mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row + mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row), round_mv_comp_q4( mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col + mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col) }; return res; } static INLINE int round_mv_comp_q2(int value) { return (value < 0 ? value - 1 : value + 1) / 2; } static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) { MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row + mi->bmi[block1].as_mv[idx].as_mv.row), round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col + mi->bmi[block1].as_mv[idx].as_mv.col) }; return res; } // TODO(jkoleszar): yet another mv clamping function :-( static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, int bh, int ss_x, int ss_y) { // If the MV points so far into the UMV border that no visible pixels // are used for reconstruction, the subpel part of the MV can be // discarded and the MV limited to 16 pixels with equivalent results. const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS; const int spel_right = spel_left - SUBPEL_SHIFTS; const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS; const int spel_bottom = spel_top - SUBPEL_SHIFTS; MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)), src_mv->col * (1 << (1 - ss_x)) }; assert(ss_x <= 1); assert(ss_y <= 1); clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); return clamped_mv; } static INLINE MV average_split_mvs(const struct macroblockd_plane *pd, const MODE_INFO *mi, int ref, int block) { const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0); MV res = { 0, 0 }; switch (ss_idx) { case 0: res = mi->bmi[block].as_mv[ref].as_mv; break; case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break; case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break; case 3: res = mi_mv_pred_q4(mi, ref); break; default: assert(ss_idx <= 3 && ss_idx >= 0); } return res; } void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir, int ic, int mi_row, int mi_col); void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize, int plane); void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize); #if CONFIG_SUPERTX void av1_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize, int block); void av1_build_inter_predictors_sb_extend(MACROBLOCKD *xd, #if CONFIG_EXT_INTER int mi_row_ori, int mi_col_ori, #endif // CONFIG_EXT_INTER int mi_row, int mi_col, BLOCK_SIZE bsize); struct macroblockd_plane; void av1_build_masked_inter_predictor_complex( MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre, int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, int plane); #endif // CONFIG_SUPERTX void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *mv_q3, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif enum mv_precision precision, int x, int y); #if CONFIG_AOM_HIGHBITDEPTH void av1_highbd_build_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg, #if CONFIG_DUAL_FILTER const InterpFilter *interp_filter, #else const InterpFilter interp_filter, #endif enum mv_precision precision, int x, int y, int bd); #endif static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride, const struct scale_factors *sf) { const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset; const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset; return y * stride + x; } static INLINE void setup_pred_plane(struct buf_2d *dst, uint8_t *src, int width, int height, int stride, int mi_row, int mi_col, const struct scale_factors *scale, int subsampling_x, int subsampling_y) { const int x = (MI_SIZE * mi_col) >> subsampling_x; const int y = (MI_SIZE * mi_row) >> subsampling_y; dst->buf = src + scaled_buffer_offset(x, y, stride, scale); dst->buf0 = src; dst->width = width; dst->height = height; dst->stride = stride; } void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col); void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf); // Detect if the block have sub-pixel level motion vectors // per component. static INLINE int has_subpel_mv_component(const MODE_INFO *const mi, const MACROBLOCKD *const xd, int dir) { const MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; int plane; int ref = (dir >> 1); #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif if (bsize >= BLOCK_8X8 || unify_bsize) { if (dir & 0x01) { if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1; } else { if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1; } } else { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const PARTITION_TYPE bp = BLOCK_8X8 - bsize; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); int x, y; for (y = 0; y < num_4x4_h; ++y) { for (x = 0; x < num_4x4_w; ++x) { const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x); if (dir & 0x01) { if (mv.col & SUBPEL_MASK) return 1; } else { if (mv.row & SUBPEL_MASK) return 1; } } } } } return 0; } #define CHECK_SUBPEL 0 static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) { #if CHECK_SUBPEL MODE_INFO *const mi = xd->mi[0]; const int is_compound = has_second_ref(&mi->mbmi); int ref; for (ref = 0; ref < 1 + is_compound; ++ref) { int row_col; for (row_col = 0; row_col < 2; ++row_col) { const int dir = (ref << 1) + row_col; if (has_subpel_mv_component(mi, xd, dir)) { return 1; } } } return 0; #else (void)xd; return 1; #endif } #if CONFIG_MOTION_VAR const uint8_t *av1_get_obmc_mask(int length); void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]); void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]); void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]); void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col); #if CONFIG_NCOBMC void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col); #endif #endif // CONFIG_MOTION_VAR #if CONFIG_EXT_INTER #define MASK_MASTER_SIZE (2 * MAX_SB_SIZE) #define MASK_MASTER_STRIDE (2 * MAX_SB_SIZE) void av1_init_wedge_masks(); static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index]; } const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y); const uint8_t *av1_get_compound_type_mask_inverse( const INTERINTER_COMPOUND_DATA *const comp_data, #if CONFIG_COMPOUND_SEGMENT uint8_t *mask_buffer, int h, int w, int stride, #endif BLOCK_SIZE sb_type); const uint8_t *av1_get_compound_type_mask( const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type); void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, int ystride, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred, int ustride, BUFFER_SET *ctx, int plane, BLOCK_SIZE bsize); void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, BUFFER_SET *ctx, uint8_t *intra_pred, int intra_stride); void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride); // Encoder only void av1_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]); void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]); #endif // CONFIG_EXT_INTER #ifdef __cplusplus } // extern "C" #endif #endif // AV1_COMMON_RECONINTER_H_