/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "./av1_rtcd.h" #include "av1/common/cfl.h" /** * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more * precise version of a box filter 4:2:0 pixel subsampling in Q3. * * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the * active area is specified using width and height. * * Note: We don't need to worry about going over the active area, as long as we * stay inside the CfL prediction buffer. * * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. */ static void cfl_luma_subsampling_420_lbd_ssse3(const uint8_t *input, int input_stride, int16_t *pred_buf_q3, int width, int height) { const __m128i twos = _mm_set1_epi8(2); // Sixteen twos // Sixteen int8 values fit in one __m128i register. If this is enough to do // the entire row, the next value is two rows down, otherwise we move to the // next sixteen values. const int next = (width == 16) ? 16 : input_stride << 1; // Values in the prediction buffer are subsampled, so we only need to move // down one row or forward by eight values. const int next_chroma = (width == 16) ? 8 : CFL_BUF_LINE; // When the width is less than 16, we double the stride, because we process // four lines by iteration (instead of two). const int luma_stride = input_stride << (1 + (width < 16)); const int chroma_stride = CFL_BUF_LINE << (width < 16); const int16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; do { // Load 16 values for the top and bottom rows. // t_0, t_1, ... t_15 __m128i top = _mm_loadu_si128((__m128i *)(input)); // b_0, b_1, ... b_15 __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride)); // Load either the next line or the next 16 values __m128i next_top = _mm_loadu_si128((__m128i *)(input + next)); __m128i next_bot = _mm_loadu_si128((__m128i *)(input + next + input_stride)); // Horizontal add of the 16 values into 8 values that are multiplied by 2 // (t_0 + t_1) * 2, (t_2 + t_3) * 2, ... (t_14 + t_15) *2 top = _mm_maddubs_epi16(top, twos); next_top = _mm_maddubs_epi16(next_top, twos); // (b_0 + b_1) * 2, (b_2 + b_3) * 2, ... (b_14 + b_15) *2 bot = _mm_maddubs_epi16(bot, twos); next_bot = _mm_maddubs_epi16(next_bot, twos); // Add the 8 values in top with the 8 values in bottom _mm_storeu_si128((__m128i *)pred_buf_q3, _mm_add_epi16(top, bot)); _mm_storeu_si128((__m128i *)(pred_buf_q3 + next_chroma), _mm_add_epi16(next_top, next_bot)); input += luma_stride; pred_buf_q3 += chroma_stride; } while (pred_buf_q3 < end); } cfl_subsample_lbd_fn get_subsample_lbd_fn_ssse3(int sub_x, int sub_y) { static const cfl_subsample_lbd_fn subsample_lbd[2][2] = { // (sub_y == 0, sub_x == 0) (sub_y == 0, sub_x == 1) // (sub_y == 1, sub_x == 0) (sub_y == 1, sub_x == 1) { cfl_luma_subsampling_444_lbd, cfl_luma_subsampling_422_lbd }, { cfl_luma_subsampling_440_lbd, cfl_luma_subsampling_420_lbd_ssse3 }, }; // AND sub_x and sub_y with 1 to ensures that an attacker won't be able to // index the function pointer array out of bounds. return subsample_lbd[sub_y & 1][sub_x & 1]; } static INLINE __m128i predict_unclipped(const __m128i *input, __m128i alpha_q12, __m128i alpha_sign, __m128i dc_q0) { __m128i ac_q3 = _mm_loadu_si128(input); __m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3); __m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12); scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign); return _mm_add_epi16(scaled_luma_q0, dc_q0); } static INLINE void cfl_predict_lbd_x(const int16_t *pred_buf_q3, uint8_t *dst, int dst_stride, TX_SIZE tx_size, int alpha_q3, int width) { uint8_t *row_end = dst + tx_size_high[tx_size] * dst_stride; const __m128i alpha_sign = _mm_set1_epi16(alpha_q3); const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9); const __m128i dc_q0 = _mm_set1_epi16(*dst); do { __m128i res = predict_unclipped((__m128i *)(pred_buf_q3), alpha_q12, alpha_sign, dc_q0); if (width < 16) { res = _mm_packus_epi16(res, res); if (width == 4) *(uint32_t *)dst = _mm_cvtsi128_si32(res); else _mm_storel_epi64((__m128i *)dst, res); } else { __m128i next = predict_unclipped((__m128i *)(pred_buf_q3 + 8), alpha_q12, alpha_sign, dc_q0); res = _mm_packus_epi16(res, next); _mm_storeu_si128((__m128i *)dst, res); if (width == 32) { res = predict_unclipped((__m128i *)(pred_buf_q3 + 16), alpha_q12, alpha_sign, dc_q0); next = predict_unclipped((__m128i *)(pred_buf_q3 + 24), alpha_q12, alpha_sign, dc_q0); res = _mm_packus_epi16(res, next); _mm_storeu_si128((__m128i *)(dst + 16), res); } } dst += dst_stride; pred_buf_q3 += CFL_BUF_LINE; } while (dst < row_end); } static INLINE __m128i highbd_max_epi16(int bd) { const __m128i neg_one = _mm_set1_epi16(-1); // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) return _mm_xor_si128(_mm_slli_epi16(neg_one, bd), neg_one); } static INLINE __m128i highbd_clamp_epi16(__m128i u, __m128i zero, __m128i max) { return _mm_max_epi16(_mm_min_epi16(u, max), zero); } static INLINE void cfl_predict_hbd(__m128i *dst, __m128i *src, __m128i alpha_q12, __m128i alpha_sign, __m128i dc_q0, __m128i zero, __m128i max) { __m128i res = predict_unclipped(src, alpha_q12, alpha_sign, dc_q0); _mm_storeu_si128(dst, highbd_clamp_epi16(res, zero, max)); } static INLINE void cfl_predict_hbd_x(const int16_t *pred_buf_q3, uint16_t *dst, int dst_stride, TX_SIZE tx_size, int alpha_q3, int bd, int width) { uint16_t *row_end = dst + tx_size_high[tx_size] * dst_stride; const __m128i alpha_sign = _mm_set1_epi16(alpha_q3); const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9); const __m128i dc_q0 = width == 4 ? _mm_loadl_epi64((__m128i *)dst) : _mm_load_si128((__m128i *)dst); const __m128i max = highbd_max_epi16(bd); const __m128i zero = _mm_setzero_si128(); do { if (width == 4) { __m128i res = predict_unclipped((__m128i *)(pred_buf_q3), alpha_q12, alpha_sign, dc_q0); _mm_storel_epi64((__m128i *)dst, highbd_clamp_epi16(res, zero, max)); } else { cfl_predict_hbd((__m128i *)dst, (__m128i *)pred_buf_q3, alpha_q12, alpha_sign, dc_q0, zero, max); } if (width >= 16) cfl_predict_hbd((__m128i *)(dst + 8), (__m128i *)(pred_buf_q3 + 8), alpha_q12, alpha_sign, dc_q0, zero, max); if (width == 32) { cfl_predict_hbd((__m128i *)(dst + 16), (__m128i *)(pred_buf_q3 + 16), alpha_q12, alpha_sign, dc_q0, zero, max); cfl_predict_hbd((__m128i *)(dst + 24), (__m128i *)(pred_buf_q3 + 24), alpha_q12, alpha_sign, dc_q0, zero, max); } dst += dst_stride; pred_buf_q3 += CFL_BUF_LINE; } while (dst < row_end); } #define CFL_PREDICT_LBD_X(width) \ static void cfl_predict_lbd_##width(const int16_t *pred_buf_q3, \ uint8_t *dst, int dst_stride, \ TX_SIZE tx_size, int alpha_q3) { \ cfl_predict_lbd_x(pred_buf_q3, dst, dst_stride, tx_size, alpha_q3, width); \ } CFL_PREDICT_LBD_X(4) CFL_PREDICT_LBD_X(8) CFL_PREDICT_LBD_X(16) CFL_PREDICT_LBD_X(32) #define CFL_PREDICT_HBD_X(width) \ static void cfl_predict_hbd_##width(const int16_t *pred_buf_q3, \ uint16_t *dst, int dst_stride, \ TX_SIZE tx_size, int alpha_q3, int bd) { \ cfl_predict_hbd_x(pred_buf_q3, dst, dst_stride, tx_size, alpha_q3, bd, \ width); \ } CFL_PREDICT_HBD_X(4) CFL_PREDICT_HBD_X(8) CFL_PREDICT_HBD_X(16) CFL_PREDICT_HBD_X(32) cfl_predict_lbd_fn get_predict_lbd_fn_ssse3(TX_SIZE tx_size) { static const cfl_predict_lbd_fn predict_lbd[4] = { cfl_predict_lbd_4, cfl_predict_lbd_8, cfl_predict_lbd_16, cfl_predict_lbd_32 }; return predict_lbd[(tx_size_wide_log2[tx_size] - tx_size_wide_log2[0]) & 3]; } cfl_predict_hbd_fn get_predict_hbd_fn_ssse3(TX_SIZE tx_size) { static const cfl_predict_hbd_fn predict_hbd[4] = { cfl_predict_hbd_4, cfl_predict_hbd_8, cfl_predict_hbd_16, cfl_predict_hbd_32 }; return predict_hbd[(tx_size_wide_log2[tx_size] - tx_size_wide_log2[0]) & 3]; }