/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "./aom_dsp_rtcd.h" #include "./av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/blend.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/system_state.h" #include "av1/common/common.h" #include "av1/common/common_data.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/idct.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/common/seg_common.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encoder.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/palette.h" #include "av1/encoder/quantize.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #if CONFIG_DUAL_FILTER #if CONFIG_EXT_INTERP static const int filter_sets[25][2] = { { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 }, { 1, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 }, { 1, 4 }, { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 }, { 2, 4 }, { 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 }, { 3, 4 }, { 4, 0 }, { 4, 1 }, { 4, 2 }, { 4, 3 }, { 4, 4 }, }; #else static const int filter_sets[9][2] = { { 0, 0 }, { 0, 1 }, { 0, 2 }, { 1, 0 }, { 1, 1 }, { 1, 2 }, { 2, 0 }, { 2, 1 }, { 2, 2 }, }; #endif #endif #if CONFIG_EXT_REFS #define LAST_FRAME_MODE_MASK \ ((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \ (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) #define LAST2_FRAME_MODE_MASK \ ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) | \ (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) #define LAST3_FRAME_MODE_MASK \ ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) #define GOLDEN_FRAME_MODE_MASK \ ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) #define BWDREF_FRAME_MODE_MASK \ ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME)) #define ALTREF_FRAME_MODE_MASK \ ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME)) #else #define LAST_FRAME_MODE_MASK \ ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) #define GOLDEN_FRAME_MODE_MASK \ ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) #define ALTREF_FRAME_MODE_MASK \ ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME)) #endif // CONFIG_EXT_REFS #if CONFIG_EXT_REFS #define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | (1 << BWDREF_FRAME) | 0x01) #else #define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01) #endif // CONFIG_EXT_REFS #define MIN_EARLY_TERM_INDEX 3 #define NEW_MV_DISCOUNT_FACTOR 8 #if CONFIG_EXT_INTRA #define ANGLE_FAST_SEARCH 1 #define ANGLE_SKIP_THRESH 10 #define FILTER_FAST_SEARCH 1 #endif // CONFIG_EXT_INTRA const double ADST_FLIP_SVM[8] = { -6.6623, -2.8062, -3.2531, 3.1671, // vert -7.7051, -3.2234, -3.6193, 3.4533 }; // horz typedef struct { PREDICTION_MODE mode; MV_REFERENCE_FRAME ref_frame[2]; } MODE_DEFINITION; typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION; struct rdcost_block_args { const AV1_COMP *cpi; MACROBLOCK *x; ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE]; ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]; int this_rate; int64_t this_dist; int64_t this_sse; int64_t this_rd; int64_t best_rd; int exit_early; int use_fast_coef_costing; const scan_order *so; uint8_t skippable; }; #define LAST_NEW_MV_INDEX 6 static const MODE_DEFINITION av1_mode_order[MAX_MODES] = { { NEARESTMV, { LAST_FRAME, NONE } }, #if CONFIG_EXT_REFS { NEARESTMV, { LAST2_FRAME, NONE } }, { NEARESTMV, { LAST3_FRAME, NONE } }, { NEARESTMV, { BWDREF_FRAME, NONE } }, #endif // CONFIG_EXT_REFS { NEARESTMV, { ALTREF_FRAME, NONE } }, { NEARESTMV, { GOLDEN_FRAME, NONE } }, { DC_PRED, { INTRA_FRAME, NONE } }, { NEWMV, { LAST_FRAME, NONE } }, #if CONFIG_EXT_REFS { NEWMV, { LAST2_FRAME, NONE } }, { NEWMV, { LAST3_FRAME, NONE } }, { NEWMV, { BWDREF_FRAME, NONE } }, #endif // CONFIG_EXT_REFS { NEWMV, { ALTREF_FRAME, NONE } }, { NEWMV, { GOLDEN_FRAME, NONE } }, { NEARMV, { LAST_FRAME, NONE } }, #if CONFIG_EXT_REFS { NEARMV, { LAST2_FRAME, NONE } }, { NEARMV, { LAST3_FRAME, NONE } }, { NEARMV, { BWDREF_FRAME, NONE } }, #endif // CONFIG_EXT_REFS { NEARMV, { ALTREF_FRAME, NONE } }, { NEARMV, { GOLDEN_FRAME, NONE } }, #if CONFIG_EXT_INTER { NEWFROMNEARMV, { LAST_FRAME, NONE } }, #if CONFIG_EXT_REFS { NEWFROMNEARMV, { LAST2_FRAME, NONE } }, { NEWFROMNEARMV, { LAST3_FRAME, NONE } }, { NEWFROMNEARMV, { BWDREF_FRAME, NONE } }, #endif // CONFIG_EXT_REFS { NEWFROMNEARMV, { ALTREF_FRAME, NONE } }, { NEWFROMNEARMV, { GOLDEN_FRAME, NONE } }, #endif // CONFIG_EXT_INTER { ZEROMV, { LAST_FRAME, NONE } }, #if CONFIG_EXT_REFS { ZEROMV, { LAST2_FRAME, NONE } }, { ZEROMV, { LAST3_FRAME, NONE } }, { ZEROMV, { BWDREF_FRAME, NONE } }, #endif // CONFIG_EXT_REFS { ZEROMV, { GOLDEN_FRAME, NONE } }, { ZEROMV, { ALTREF_FRAME, NONE } }, // TODO(zoeliu): May need to reconsider the order on the modes to check #if CONFIG_EXT_INTER { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, #endif // CONFIG_EXT_REFS { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, #endif // CONFIG_EXT_REFS #else // CONFIG_EXT_INTER { NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, #endif // CONFIG_EXT_REFS { NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, { NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, #endif // CONFIG_EXT_REFS #endif // CONFIG_EXT_INTER { TM_PRED, { INTRA_FRAME, NONE } }, #if CONFIG_EXT_INTER { NEAR_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAREST_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, { ZERO_ZEROMV, { LAST_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEAR_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAREST_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, { ZERO_ZEROMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAR_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAREST_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, { ZERO_ZEROMV, { LAST3_FRAME, ALTREF_FRAME } }, #endif // CONFIG_EXT_REFS { NEAR_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAREST_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { ZERO_ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEAR_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAREST_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, { ZERO_ZEROMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAR_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAREST_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, { ZERO_ZEROMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAR_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAREST_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, { ZERO_ZEROMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAR_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAREST_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { ZERO_ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } }, #endif // CONFIG_EXT_REFS #else // CONFIG_EXT_INTER { NEARMV, { LAST_FRAME, ALTREF_FRAME } }, { NEWMV, { LAST_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, #endif // CONFIG_EXT_REFS { NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { NEARMV, { LAST_FRAME, BWDREF_FRAME } }, { NEWMV, { LAST_FRAME, BWDREF_FRAME } }, { NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, #endif // CONFIG_EXT_REFS { ZEROMV, { LAST_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { ZEROMV, { LAST2_FRAME, ALTREF_FRAME } }, { ZEROMV, { LAST3_FRAME, ALTREF_FRAME } }, #endif // CONFIG_EXT_REFS { ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { ZEROMV, { LAST_FRAME, BWDREF_FRAME } }, { ZEROMV, { LAST2_FRAME, BWDREF_FRAME } }, { ZEROMV, { LAST3_FRAME, BWDREF_FRAME } }, { ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } }, #endif // CONFIG_EXT_REFS #endif // CONFIG_EXT_INTER { H_PRED, { INTRA_FRAME, NONE } }, { V_PRED, { INTRA_FRAME, NONE } }, { D135_PRED, { INTRA_FRAME, NONE } }, { D207_PRED, { INTRA_FRAME, NONE } }, { D153_PRED, { INTRA_FRAME, NONE } }, { D63_PRED, { INTRA_FRAME, NONE } }, { D117_PRED, { INTRA_FRAME, NONE } }, { D45_PRED, { INTRA_FRAME, NONE } }, #if CONFIG_EXT_INTER { ZEROMV, { LAST_FRAME, INTRA_FRAME } }, { NEARESTMV, { LAST_FRAME, INTRA_FRAME } }, { NEARMV, { LAST_FRAME, INTRA_FRAME } }, { NEWMV, { LAST_FRAME, INTRA_FRAME } }, #if CONFIG_EXT_REFS { ZEROMV, { LAST2_FRAME, INTRA_FRAME } }, { NEARESTMV, { LAST2_FRAME, INTRA_FRAME } }, { NEARMV, { LAST2_FRAME, INTRA_FRAME } }, { NEWMV, { LAST2_FRAME, INTRA_FRAME } }, { ZEROMV, { LAST3_FRAME, INTRA_FRAME } }, { NEARESTMV, { LAST3_FRAME, INTRA_FRAME } }, { NEARMV, { LAST3_FRAME, INTRA_FRAME } }, { NEWMV, { LAST3_FRAME, INTRA_FRAME } }, #endif // CONFIG_EXT_REFS { ZEROMV, { GOLDEN_FRAME, INTRA_FRAME } }, { NEARESTMV, { GOLDEN_FRAME, INTRA_FRAME } }, { NEARMV, { GOLDEN_FRAME, INTRA_FRAME } }, { NEWMV, { GOLDEN_FRAME, INTRA_FRAME } }, #if CONFIG_EXT_REFS { ZEROMV, { BWDREF_FRAME, INTRA_FRAME } }, { NEARESTMV, { BWDREF_FRAME, INTRA_FRAME } }, { NEARMV, { BWDREF_FRAME, INTRA_FRAME } }, { NEWMV, { BWDREF_FRAME, INTRA_FRAME } }, #endif // CONFIG_EXT_REFS { ZEROMV, { ALTREF_FRAME, INTRA_FRAME } }, { NEARESTMV, { ALTREF_FRAME, INTRA_FRAME } }, { NEARMV, { ALTREF_FRAME, INTRA_FRAME } }, { NEWMV, { ALTREF_FRAME, INTRA_FRAME } }, #endif // CONFIG_EXT_INTER }; static const REF_DEFINITION av1_ref_order[MAX_REFS] = { { { LAST_FRAME, NONE } }, #if CONFIG_EXT_REFS { { LAST2_FRAME, NONE } }, { { LAST3_FRAME, NONE } }, { { BWDREF_FRAME, NONE } }, #endif // CONFIG_EXT_REFS { { GOLDEN_FRAME, NONE } }, { { ALTREF_FRAME, NONE } }, { { LAST_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { { LAST2_FRAME, ALTREF_FRAME } }, { { LAST3_FRAME, ALTREF_FRAME } }, #endif // CONFIG_EXT_REFS { { GOLDEN_FRAME, ALTREF_FRAME } }, #if CONFIG_EXT_REFS { { LAST_FRAME, BWDREF_FRAME } }, { { LAST2_FRAME, BWDREF_FRAME } }, { { LAST3_FRAME, BWDREF_FRAME } }, { { GOLDEN_FRAME, BWDREF_FRAME } }, #endif // CONFIG_EXT_REFS { { INTRA_FRAME, NONE } }, }; static INLINE int write_uniform_cost(int n, int v) { int l = get_unsigned_bits(n), m = (1 << l) - n; if (l == 0) return 0; if (v < m) return (l - 1) * av1_cost_bit(128, 0); else return l * av1_cost_bit(128, 0); } // constants for prune 1 and prune 2 decision boundaries #define FAST_EXT_TX_CORR_MID 0.0 #define FAST_EXT_TX_EDST_MID 0.1 #define FAST_EXT_TX_CORR_MARGIN 0.5 #define FAST_EXT_TX_EDST_MARGIN 0.3 static const TX_TYPE_1D vtx_tab[TX_TYPES] = { DCT_1D, ADST_1D, DCT_1D, ADST_1D, #if CONFIG_EXT_TX FLIPADST_1D, DCT_1D, FLIPADST_1D, ADST_1D, FLIPADST_1D, IDTX_1D, DCT_1D, IDTX_1D, ADST_1D, IDTX_1D, FLIPADST_1D, IDTX_1D, #endif // CONFIG_EXT_TX }; static const TX_TYPE_1D htx_tab[TX_TYPES] = { DCT_1D, DCT_1D, ADST_1D, ADST_1D, #if CONFIG_EXT_TX DCT_1D, FLIPADST_1D, FLIPADST_1D, FLIPADST_1D, ADST_1D, IDTX_1D, IDTX_1D, DCT_1D, IDTX_1D, ADST_1D, IDTX_1D, FLIPADST_1D, #endif // CONFIG_EXT_TX }; static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize, uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, double *hordist, double *verdist) { int bw = 4 << (b_width_log2_lookup[bsize]); int bh = 4 << (b_height_log2_lookup[bsize]); unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned int var[16]; double total = 0; const int f_index = bsize - BLOCK_16X16; if (f_index < 0) { int i, j, index; int w_shift = bw == 8 ? 1 : 2; int h_shift = bh == 8 ? 1 : 2; #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) { uint16_t *src16 = CONVERT_TO_SHORTPTR(src); uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); for (i = 0; i < bh; ++i) for (j = 0; j < bw; ++j) { index = (j >> w_shift) + ((i >> h_shift) << 2); esq[index] += (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * (src16[j + i * src_stride] - dst16[j + i * dst_stride]); } } else { #endif // CONFIG_AOM_HIGHBITDEPTH for (i = 0; i < bh; ++i) for (j = 0; j < bw; ++j) { index = (j >> w_shift) + ((i >> h_shift) << 2); esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * (src[j + i * src_stride] - dst[j + i * dst_stride]); } #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH } else { var[0] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[0]); var[1] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, &esq[1]); var[2] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, &esq[2]); var[3] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, dst_stride, &esq[3]); src += bh / 4 * src_stride; dst += bh / 4 * dst_stride; var[4] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[4]); var[5] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, &esq[5]); var[6] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, &esq[6]); var[7] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, dst_stride, &esq[7]); src += bh / 4 * src_stride; dst += bh / 4 * dst_stride; var[8] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[8]); var[9] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, &esq[9]); var[10] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, &esq[10]); var[11] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, dst_stride, &esq[11]); src += bh / 4 * src_stride; dst += bh / 4 * dst_stride; var[12] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[12]); var[13] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, &esq[13]); var[14] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, &esq[14]); var[15] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, dst_stride, &esq[15]); } total = esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + esq[12] + esq[13] + esq[14] + esq[15]; if (total > 0) { const double e_recip = 1.0 / total; hordist[0] = ((double)esq[0] + (double)esq[4] + (double)esq[8] + (double)esq[12]) * e_recip; hordist[1] = ((double)esq[1] + (double)esq[5] + (double)esq[9] + (double)esq[13]) * e_recip; hordist[2] = ((double)esq[2] + (double)esq[6] + (double)esq[10] + (double)esq[14]) * e_recip; verdist[0] = ((double)esq[0] + (double)esq[1] + (double)esq[2] + (double)esq[3]) * e_recip; verdist[1] = ((double)esq[4] + (double)esq[5] + (double)esq[6] + (double)esq[7]) * e_recip; verdist[2] = ((double)esq[8] + (double)esq[9] + (double)esq[10] + (double)esq[11]) * e_recip; } else { hordist[0] = verdist[0] = 0.25; hordist[1] = verdist[1] = 0.25; hordist[2] = verdist[2] = 0.25; } (void)var[0]; (void)var[1]; (void)var[2]; (void)var[3]; (void)var[4]; (void)var[5]; (void)var[6]; (void)var[7]; (void)var[8]; (void)var[9]; (void)var[10]; (void)var[11]; (void)var[12]; (void)var[13]; (void)var[14]; (void)var[15]; } static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize, uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, double *hdist, double *vdist) { int prune_bitmask = 0; double svm_proj_h = 0, svm_proj_v = 0; get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride, hdist, vdist); svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] + vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3]; svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] + hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7]; if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) prune_bitmask |= 1 << FLIPADST_1D; else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) prune_bitmask |= 1 << ADST_1D; if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) prune_bitmask |= 1 << (FLIPADST_1D + 8); else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) prune_bitmask |= 1 << (ADST_1D + 8); return prune_bitmask; } #if CONFIG_EXT_TX static void get_horver_correlation(int16_t *diff, int stride, int w, int h, double *hcorr, double *vcorr) { // Returns hor/ver correlation coefficient const int num = (h - 1) * (w - 1); double num_r; int i, j; int64_t xy_sum = 0, xz_sum = 0; int64_t x_sum = 0, y_sum = 0, z_sum = 0; int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0; double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n; *hcorr = *vcorr = 1; assert(num > 0); num_r = 1.0 / num; for (i = 1; i < h; ++i) { for (j = 1; j < w; ++j) { const int16_t x = diff[i * stride + j]; const int16_t y = diff[i * stride + j - 1]; const int16_t z = diff[(i - 1) * stride + j]; xy_sum += x * y; xz_sum += x * z; x_sum += x; y_sum += y; z_sum += z; x2_sum += x * x; y2_sum += y * y; z2_sum += z * z; } } x_var_n = x2_sum - (x_sum * x_sum) * num_r; y_var_n = y2_sum - (y_sum * y_sum) * num_r; z_var_n = z2_sum - (z_sum * z_sum) * num_r; xy_var_n = xy_sum - (x_sum * y_sum) * num_r; xz_var_n = xz_sum - (x_sum * z_sum) * num_r; if (x_var_n > 0 && y_var_n > 0) { *hcorr = xy_var_n / sqrt(x_var_n * y_var_n); *hcorr = *hcorr < 0 ? 0 : *hcorr; } if (x_var_n > 0 && z_var_n > 0) { *vcorr = xz_var_n / sqrt(x_var_n * z_var_n); *vcorr = *vcorr < 0 ? 0 : *vcorr; } } int dct_vs_idtx(int16_t *diff, int stride, int w, int h, double *hcorr, double *vcorr) { int prune_bitmask = 0; get_horver_correlation(diff, stride, w, h, hcorr, vcorr); if (*vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) prune_bitmask |= 1 << IDTX_1D; else if (*vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) prune_bitmask |= 1 << DCT_1D; if (*hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) prune_bitmask |= 1 << (IDTX_1D + 8); else if (*hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) prune_bitmask |= 1 << (DCT_1D + 8); return prune_bitmask; } // Performance drop: 0.5%, Speed improvement: 24% static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int adst_flipadst, int dct_idtx) { struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); const int bw = 4 << (b_width_log2_lookup[bs]); const int bh = 4 << (b_height_log2_lookup[bs]); double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 }; double hcorr, vcorr; int prune = 0; av1_subtract_plane(x, bsize, 0); if (adst_flipadst) prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, hdist, vdist); if (dct_idtx) prune |= dct_vs_idtx(p->src_diff, bw, bw, bh, &hcorr, &vcorr); return prune; } #endif // CONFIG_EXT_TX // Performance drop: 0.3%, Speed improvement: 5% static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd) { struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 }; av1_subtract_plane(x, bsize, 0); return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, hdist, vdist); } static int prune_tx_types(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int tx_set) { #if CONFIG_EXT_TX const int *tx_set_1D = ext_tx_used_inter_1D[tx_set]; #else const int tx_set_1D[TX_TYPES_1D] = { 0 }; #endif switch (cpi->sf.tx_type_search.prune_mode) { case NO_PRUNE: return 0; break; case PRUNE_ONE: if ((tx_set >= 0) & !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return 0; return prune_one_for_sby(cpi, bsize, x, xd); break; #if CONFIG_EXT_TX case PRUNE_TWO: if ((tx_set >= 0) & !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) { if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return 0; return prune_two_for_sby(cpi, bsize, x, xd, 0, 1); } if ((tx_set >= 0) & !(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return prune_two_for_sby(cpi, bsize, x, xd, 1, 0); return prune_two_for_sby(cpi, bsize, x, xd, 1, 1); break; #endif } assert(0); return 0; } static int do_tx_type_search(TX_TYPE tx_type, int prune) { // TODO(sarahparker) implement for non ext tx #if CONFIG_EXT_TX return !(((prune >> vtx_tab[tx_type]) & 1) | ((prune >> (htx_tab[tx_type] + 8)) & 1)); #else // temporary to avoid compiler warnings (void)vtx_tab; (void)htx_tab; (void)tx_type; (void)prune; return 1; #endif } static void model_rd_from_sse(const AV1_COMP *const cpi, const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, int64_t sse, int *rate, int64_t *dist) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const int dequant_shift = #if CONFIG_AOM_HIGHBITDEPTH (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : #endif // CONFIG_AOM_HIGHBITDEPTH 3; // Fast approximate the modelling function. if (cpi->sf.simple_model_rd_from_var) { const int64_t square_error = sse; int quantizer = (pd->dequant[1] >> dequant_shift); if (quantizer < 120) *rate = (int)((square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT)); else *rate = 0; *dist = (square_error * quantizer) >> 8; } else { av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize], pd->dequant[1] >> dequant_shift, rate, dist); } *dist <<= 4; } static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, int plane_to, int *out_rate_sum, int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. int plane; const int ref = xd->mi[0]->mbmi.ref_frame[0]; int64_t rate_sum = 0; int64_t dist_sum = 0; int64_t total_sse = 0; x->pred_sse[ref] = 0; for (plane = plane_from; plane <= plane_to; ++plane) { struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); unsigned int sse; int rate; int64_t dist; // TODO(geza): Write direct sse functions that do not compute // variance as well. cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); if (plane == 0) x->pred_sse[ref] = sse; total_sse += sse; model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist); rate_sum += rate; dist_sum += dist; } *skip_txfm_sb = total_sse == 0; *skip_sse_sb = total_sse << 4; *out_rate_sum = (int)rate_sum; *out_dist_sum = dist_sum; } int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz) { int i; int64_t error = 0, sqcoeff = 0; for (i = 0; i < block_size; i++) { const int diff = coeff[i] - dqcoeff[i]; error += diff * diff; sqcoeff += coeff[i] * coeff[i]; } *ssz = sqcoeff; return error; } int64_t av1_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff, int block_size) { int i; int64_t error = 0; for (i = 0; i < block_size; i++) { const int diff = coeff[i] - dqcoeff[i]; error += diff * diff; } return error; } #if CONFIG_AOM_HIGHBITDEPTH int64_t av1_highbd_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bd) { int i; int64_t error = 0, sqcoeff = 0; int shift = 2 * (bd - 8); int rounding = shift > 0 ? 1 << (shift - 1) : 0; for (i = 0; i < block_size; i++) { const int64_t diff = coeff[i] - dqcoeff[i]; error += diff * diff; sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; } assert(error >= 0 && sqcoeff >= 0); error = (error + rounding) >> shift; sqcoeff = (sqcoeff + rounding) >> shift; *ssz = sqcoeff; return error; } #endif // CONFIG_AOM_HIGHBITDEPTH /* The trailing '0' is a terminator which is used inside cost_coeffs() to * decide whether to include cost of a trailing EOB node or not (i.e. we * can skip this if the last coefficient in this transform block, e.g. the * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, * were non-zero). */ static int cost_coeffs(MACROBLOCK *x, int plane, int block, int coeff_ctx, TX_SIZE tx_size, const int16_t *scan, const int16_t *nb, int use_fast_coef_costing) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const struct macroblock_plane *p = &x->plane[plane]; const struct macroblockd_plane *pd = &xd->plane[plane]; const PLANE_TYPE type = pd->plane_type; const uint16_t *band_count = &band_count_table[tx_size][1]; const int eob = p->eobs[block]; const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); const int tx_size_ctx = txsize_sqr_map[tx_size]; unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = x->token_costs[tx_size_ctx][type][is_inter_block(mbmi)]; uint8_t token_cache[MAX_TX_SQUARE]; int pt = coeff_ctx; int c, cost; #if CONFIG_AOM_HIGHBITDEPTH const int *cat6_high_cost = av1_get_high_cost_table(xd->bd); #else const int *cat6_high_cost = av1_get_high_cost_table(8); #endif #if !CONFIG_VAR_TX && !CONFIG_SUPERTX // Check for consistency of tx_size with mode info assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size : get_uv_tx_size(mbmi, pd) == tx_size); #endif // !CONFIG_VAR_TX && !CONFIG_SUPERTX if (eob == 0) { // single eob token cost = token_costs[0][0][pt][EOB_TOKEN]; c = 0; } else { if (use_fast_coef_costing) { int band_left = *band_count++; // dc token int v = qcoeff[0]; int16_t prev_t; cost = av1_get_token_cost(v, &prev_t, cat6_high_cost); cost += (*token_costs)[0][pt][prev_t]; token_cache[0] = av1_pt_energy_class[prev_t]; ++token_costs; // ac tokens for (c = 1; c < eob; c++) { const int rc = scan[c]; int16_t t; v = qcoeff[rc]; cost += av1_get_token_cost(v, &t, cat6_high_cost); cost += (*token_costs)[!prev_t][!prev_t][t]; prev_t = t; if (!--band_left) { band_left = *band_count++; ++token_costs; } } // eob token if (band_left) cost += (*token_costs)[0][!prev_t][EOB_TOKEN]; } else { // !use_fast_coef_costing int band_left = *band_count++; // dc token int v = qcoeff[0]; int16_t tok; unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS]; cost = av1_get_token_cost(v, &tok, cat6_high_cost); cost += (*token_costs)[0][pt][tok]; token_cache[0] = av1_pt_energy_class[tok]; ++token_costs; tok_cost_ptr = &((*token_costs)[!tok]); // ac tokens for (c = 1; c < eob; c++) { const int rc = scan[c]; v = qcoeff[rc]; cost += av1_get_token_cost(v, &tok, cat6_high_cost); pt = get_coef_context(nb, token_cache, c); cost += (*tok_cost_ptr)[pt][tok]; token_cache[rc] = av1_pt_energy_class[tok]; if (!--band_left) { band_left = *band_count++; ++token_costs; } tok_cost_ptr = &((*token_costs)[!tok]); } // eob token if (band_left) { pt = get_coef_context(nb, token_cache, c); cost += (*token_costs)[0][pt][EOB_TOKEN]; } } } return cost; } static void dist_block(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, TX_SIZE tx_size, int64_t *out_dist, int64_t *out_sse) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; if (cpi->sf.use_transform_domain_distortion) { // Transform domain distortion computation is more accurate as it does // not involve an inverse transform, but it is less accurate. const int ss_txfrm_size = num_4x4_blocks_txsize_log2_lookup[tx_size]; int64_t this_sse; int tx_type = get_tx_type(pd->plane_type, xd, block, tx_size); int shift = (MAX_TX_SCALE - get_tx_scale(xd, tx_type, tx_size)) * 2; tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); #if CONFIG_AOM_HIGHBITDEPTH const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; *out_dist = av1_highbd_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse, bd) >> shift; #else *out_dist = av1_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >> shift; #endif // CONFIG_AOM_HIGHBITDEPTH *out_sse = this_sse >> shift; } else { const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; const int bsw = 4 * num_4x4_blocks_wide_lookup[tx_bsize]; const int bsh = 4 * num_4x4_blocks_high_lookup[tx_bsize]; const int src_stride = x->plane[plane].src.stride; const int dst_stride = xd->plane[plane].dst.stride; const int src_idx = 4 * (blk_row * src_stride + blk_col); const int dst_idx = 4 * (blk_row * dst_stride + blk_col); const uint8_t *src = &x->plane[plane].src.buf[src_idx]; const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const uint16_t eob = p->eobs[block]; unsigned int tmp; assert(cpi != NULL); cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &tmp); *out_sse = (int64_t)tmp * 16; if (eob) { const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]); uint8_t *recon = (uint8_t *)recon16; #else DECLARE_ALIGNED(16, uint8_t, recon[MAX_TX_SQUARE]); #endif // CONFIG_AOM_HIGHBITDEPTH const PLANE_TYPE plane_type = plane == 0 ? PLANE_TYPE_Y : PLANE_TYPE_UV; INV_TXFM_PARAM inv_txfm_param; inv_txfm_param.tx_type = get_tx_type(plane_type, xd, block, tx_size); inv_txfm_param.tx_size = tx_size; inv_txfm_param.eob = eob; inv_txfm_param.lossless = xd->lossless[mbmi->segment_id]; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { recon = CONVERT_TO_BYTEPTR(recon); inv_txfm_param.bd = xd->bd; aom_highbd_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, NULL, 0, bsw, bsh, xd->bd); highbd_inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param); } else #endif // CONFIG_AOM_HIGHBITDEPTH { aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, NULL, 0, bsw, bsh); inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param); } cpi->fn_ptr[tx_bsize].vf(src, src_stride, recon, MAX_TX_SIZE, &tmp); } *out_dist = (int64_t)tmp * 16; } } static int rate_block(int plane, int block, int coeff_ctx, TX_SIZE tx_size, struct rdcost_block_args *args) { return cost_coeffs(args->x, plane, block, coeff_ctx, tx_size, args->so->scan, args->so->neighbors, args->use_fast_coef_costing); } static uint64_t sum_squares_2d(const int16_t *diff, int diff_stride, TX_SIZE tx_size) { uint64_t sse; switch (tx_size) { #if CONFIG_EXT_TX case TX_4X8: sse = aom_sum_squares_2d_i16(diff, diff_stride, 4) + aom_sum_squares_2d_i16(diff + 4 * diff_stride, diff_stride, 4); break; case TX_8X4: sse = aom_sum_squares_2d_i16(diff, diff_stride, 4) + aom_sum_squares_2d_i16(diff + 4, diff_stride, 4); break; case TX_8X16: sse = aom_sum_squares_2d_i16(diff, diff_stride, 8) + aom_sum_squares_2d_i16(diff + 8 * diff_stride, diff_stride, 8); break; case TX_16X8: sse = aom_sum_squares_2d_i16(diff, diff_stride, 8) + aom_sum_squares_2d_i16(diff + 8, diff_stride, 8); break; case TX_16X32: sse = aom_sum_squares_2d_i16(diff, diff_stride, 16) + aom_sum_squares_2d_i16(diff + 16 * diff_stride, diff_stride, 16); break; case TX_32X16: sse = aom_sum_squares_2d_i16(diff, diff_stride, 16) + aom_sum_squares_2d_i16(diff + 16, diff_stride, 16); break; #endif // CONFIG_EXT_TX default: assert(tx_size < TX_SIZES); sse = aom_sum_squares_2d_i16( diff, diff_stride, num_4x4_blocks_wide_txsize_lookup[tx_size] << 2); break; } return sse; } static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct rdcost_block_args *args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int64_t rd1, rd2, rd; int rate; int64_t dist; int64_t sse; int coeff_ctx = combine_entropy_contexts(*(args->t_above + blk_col), *(args->t_left + blk_row)); if (args->exit_early) return; if (!is_inter_block(mbmi)) { struct encode_b_args intra_arg = { x, NULL, &mbmi->skip, args->t_above, args->t_left, 1 }; av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, &intra_arg); if (args->cpi->sf.use_transform_domain_distortion) { dist_block(args->cpi, x, plane, block, blk_row, blk_col, tx_size, &dist, &sse); } else { // Note that the encode block_intra call above already calls // inv_txfm_add, so we can't just call dist_block here. const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; const aom_variance_fn_t variance = args->cpi->fn_ptr[tx_bsize].vf; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const uint8_t *src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; const uint8_t *dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; unsigned int tmp; sse = sum_squares_2d(diff, diff_stride, tx_size); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); #endif // CONFIG_AOM_HIGHBITDEPTH sse = (int64_t)sse * 16; variance(src, src_stride, dst, dst_stride, &tmp); dist = (int64_t)tmp * 16; } } else { // full forward transform and quantization #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, coeff_ctx); #else av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT if (x->plane[plane].eobs[block]) av1_optimize_b(x, plane, block, tx_size, coeff_ctx); dist_block(args->cpi, x, plane, block, blk_row, blk_col, tx_size, &dist, &sse); } rd = RDCOST(x->rdmult, x->rddiv, 0, dist); if (args->this_rd + rd > args->best_rd) { args->exit_early = 1; return; } rate = rate_block(plane, block, coeff_ctx, tx_size, args); args->t_above[blk_col] = (x->plane[plane].eobs[block] > 0); args->t_left[blk_row] = (x->plane[plane].eobs[block] > 0); rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist); rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse); // TODO(jingning): temporarily enabled only for luma component rd = AOMMIN(rd1, rd2); args->this_rate += rate; args->this_dist += dist; args->this_sse += sse; args->this_rd += rd; if (args->this_rd > args->best_rd) { args->exit_early = 1; return; } args->skippable &= !x->plane[plane].eobs[block]; } static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, int *rate, int64_t *distortion, int *skippable, int64_t *sse, int64_t ref_best_rd, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size, int use_fast_coef_casting) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblockd_plane *const pd = &xd->plane[plane]; TX_TYPE tx_type; struct rdcost_block_args args; av1_zero(args); args.x = x; args.cpi = cpi; args.best_rd = ref_best_rd; args.use_fast_coef_costing = use_fast_coef_casting; args.skippable = 1; if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size; av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size); args.so = get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, &args); if (args.exit_early) { *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } else { *distortion = args.this_dist; *rate = args.this_rate; *sse = args.this_sse; *skippable = args.skippable; } } #if CONFIG_SUPERTX void av1_txfm_rd_in_plane_supertx(MACROBLOCK *x, const AV1_COMP *cpi, int *rate, int64_t *distortion, int *skippable, int64_t *sse, int64_t ref_best_rd, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size, int use_fast_coef_casting) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblockd_plane *const pd = &xd->plane[plane]; struct rdcost_block_args args; TX_TYPE tx_type; av1_zero(args); args.cpi = cpi; args.x = x; args.best_rd = ref_best_rd; args.use_fast_coef_costing = use_fast_coef_casting; #if CONFIG_EXT_TX assert(tx_size < TX_SIZES); #endif // CONFIG_EXT_TX if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size; av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size); args.so = get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); block_rd_txfm(plane, 0, 0, 0, get_plane_block_size(bsize, pd), tx_size, &args); if (args.exit_early) { *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } else { *distortion = args.this_dist; *rate = args.this_rate; *sse = args.this_sse; *skippable = !x->plane[plane].eobs[0]; } } #endif // CONFIG_SUPERTX static int64_t txfm_yrd(AV1_COMP *cpi, MACROBLOCK *x, int *r, int64_t *d, int *s, int64_t *sse, int64_t ref_best_rd, BLOCK_SIZE bs, TX_TYPE tx_type, int tx_size) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int64_t rd = INT64_MAX; aom_prob skip_prob = av1_get_skip_prob(cm, xd); int s0, s1; const int is_inter = is_inter_block(mbmi); const int tx_size_ctx = get_tx_size_context(xd); const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bs] : intra_tx_size_cat_lookup[bs]; const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size]; const int tx_select = cm->tx_mode == TX_MODE_SELECT; const int r_tx_size = cpi->tx_size_cost[tx_size_cat][tx_size_ctx][coded_tx_size]; assert(skip_prob > 0); #if CONFIG_EXT_TX && CONFIG_RECT_TX assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); #endif // CONFIG_EXT_TX && CONFIG_RECT_TX s0 = av1_cost_bit(skip_prob, 0); s1 = av1_cost_bit(skip_prob, 1); mbmi->tx_type = tx_type; mbmi->tx_size = tx_size; txfm_rd_in_plane(x, cpi, r, d, s, sse, ref_best_rd, 0, bs, tx_size, cpi->sf.use_fast_coef_costing); if (*r == INT_MAX) return INT64_MAX; #if CONFIG_EXT_TX if (get_ext_tx_types(tx_size, bs, is_inter) > 1 && !xd->lossless[xd->mi[0]->mbmi.segment_id]) { const int ext_tx_set = get_ext_tx_set(tx_size, bs, is_inter); if (is_inter) { if (ext_tx_set > 0) *r += cpi->inter_tx_type_costs[ext_tx_set][txsize_sqr_map[mbmi->tx_size]] [mbmi->tx_type]; } else { if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX) *r += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->mode] [mbmi->tx_type]; } } #else if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !FIXED_TX_TYPE) { if (is_inter) { *r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type]; } else { *r += cpi->intra_tx_type_costs[mbmi->tx_size] [intra_mode_to_tx_type_context[mbmi->mode]] [mbmi->tx_type]; } } #endif // CONFIG_EXT_TX if (*s) { if (is_inter) { rd = RDCOST(x->rdmult, x->rddiv, s1, *sse); } else { rd = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size * tx_select, *sse); } } else { rd = RDCOST(x->rdmult, x->rddiv, *r + s0 + r_tx_size * tx_select, *d); } if (tx_select) *r += r_tx_size; if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !(*s)) rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, *sse)); return rd; } static int64_t choose_tx_size_fix_type(AV1_COMP *cpi, BLOCK_SIZE bs, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *psse, int64_t ref_best_rd, TX_TYPE tx_type, int prune) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int r, s; int64_t d, sse; int64_t rd = INT64_MAX; int n; int start_tx, end_tx; int64_t best_rd = INT64_MAX, last_rd = INT64_MAX; const TX_SIZE max_tx_size = max_txsize_lookup[bs]; TX_SIZE best_tx_size = max_tx_size; const int tx_select = cm->tx_mode == TX_MODE_SELECT; const int is_inter = is_inter_block(mbmi); #if CONFIG_EXT_TX #if CONFIG_RECT_TX int evaluate_rect_tx = 0; #endif // CONFIG_RECT_TX int ext_tx_set; #endif // CONFIG_EXT_TX if (tx_select) { #if CONFIG_EXT_TX && CONFIG_RECT_TX evaluate_rect_tx = is_rect_tx_allowed(xd, mbmi); #endif // CONFIG_EXT_TX && CONFIG_RECT_TX start_tx = max_tx_size; end_tx = 0; } else { const TX_SIZE chosen_tx_size = tx_size_from_tx_mode(bs, cm->tx_mode, is_inter); #if CONFIG_EXT_TX && CONFIG_RECT_TX evaluate_rect_tx = is_rect_tx(chosen_tx_size); assert(IMPLIES(evaluate_rect_tx, is_rect_tx_allowed(xd, mbmi))); #endif // CONFIG_EXT_TX && CONFIG_RECT_TX start_tx = chosen_tx_size; end_tx = chosen_tx_size; } *distortion = INT64_MAX; *rate = INT_MAX; *skip = 0; *psse = INT64_MAX; mbmi->tx_type = tx_type; #if CONFIG_EXT_TX && CONFIG_RECT_TX if (evaluate_rect_tx) { const TX_SIZE rect_tx_size = max_txsize_rect_lookup[bs]; const int ext_tx_set = get_ext_tx_set(rect_tx_size, bs, 1); if (ext_tx_used_inter[ext_tx_set][tx_type]) { rd = txfm_yrd(cpi, x, &r, &d, &s, &sse, ref_best_rd, bs, tx_type, rect_tx_size); best_tx_size = rect_tx_size; best_rd = rd; *distortion = d; *rate = r; *skip = s; *psse = sse; } } #endif // CONFIG_EXT_TX && CONFIG_RECT_TX last_rd = INT64_MAX; for (n = start_tx; n >= end_tx; --n) { #if CONFIG_EXT_TX && CONFIG_RECT_TX if (is_rect_tx(n)) break; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX if (FIXED_TX_TYPE && tx_type != get_default_tx_type(0, xd, 0, n)) continue; if (!is_inter && x->use_default_intra_tx_type && tx_type != get_default_tx_type(0, xd, 0, n)) continue; if (is_inter && x->use_default_inter_tx_type && tx_type != get_default_tx_type(0, xd, 0, n)) continue; if (max_tx_size == TX_32X32 && n == TX_4X4) continue; #if CONFIG_EXT_TX ext_tx_set = get_ext_tx_set(n, bs, is_inter); if (is_inter) { if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue; if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { if (!do_tx_type_search(tx_type, prune)) continue; } } else { if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) { if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue; } if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue; } #else // CONFIG_EXT_TX if (n >= TX_32X32 && tx_type != DCT_DCT) continue; if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE && !do_tx_type_search(tx_type, prune)) continue; #endif // CONFIG_EXT_TX rd = txfm_yrd(cpi, x, &r, &d, &s, &sse, ref_best_rd, bs, tx_type, n); // Early termination in transform size search. if (cpi->sf.tx_size_search_breakout && (rd == INT64_MAX || (s == 1 && tx_type != DCT_DCT && n < start_tx) || (n < (int)max_tx_size && rd > last_rd))) break; last_rd = rd; if (rd < best_rd) { best_tx_size = n; best_rd = rd; *distortion = d; *rate = r; *skip = s; *psse = sse; } } mbmi->tx_size = best_tx_size; return best_rd; } #if CONFIG_EXT_INTER static int64_t estimate_yrd_for_sb(AV1_COMP *cpi, BLOCK_SIZE bs, MACROBLOCK *x, int *r, int64_t *d, int *s, int64_t *sse, int64_t ref_best_rd) { return txfm_yrd(cpi, x, r, d, s, sse, ref_best_rd, bs, DCT_DCT, max_txsize_lookup[bs]); } #endif // CONFIG_EXT_INTER static void choose_largest_tx_size(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *sse, int64_t ref_best_rd, BLOCK_SIZE bs) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; TX_TYPE tx_type, best_tx_type = DCT_DCT; int r, s; int64_t d, psse, this_rd, best_rd = INT64_MAX; aom_prob skip_prob = av1_get_skip_prob(cm, xd); int s0 = av1_cost_bit(skip_prob, 0); int s1 = av1_cost_bit(skip_prob, 1); const int is_inter = is_inter_block(mbmi); int prune = 0; #if CONFIG_EXT_TX int ext_tx_set; #endif // CONFIG_EXT_TX mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode, is_inter); #if CONFIG_EXT_TX ext_tx_set = get_ext_tx_set(mbmi->tx_size, bs, is_inter); #endif // CONFIG_EXT_TX if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE) #if CONFIG_EXT_TX prune = prune_tx_types(cpi, bs, x, xd, ext_tx_set); #else prune = prune_tx_types(cpi, bs, x, xd, 0); #endif #if CONFIG_EXT_TX if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1 && !xd->lossless[mbmi->segment_id]) { for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (is_inter) { if (x->use_default_inter_tx_type && tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) continue; if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue; if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { if (!do_tx_type_search(tx_type, prune)) continue; } } else { if (x->use_default_intra_tx_type && tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) continue; if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) { if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue; } if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue; } mbmi->tx_type = tx_type; txfm_rd_in_plane(x, cpi, &r, &d, &s, &psse, ref_best_rd, 0, bs, mbmi->tx_size, cpi->sf.use_fast_coef_costing); if (r == INT_MAX) continue; if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1) { if (is_inter) { if (ext_tx_set > 0) r += cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size] [mbmi->tx_type]; } else { if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX) r += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->mode] [mbmi->tx_type]; } } if (s) this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse); else this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d); if (is_inter_block(mbmi) && !xd->lossless[mbmi->segment_id] && !s) this_rd = AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse)); if (this_rd < best_rd) { best_rd = this_rd; best_tx_type = mbmi->tx_type; } } } #else // CONFIG_EXT_TX if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id]) { for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (!is_inter && x->use_default_intra_tx_type && tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) continue; if (is_inter && x->use_default_inter_tx_type && tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) continue; mbmi->tx_type = tx_type; txfm_rd_in_plane(x, cpi, &r, &d, &s, &psse, ref_best_rd, 0, bs, mbmi->tx_size, cpi->sf.use_fast_coef_costing); if (r == INT_MAX) continue; if (is_inter) { r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type]; if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE && !do_tx_type_search(tx_type, prune)) continue; } else { r += cpi->intra_tx_type_costs[mbmi->tx_size] [intra_mode_to_tx_type_context[mbmi->mode]] [mbmi->tx_type]; } if (s) this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse); else this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d); if (is_inter && !xd->lossless[mbmi->segment_id] && !s) this_rd = AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse)); if (this_rd < best_rd) { best_rd = this_rd; best_tx_type = mbmi->tx_type; } } } #endif // CONFIG_EXT_TX mbmi->tx_type = best_tx_type; txfm_rd_in_plane(x, cpi, rate, distortion, skip, sse, ref_best_rd, 0, bs, mbmi->tx_size, cpi->sf.use_fast_coef_costing); } static void choose_smallest_tx_size(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *sse, int64_t ref_best_rd, BLOCK_SIZE bs) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; mbmi->tx_size = TX_4X4; mbmi->tx_type = DCT_DCT; txfm_rd_in_plane(x, cpi, rate, distortion, skip, sse, ref_best_rd, 0, bs, mbmi->tx_size, cpi->sf.use_fast_coef_costing); } static void choose_tx_size_type_from_rd(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *psse, int64_t ref_best_rd, BLOCK_SIZE bs) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int r, s; int64_t d, sse; int64_t rd = INT64_MAX; int64_t best_rd = INT64_MAX; TX_SIZE best_tx = max_txsize_lookup[bs]; const int is_inter = is_inter_block(mbmi); TX_TYPE tx_type, best_tx_type = DCT_DCT; int prune = 0; if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE) // passing -1 in for tx_type indicates that all 1D // transforms should be considered for pruning prune = prune_tx_types(cpi, bs, x, xd, -1); *distortion = INT64_MAX; *rate = INT_MAX; *skip = 0; *psse = INT64_MAX; for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) { #if CONFIG_REF_MV if (mbmi->ref_mv_idx > 0 && tx_type != DCT_DCT) continue; #endif rd = choose_tx_size_fix_type(cpi, bs, x, &r, &d, &s, &sse, ref_best_rd, tx_type, prune); if (rd < best_rd) { best_rd = rd; *distortion = d; *rate = r; *skip = s; *psse = sse; best_tx_type = tx_type; best_tx = mbmi->tx_size; } } mbmi->tx_size = best_tx; mbmi->tx_type = best_tx_type; #if !CONFIG_EXT_TX if (mbmi->tx_size >= TX_32X32) assert(mbmi->tx_type == DCT_DCT); #endif } static void super_block_yrd(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *psse, BLOCK_SIZE bs, int64_t ref_best_rd) { MACROBLOCKD *xd = &x->e_mbd; int64_t sse; int64_t *ret_sse = psse ? psse : &sse; assert(bs == xd->mi[0]->mbmi.sb_type); if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { choose_smallest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, bs); } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, bs); } else { choose_tx_size_type_from_rd(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, bs); } } static int conditional_skipintra(PREDICTION_MODE mode, PREDICTION_MODE best_intra_mode) { if (mode == D117_PRED && best_intra_mode != V_PRED && best_intra_mode != D135_PRED) return 1; if (mode == D63_PRED && best_intra_mode != V_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D207_PRED && best_intra_mode != H_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D153_PRED && best_intra_mode != H_PRED && best_intra_mode != D135_PRED) return 1; return 0; } static int rd_pick_palette_intra_sby( AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int palette_ctx, int dc_mode_cost, PALETTE_MODE_INFO *palette_mode_info, uint8_t *best_palette_color_map, TX_SIZE *best_tx, TX_TYPE *best_tx_type, PREDICTION_MODE *mode_selected, int64_t *best_rd) { int rate_overhead = 0; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->mi[0]; const int rows = 4 * num_4x4_blocks_high_lookup[bsize]; const int cols = 4 * num_4x4_blocks_wide_lookup[bsize]; int this_rate, this_rate_tokenonly, s, colors, n; int64_t this_distortion, this_rd; const int src_stride = x->plane[0].src.stride; const uint8_t *const src = x->plane[0].src.buf; assert(cpi->common.allow_screen_content_tools); #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) colors = av1_count_colors_highbd(src, src_stride, rows, cols, cpi->common.bit_depth); else #endif // CONFIG_AOM_HIGHBITDEPTH colors = av1_count_colors(src, src_stride, rows, cols); palette_mode_info->palette_size[0] = 0; #if CONFIG_EXT_INTRA mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] = 0; #endif // CONFIG_EXT_INTRA if (colors > 1 && colors <= 64) { int r, c, i, j, k; const int max_itr = 50; int color_ctx, color_idx = 0; int color_order[PALETTE_MAX_SIZE]; float *const data = x->palette_buffer->kmeans_data_buf; float centroids[PALETTE_MAX_SIZE]; uint8_t *const color_map = xd->plane[0].color_index_map; float lb, ub, val; MB_MODE_INFO *const mbmi = &mic->mbmi; PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; #if CONFIG_AOM_HIGHBITDEPTH uint16_t *src16 = CONVERT_TO_SHORTPTR(src); if (cpi->common.use_highbitdepth) lb = ub = src16[0]; else #endif // CONFIG_AOM_HIGHBITDEPTH lb = ub = src[0]; #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) { for (r = 0; r < rows; ++r) { for (c = 0; c < cols; ++c) { val = src16[r * src_stride + c]; data[r * cols + c] = val; if (val < lb) lb = val; else if (val > ub) ub = val; } } } else { #endif // CONFIG_AOM_HIGHBITDEPTH for (r = 0; r < rows; ++r) { for (c = 0; c < cols; ++c) { val = src[r * src_stride + c]; data[r * cols + c] = val; if (val < lb) lb = val; else if (val > ub) ub = val; } } #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH mbmi->mode = DC_PRED; #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; #endif // CONFIG_EXT_INTRA if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return 0; for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; --n) { for (i = 0; i < n; ++i) centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2; av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr); k = av1_remove_duplicates(centroids, n); #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) for (i = 0; i < k; ++i) pmi->palette_colors[i] = clip_pixel_highbd((int)centroids[i], cpi->common.bit_depth); else #endif // CONFIG_AOM_HIGHBITDEPTH for (i = 0; i < k; ++i) pmi->palette_colors[i] = clip_pixel((int)centroids[i]); pmi->palette_size[0] = k; av1_calc_indices(data, centroids, color_map, rows * cols, k, 1); super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, *best_rd); if (this_rate_tokenonly == INT_MAX) continue; this_rate = this_rate_tokenonly + dc_mode_cost + cpi->common.bit_depth * k * av1_cost_bit(128, 0) + cpi->palette_y_size_cost[bsize - BLOCK_8X8][k - 2] + write_uniform_cost(k, color_map[0]) + av1_cost_bit( av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 1); for (i = 0; i < rows; ++i) { for (j = (i == 0 ? 1 : 0); j < cols; ++j) { color_ctx = av1_get_palette_color_context(color_map, cols, i, j, k, color_order); for (r = 0; r < k; ++r) if (color_map[i * cols + j] == color_order[r]) { color_idx = r; break; } assert(color_idx >= 0 && color_idx < k); this_rate += cpi->palette_y_color_cost[k - 2][color_ctx][color_idx]; } } this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < *best_rd) { *best_rd = this_rd; *palette_mode_info = *pmi; memcpy(best_palette_color_map, color_map, rows * cols * sizeof(color_map[0])); *mode_selected = DC_PRED; *best_tx = mbmi->tx_size; *best_tx_type = mbmi->tx_type; rate_overhead = this_rate - this_rate_tokenonly; } } } return rate_overhead; } static int64_t rd_pick_intra4x4block(AV1_COMP *cpi, MACROBLOCK *x, int row, int col, PREDICTION_MODE *best_mode, const int *bmode_costs, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int64_t *bestdistortion, BLOCK_SIZE bsize, int *y_skip, int64_t rd_thresh) { PREDICTION_MODE mode; MACROBLOCKD *const xd = &x->e_mbd; int64_t best_rd = rd_thresh; struct macroblock_plane *p = &x->plane[0]; struct macroblockd_plane *pd = &xd->plane[0]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4]; uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4]; ENTROPY_CONTEXT ta[2], tempa[2]; ENTROPY_CONTEXT tl[2], templ[2]; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy; int best_can_skip = 0; uint8_t best_dst[8 * 8]; #if CONFIG_AOM_HIGHBITDEPTH uint16_t best_dst16[8 * 8]; #endif memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0])); memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0])); xd->mi[0]->mbmi.tx_size = TX_4X4; xd->mi[0]->mbmi.palette_mode_info.palette_size[0] = 0; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (mode = DC_PRED; mode <= TM_PRED; ++mode) { int64_t this_rd; int ratey = 0; int64_t distortion = 0; int rate = bmode_costs[mode]; int can_skip = 1; if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; // Only do the oblique modes if the best so far is // one of the neighboring directional modes if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(mode, *best_mode)) continue; } memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); for (idy = 0; idy < num_4x4_blocks_high; ++idy) { for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { const int block = (row + idy) * 2 + (col + idx); const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; int16_t *const src_diff = av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); xd->mi[0]->bmi[block].as_mode = mode; av1_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride, dst, dst_stride, col + idx, row + idy, 0); aom_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride, xd->bd); if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4); const scan_order *so = get_scan(TX_4X4, tx_type, 0); const int coeff_ctx = combine_entropy_contexts(*(tempa + idx), *(templ + idy)); #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, coeff_ctx); #else av1_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); *(tempa + idx) = !(p->eobs[block] == 0); *(templ + idy) = !(p->eobs[block] == 0); can_skip &= (p->eobs[block] == 0); if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next_highbd; av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, p->eobs[block], xd->bd, DCT_DCT, 1); } else { int64_t dist; unsigned int tmp; TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4); const scan_order *so = get_scan(TX_4X4, tx_type, 0); const int coeff_ctx = combine_entropy_contexts(*(tempa + idx), *(templ + idy)); #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, coeff_ctx); #else av1_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT av1_optimize_b(x, 0, block, TX_4X4, coeff_ctx); ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); *(tempa + idx) = !(p->eobs[block] == 0); *(templ + idy) = !(p->eobs[block] == 0); can_skip &= (p->eobs[block] == 0); av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, p->eobs[block], xd->bd, tx_type, 0); cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp); dist = (int64_t)tmp << 4; distortion += dist; if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next_highbd; } } } rate += ratey; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; best_can_skip = can_skip; *best_mode = mode; memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { memcpy(best_dst16 + idy * 8, CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), num_4x4_blocks_wide * 4 * sizeof(uint16_t)); } } next_highbd : {} } if (best_rd >= rd_thresh) return best_rd; if (y_skip) *y_skip &= best_can_skip; for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t)); } return best_rd; } #endif // CONFIG_AOM_HIGHBITDEPTH for (mode = DC_PRED; mode <= TM_PRED; ++mode) { int64_t this_rd; int ratey = 0; int64_t distortion = 0; int rate = bmode_costs[mode]; int can_skip = 1; if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; // Only do the oblique modes if the best so far is // one of the neighboring directional modes if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(mode, *best_mode)) continue; } memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); for (idy = 0; idy < num_4x4_blocks_high; ++idy) { for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { const int block = (row + idy) * 2 + (col + idx); const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; int16_t *const src_diff = av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); xd->mi[0]->bmi[block].as_mode = mode; av1_predict_intra_block(xd, 1, 1, TX_4X4, mode, dst, dst_stride, dst, dst_stride, col + idx, row + idy, 0); aom_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride); if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4); const scan_order *so = get_scan(TX_4X4, tx_type, 0); const int coeff_ctx = combine_entropy_contexts(*(tempa + idx), *(templ + idy)); #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, coeff_ctx); #else av1_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, AV1_XFORM_QUANT_B); #endif // CONFIG_NEW_QUANT ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); *(tempa + idx) = !(p->eobs[block] == 0); *(templ + idy) = !(p->eobs[block] == 0); can_skip &= (p->eobs[block] == 0); if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next; av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, p->eobs[block], DCT_DCT, 1); } else { int64_t dist; unsigned int tmp; TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4); const scan_order *so = get_scan(TX_4X4, tx_type, 0); const int coeff_ctx = combine_entropy_contexts(*(tempa + idx), *(templ + idy)); #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, coeff_ctx); #else av1_xform_quant(x, 0, block, row + idy, col + idx, BLOCK_8X8, TX_4X4, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT av1_optimize_b(x, 0, block, TX_4X4, coeff_ctx); ratey += cost_coeffs(x, 0, block, coeff_ctx, TX_4X4, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); *(tempa + idx) = !(p->eobs[block] == 0); *(templ + idy) = !(p->eobs[block] == 0); can_skip &= (p->eobs[block] == 0); av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, p->eobs[block], tx_type, 0); cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp); dist = (int64_t)tmp << 4; distortion += dist; // To use the pixel domain distortion, the step below needs to be // put behind the inv txfm. Compared to calculating the distortion // in the frequency domain, the overhead of encoding effort is low. if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next; } } } rate += ratey; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; best_can_skip = can_skip; *best_mode = mode; memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, num_4x4_blocks_wide * 4); } next : {} } if (best_rd >= rd_thresh) return best_rd; if (y_skip) *y_skip &= best_can_skip; for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, num_4x4_blocks_wide * 4); return best_rd; } static int64_t rd_pick_intra_sub_8x8_y_mode(AV1_COMP *cpi, MACROBLOCK *mb, int *rate, int *rate_y, int64_t *distortion, int *y_skip, int64_t best_rd) { int i, j; const MACROBLOCKD *const xd = &mb->e_mbd; MODE_INFO *const mic = xd->mi[0]; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy; int cost = 0; int64_t total_distortion = 0; int tot_rate_y = 0; int64_t total_rd = 0; const int *bmode_costs = cpi->mbmode_cost[0]; #if CONFIG_EXT_INTRA mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] = 0; mic->mbmi.intra_filter = INTRA_FILTER_LINEAR; #endif // CONFIG_EXT_INTRA // TODO(any): Add search of the tx_type to improve rd performance at the // expense of speed. mic->mbmi.tx_type = DCT_DCT; mic->mbmi.tx_size = TX_4X4; if (y_skip) *y_skip = 1; // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block. for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { PREDICTION_MODE best_mode = DC_PRED; int r = INT_MAX, ry = INT_MAX; int64_t d = INT64_MAX, this_rd = INT64_MAX; i = idy * 2 + idx; if (cpi->common.frame_type == KEY_FRAME) { const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, i); const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, i); bmode_costs = cpi->y_mode_costs[A][L]; } this_rd = rd_pick_intra4x4block( cpi, mb, idy, idx, &best_mode, bmode_costs, xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r, &ry, &d, bsize, y_skip, best_rd - total_rd); if (this_rd >= best_rd - total_rd) return INT64_MAX; total_rd += this_rd; cost += r; total_distortion += d; tot_rate_y += ry; mic->bmi[i].as_mode = best_mode; for (j = 1; j < num_4x4_blocks_high; ++j) mic->bmi[i + j * 2].as_mode = best_mode; for (j = 1; j < num_4x4_blocks_wide; ++j) mic->bmi[i + j].as_mode = best_mode; if (total_rd >= best_rd) return INT64_MAX; } } mic->mbmi.mode = mic->bmi[3].as_mode; // Add in the cost of the transform type if (!xd->lossless[mic->mbmi.segment_id]) { int rate_tx_type = 0; #if CONFIG_EXT_TX if (get_ext_tx_types(TX_4X4, bsize, 0) > 1) { const int eset = get_ext_tx_set(TX_4X4, bsize, 0); rate_tx_type = cpi->intra_tx_type_costs[eset][TX_4X4][mic->mbmi.mode] [mic->mbmi.tx_type]; } #else rate_tx_type = cpi->intra_tx_type_costs[TX_4X4] [intra_mode_to_tx_type_context[mic->mbmi.mode]] [mic->mbmi.tx_type]; #endif assert(mic->mbmi.tx_size == TX_4X4); cost += rate_tx_type; tot_rate_y += rate_tx_type; } *rate = cost; *rate_y = tot_rate_y; *distortion = total_distortion; return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); } #if CONFIG_EXT_INTRA // Return 1 if an ext intra mode is selected; return 0 otherwise. static int rd_pick_ext_intra_sby(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, int mode_cost, int64_t *best_rd, uint16_t skip_mask) { MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->mi[0]; MB_MODE_INFO *mbmi = &mic->mbmi; int this_rate, this_rate_tokenonly, s; int ext_intra_selected_flag = 0; int64_t this_distortion, this_rd; EXT_INTRA_MODE mode; TX_SIZE best_tx_size = TX_4X4; EXT_INTRA_MODE_INFO ext_intra_mode_info; TX_TYPE best_tx_type; av1_zero(ext_intra_mode_info); mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 1; mbmi->mode = DC_PRED; mbmi->palette_mode_info.palette_size[0] = 0; for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { if (skip_mask & (1 << mode)) continue; mbmi->ext_intra_mode_info.ext_intra_mode[0] = mode; super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, *best_rd); if (this_rate_tokenonly == INT_MAX) continue; this_rate = this_rate_tokenonly + av1_cost_bit(cpi->common.fc->ext_intra_probs[0], 1) + write_uniform_cost(FILTER_INTRA_MODES, mode) + mode_cost; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < *best_rd) { *best_rd = this_rd; best_tx_size = mic->mbmi.tx_size; ext_intra_mode_info = mbmi->ext_intra_mode_info; best_tx_type = mic->mbmi.tx_type; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; ext_intra_selected_flag = 1; } } if (ext_intra_selected_flag) { mbmi->mode = DC_PRED; mbmi->tx_size = best_tx_size; mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = ext_intra_mode_info.use_ext_intra_mode[0]; mbmi->ext_intra_mode_info.ext_intra_mode[0] = ext_intra_mode_info.ext_intra_mode[0]; mbmi->tx_type = best_tx_type; return 1; } else { return 0; } } static void pick_intra_angle_routine_sby( AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, int *best_angle_delta, TX_SIZE *best_tx_size, TX_TYPE *best_tx_type, INTRA_FILTER *best_filter, BLOCK_SIZE bsize, int rate_overhead, int64_t *best_rd) { int this_rate, this_rate_tokenonly, s; int64_t this_distortion, this_rd; MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, *best_rd); if (this_rate_tokenonly == INT_MAX) return; this_rate = this_rate_tokenonly + rate_overhead; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < *best_rd) { *best_rd = this_rd; *best_angle_delta = mbmi->angle_delta[0]; *best_tx_size = mbmi->tx_size; *best_filter = mbmi->intra_filter; *best_tx_type = mbmi->tx_type; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } static int64_t rd_pick_intra_angle_sby(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, int rate_overhead, int64_t best_rd) { MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->mi[0]; MB_MODE_INFO *mbmi = &mic->mbmi; int this_rate, this_rate_tokenonly, s; int angle_delta, best_angle_delta = 0, p_angle; const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); INTRA_FILTER filter, best_filter = INTRA_FILTER_LINEAR; const double rd_adjust = 1.2; int64_t this_distortion, this_rd; TX_SIZE best_tx_size = mic->mbmi.tx_size; TX_TYPE best_tx_type = mbmi->tx_type; if (ANGLE_FAST_SEARCH) { int deltas_level1[3] = { 0, -2, 2 }; int deltas_level2[3][2] = { { -1, 1 }, { -3, -1 }, { 1, 3 }, }; const int level1 = 3, level2 = 2; int i, j, best_i = -1; for (i = 0; i < level1; ++i) { mic->mbmi.angle_delta[0] = deltas_level1[i]; p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) { int64_t tmp_best_rd; if ((FILTER_FAST_SEARCH || !av1_is_intra_filter_switchable(p_angle)) && filter != INTRA_FILTER_LINEAR) continue; mic->mbmi.intra_filter = filter; tmp_best_rd = (i == 0 && filter == INTRA_FILTER_LINEAR && best_rd < INT64_MAX) ? (int64_t)(best_rd * rd_adjust) : best_rd; super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, tmp_best_rd); if (this_rate_tokenonly == INT_MAX) { if (i == 0 && filter == INTRA_FILTER_LINEAR) return best_rd; else continue; } this_rate = this_rate_tokenonly + rate_overhead + cpi->intra_filter_cost[intra_filter_ctx][filter]; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (i == 0 && filter == INTRA_FILTER_LINEAR && best_rd < INT64_MAX && this_rd > best_rd * rd_adjust) return best_rd; if (this_rd < best_rd) { best_i = i; best_rd = this_rd; best_angle_delta = mbmi->angle_delta[0]; best_tx_size = mbmi->tx_size; best_filter = mbmi->intra_filter; best_tx_type = mbmi->tx_type; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } } if (best_i >= 0) { for (j = 0; j < level2; ++j) { mic->mbmi.angle_delta[0] = deltas_level2[best_i][j]; p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) { mic->mbmi.intra_filter = filter; if ((FILTER_FAST_SEARCH || !av1_is_intra_filter_switchable(p_angle)) && filter != INTRA_FILTER_LINEAR) continue; pick_intra_angle_routine_sby( cpi, x, rate, rate_tokenonly, distortion, skippable, &best_angle_delta, &best_tx_size, &best_tx_type, &best_filter, bsize, rate_overhead + cpi->intra_filter_cost[intra_filter_ctx][filter], &best_rd); } } } } else { for (angle_delta = -MAX_ANGLE_DELTAS; angle_delta <= MAX_ANGLE_DELTAS; ++angle_delta) { mbmi->angle_delta[0] = angle_delta; p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) { mic->mbmi.intra_filter = filter; if ((FILTER_FAST_SEARCH || !av1_is_intra_filter_switchable(p_angle)) && filter != INTRA_FILTER_LINEAR) continue; pick_intra_angle_routine_sby( cpi, x, rate, rate_tokenonly, distortion, skippable, &best_angle_delta, &best_tx_size, &best_tx_type, &best_filter, bsize, rate_overhead + cpi->intra_filter_cost[intra_filter_ctx][filter], &best_rd); } } } if (FILTER_FAST_SEARCH && *rate_tokenonly < INT_MAX) { mbmi->angle_delta[0] = best_angle_delta; p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (av1_is_intra_filter_switchable(p_angle)) { for (filter = INTRA_FILTER_LINEAR + 1; filter < INTRA_FILTERS; ++filter) { mic->mbmi.intra_filter = filter; pick_intra_angle_routine_sby( cpi, x, rate, rate_tokenonly, distortion, skippable, &best_angle_delta, &best_tx_size, &best_tx_type, &best_filter, bsize, rate_overhead + cpi->intra_filter_cost[intra_filter_ctx][filter], &best_rd); } } } mbmi->tx_size = best_tx_size; mbmi->angle_delta[0] = best_angle_delta; mic->mbmi.intra_filter = best_filter; mbmi->tx_type = best_tx_type; return best_rd; } // Indices are sign, integer, and fractional part of the gradient value static const uint8_t gradient_to_angle_bin[2][7][16] = { { { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, }, { { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 }, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 }, { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, }, }; static const uint8_t mode_to_angle_bin[INTRA_MODES] = { 0, 2, 6, 0, 4, 3, 5, 7, 1, 0, }; static void angle_estimation(const uint8_t *src, int src_stride, int rows, int cols, uint8_t *directional_mode_skip_mask) { int i, r, c, index, dx, dy, temp, sn, remd, quot; uint64_t hist[DIRECTIONAL_MODES]; uint64_t hist_sum = 0; memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); src += src_stride; for (r = 1; r < rows; ++r) { for (c = 1; c < cols; ++c) { dx = src[c] - src[c - 1]; dy = src[c] - src[c - src_stride]; temp = dx * dx + dy * dy; if (dy == 0) { index = 2; } else { sn = (dx > 0) ^ (dy > 0); dx = abs(dx); dy = abs(dy); remd = dx % dy; quot = dx / dy; remd = remd * 16 / dy; index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; } hist[index] += temp; } src += src_stride; } for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; for (i = 0; i < INTRA_MODES; ++i) { if (i != DC_PRED && i != TM_PRED) { int index = mode_to_angle_bin[i]; uint64_t score = 2 * hist[index]; int weight = 2; if (index > 0) { score += hist[index - 1]; weight += 1; } if (index < DIRECTIONAL_MODES - 1) { score += hist[index + 1]; weight += 1; } if (score * ANGLE_SKIP_THRESH < hist_sum * weight) directional_mode_skip_mask[i] = 1; } } } #if CONFIG_AOM_HIGHBITDEPTH static void highbd_angle_estimation(const uint8_t *src8, int src_stride, int rows, int cols, uint8_t *directional_mode_skip_mask) { int i, r, c, index, dx, dy, temp, sn, remd, quot; uint64_t hist[DIRECTIONAL_MODES]; uint64_t hist_sum = 0; uint16_t *src = CONVERT_TO_SHORTPTR(src8); memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); src += src_stride; for (r = 1; r < rows; ++r) { for (c = 1; c < cols; ++c) { dx = src[c] - src[c - 1]; dy = src[c] - src[c - src_stride]; temp = dx * dx + dy * dy; if (dy == 0) { index = 2; } else { sn = (dx > 0) ^ (dy > 0); dx = abs(dx); dy = abs(dy); remd = dx % dy; quot = dx / dy; remd = remd * 16 / dy; index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; } hist[index] += temp; } src += src_stride; } for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; for (i = 0; i < INTRA_MODES; ++i) { if (i != DC_PRED && i != TM_PRED) { int index = mode_to_angle_bin[i]; uint64_t score = 2 * hist[index]; int weight = 2; if (index > 0) { score += hist[index - 1]; weight += 1; } if (index < DIRECTIONAL_MODES - 1) { score += hist[index + 1]; weight += 1; } if (score * ANGLE_SKIP_THRESH < hist_sum * weight) directional_mode_skip_mask[i] = 1; } } } #endif // CONFIG_AOM_HIGHBITDEPTH #endif // CONFIG_EXT_INTRA // This function is used only for intra_only frames static int64_t rd_pick_intra_sby_mode(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, int64_t best_rd) { uint8_t mode_idx; PREDICTION_MODE mode_selected = DC_PRED; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->mi[0]; int this_rate, this_rate_tokenonly, s; int64_t this_distortion, this_rd; TX_SIZE best_tx = TX_4X4; #if CONFIG_EXT_INTRA const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); EXT_INTRA_MODE_INFO ext_intra_mode_info; int is_directional_mode, rate_overhead, best_angle_delta = 0; INTRA_FILTER best_filter = INTRA_FILTER_LINEAR; uint8_t directional_mode_skip_mask[INTRA_MODES]; uint16_t filter_intra_mode_skip_mask = (1 << FILTER_INTRA_MODES) - 1; const int src_stride = x->plane[0].src.stride; const uint8_t *src = x->plane[0].src.buf; int beat_best_rd = 0; #endif // CONFIG_EXT_INTRA TX_TYPE best_tx_type = DCT_DCT; int *bmode_costs; PALETTE_MODE_INFO palette_mode_info; PALETTE_MODE_INFO *const pmi = &mic->mbmi.palette_mode_info; uint8_t *best_palette_color_map = cpi->common.allow_screen_content_tools ? x->palette_buffer->best_palette_color_map : NULL; const int rows = 4 * num_4x4_blocks_high_lookup[bsize]; const int cols = 4 * num_4x4_blocks_wide_lookup[bsize]; int palette_ctx = 0; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, 0); const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, 0); const PREDICTION_MODE FINAL_MODE_SEARCH = TM_PRED + 1; const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; bmode_costs = cpi->y_mode_costs[A][L]; #if CONFIG_EXT_INTRA ext_intra_mode_info.use_ext_intra_mode[0] = 0; mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] = 0; mic->mbmi.angle_delta[0] = 0; memset(directional_mode_skip_mask, 0, sizeof(directional_mode_skip_mask[0]) * INTRA_MODES); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) highbd_angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask); else #endif angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask); #endif // CONFIG_EXT_INTRA palette_mode_info.palette_size[0] = 0; pmi->palette_size[0] = 0; if (above_mi) palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); if (left_mi) palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); if (cpi->sf.tx_type_search.fast_intra_tx_type_search) x->use_default_intra_tx_type = 1; else x->use_default_intra_tx_type = 0; /* Y Search for intra prediction mode */ for (mode_idx = DC_PRED; mode_idx <= FINAL_MODE_SEARCH; ++mode_idx) { if (mode_idx == FINAL_MODE_SEARCH) { if (x->use_default_intra_tx_type == 0) break; mic->mbmi.mode = mode_selected; x->use_default_intra_tx_type = 0; } else { mic->mbmi.mode = mode_idx; } #if CONFIG_EXT_INTRA is_directional_mode = (mic->mbmi.mode != DC_PRED && mic->mbmi.mode != TM_PRED); if (is_directional_mode && directional_mode_skip_mask[mic->mbmi.mode]) continue; if (is_directional_mode) { rate_overhead = bmode_costs[mic->mbmi.mode] + write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0); this_rate_tokenonly = INT_MAX; this_rd = rd_pick_intra_angle_sby(cpi, x, &this_rate, &this_rate_tokenonly, &this_distortion, &s, bsize, rate_overhead, best_rd); } else { mic->mbmi.angle_delta[0] = 0; super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, best_rd); } #else super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, best_rd); #endif // CONFIG_EXT_INTRA if (this_rate_tokenonly == INT_MAX) continue; this_rate = this_rate_tokenonly + bmode_costs[mic->mbmi.mode]; if (!xd->lossless[xd->mi[0]->mbmi.segment_id]) { // super_block_yrd above includes the cost of the tx_size in the // tokenonly rate, but for intra blocks, tx_size is always coded // (prediction granularity), so we account for it in the full rate, // not the tokenonly rate. this_rate_tokenonly -= cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)] [mic->mbmi.tx_size]; } if (cpi->common.allow_screen_content_tools && mic->mbmi.mode == DC_PRED) this_rate += av1_cost_bit( av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0); #if CONFIG_EXT_INTRA if (mic->mbmi.mode == DC_PRED && ALLOW_FILTER_INTRA_MODES) this_rate += av1_cost_bit(cpi->common.fc->ext_intra_probs[0], 0); if (is_directional_mode) { int p_angle; this_rate += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mic->mbmi.angle_delta[0]); p_angle = mode_to_angle_map[mic->mbmi.mode] + mic->mbmi.angle_delta[0] * ANGLE_STEP; if (av1_is_intra_filter_switchable(p_angle)) this_rate += cpi->intra_filter_cost[intra_filter_ctx][mic->mbmi.intra_filter]; } #endif // CONFIG_EXT_INTRA this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); #if CONFIG_EXT_INTRA if (best_rd == INT64_MAX || this_rd - best_rd < (best_rd >> 4)) { filter_intra_mode_skip_mask ^= (1 << mic->mbmi.mode); } #endif // CONFIG_EXT_INTRA if (this_rd < best_rd) { mode_selected = mic->mbmi.mode; best_rd = this_rd; best_tx = mic->mbmi.tx_size; #if CONFIG_EXT_INTRA best_angle_delta = mic->mbmi.angle_delta[0]; best_filter = mic->mbmi.intra_filter; beat_best_rd = 1; #endif // CONFIG_EXT_INTRA best_tx_type = mic->mbmi.tx_type; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } if (cpi->common.allow_screen_content_tools) rd_pick_palette_intra_sby(cpi, x, bsize, palette_ctx, bmode_costs[DC_PRED], &palette_mode_info, best_palette_color_map, &best_tx, &best_tx_type, &mode_selected, &best_rd); #if CONFIG_EXT_INTRA if (ALLOW_FILTER_INTRA_MODES && beat_best_rd) { if (rd_pick_ext_intra_sby(cpi, x, rate, rate_tokenonly, distortion, skippable, bsize, bmode_costs[DC_PRED], &best_rd, filter_intra_mode_skip_mask)) { mode_selected = mic->mbmi.mode; best_tx = mic->mbmi.tx_size; ext_intra_mode_info = mic->mbmi.ext_intra_mode_info; best_tx_type = mic->mbmi.tx_type; } } mic->mbmi.ext_intra_mode_info.use_ext_intra_mode[0] = ext_intra_mode_info.use_ext_intra_mode[0]; if (ext_intra_mode_info.use_ext_intra_mode[0]) { mic->mbmi.ext_intra_mode_info.ext_intra_mode[0] = ext_intra_mode_info.ext_intra_mode[0]; palette_mode_info.palette_size[0] = 0; } #endif // CONFIG_EXT_INTRA mic->mbmi.mode = mode_selected; mic->mbmi.tx_size = best_tx; #if CONFIG_EXT_INTRA mic->mbmi.angle_delta[0] = best_angle_delta; mic->mbmi.intra_filter = best_filter; #endif // CONFIG_EXT_INTRA mic->mbmi.tx_type = best_tx_type; pmi->palette_size[0] = palette_mode_info.palette_size[0]; if (palette_mode_info.palette_size[0] > 0) { memcpy(pmi->palette_colors, palette_mode_info.palette_colors, PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0])); memcpy(xd->plane[0].color_index_map, best_palette_color_map, rows * cols * sizeof(best_palette_color_map[0])); } return best_rd; } // Return value 0: early termination triggered, no valid rd cost available; // 1: rd cost values are valid. static int super_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, BLOCK_SIZE bsize, int64_t ref_best_rd) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]); int plane; int pnrate = 0, pnskip = 1; int64_t pndist = 0, pnsse = 0; int is_cost_valid = 1; if (ref_best_rd < 0) is_cost_valid = 0; if (is_inter_block(mbmi) && is_cost_valid) { int plane; for (plane = 1; plane < MAX_MB_PLANE; ++plane) av1_subtract_plane(x, bsize, plane); } *rate = 0; *distortion = 0; *sse = 0; *skippable = 1; for (plane = 1; plane < MAX_MB_PLANE; ++plane) { txfm_rd_in_plane(x, cpi, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd, plane, bsize, uv_tx_size, cpi->sf.use_fast_coef_costing); if (pnrate == INT_MAX) { is_cost_valid = 0; break; } *rate += pnrate; *distortion += pndist; *sse += pnsse; *skippable &= pnskip; if (RDCOST(x->rdmult, x->rddiv, *rate, *distortion) > ref_best_rd && RDCOST(x->rdmult, x->rddiv, 0, *sse) > ref_best_rd) { is_cost_valid = 0; break; } } if (!is_cost_valid) { // reset cost value *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } return is_cost_valid; } #if CONFIG_VAR_TX void av1_tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size, int blk_row, int blk_col, int plane, int block, int plane_bsize, int coeff_ctx, int *rate, int64_t *dist, int64_t *bsse, int *skip) { MACROBLOCKD *xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; int64_t tmp; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const scan_order *const scan_order = get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); BLOCK_SIZE txm_bsize = txsize_to_bsize[tx_size]; int bh = 4 * num_4x4_blocks_wide_lookup[txm_bsize]; int src_stride = p->src.stride; uint8_t *src = &p->src.buf[4 * blk_row * src_stride + 4 * blk_col]; uint8_t *dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col]; #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, rec_buffer16[MAX_TX_SQUARE]); uint8_t *rec_buffer; #else DECLARE_ALIGNED(16, uint8_t, rec_buffer[MAX_TX_SQUARE]); #endif // CONFIG_AOM_HIGHBITDEPTH const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize]; int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize]; #if CONFIG_EXT_TX assert(tx_size < TX_SIZES); #endif // CONFIG_EXT_TX if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y); if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x); #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, coeff_ctx); #else av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT av1_optimize_b(x, plane, block, tx_size, coeff_ctx); // TODO(any): Use dist_block to compute distortion #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { rec_buffer = CONVERT_TO_BYTEPTR(rec_buffer16); aom_highbd_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0, NULL, 0, bh, bh, xd->bd); } else { rec_buffer = (uint8_t *)rec_buffer16; aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0, NULL, 0, bh, bh); } #else aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0, NULL, 0, bh, bh); #endif // CONFIG_AOM_HIGHBITDEPTH if (blk_row + (bh >> 2) > max_blocks_high || blk_col + (bh >> 2) > max_blocks_wide) { int idx, idy; int blocks_height = AOMMIN(bh >> 2, max_blocks_high - blk_row); int blocks_width = AOMMIN(bh >> 2, max_blocks_wide - blk_col); tmp = 0; for (idy = 0; idy < blocks_height; idy += 2) { for (idx = 0; idx < blocks_width; idx += 2) { const int16_t *d = diff + 4 * idy * diff_stride + 4 * idx; tmp += aom_sum_squares_2d_i16(d, diff_stride, 8); } } } else { tmp = aom_sum_squares_2d_i16(diff, diff_stride, bh); } #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) tmp = ROUND_POWER_OF_TWO(tmp, (xd->bd - 8) * 2); #endif // CONFIG_AOM_HIGHBITDEPTH *bsse += tmp * 16; if (p->eobs[block] > 0) { INV_TXFM_PARAM inv_txfm_param; inv_txfm_param.tx_type = tx_type; inv_txfm_param.tx_size = tx_size; inv_txfm_param.eob = p->eobs[block]; inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { inv_txfm_param.bd = xd->bd; highbd_inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param); } else { inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param); } #else // CONFIG_AOM_HIGHBITDEPTH inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param); #endif // CONFIG_AOM_HIGHBITDEPTH if ((bh >> 2) + blk_col > max_blocks_wide || (bh >> 2) + blk_row > max_blocks_high) { int idx, idy; unsigned int this_dist; int blocks_height = AOMMIN(bh >> 2, max_blocks_high - blk_row); int blocks_width = AOMMIN(bh >> 2, max_blocks_wide - blk_col); tmp = 0; for (idy = 0; idy < blocks_height; idy += 2) { for (idx = 0; idx < blocks_width; idx += 2) { uint8_t *const s = src + 4 * idy * src_stride + 4 * idx; uint8_t *const r = rec_buffer + 4 * idy * MAX_TX_SIZE + 4 * idx; cpi->fn_ptr[BLOCK_8X8].vf(s, src_stride, r, MAX_TX_SIZE, &this_dist); tmp += this_dist; } } } else { uint32_t this_dist; cpi->fn_ptr[txm_bsize].vf(src, src_stride, rec_buffer, MAX_TX_SIZE, &this_dist); tmp = this_dist; } } *dist += tmp * 16; *rate += cost_coeffs(x, plane, block, coeff_ctx, tx_size, scan_order->scan, scan_order->neighbors, 0); *skip &= (p->eobs[block] == 0); } static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int plane, int block, TX_SIZE tx_size, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, int *rate, int64_t *dist, int64_t *bsse, int *skip, int64_t ref_best_rd, int *is_cost_valid) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); TX_SIZE(*const inter_tx_size) [MAX_MIB_SIZE] = (TX_SIZE(*)[MAX_MIB_SIZE]) & mbmi->inter_tx_size[tx_row][tx_col]; const int bw = num_4x4_blocks_wide_lookup[plane_bsize]; int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize]; int max_blocks_wide = bw; int64_t this_rd = INT64_MAX; ENTROPY_CONTEXT *pta = ta + blk_col; ENTROPY_CONTEXT *ptl = tl + blk_row; ENTROPY_CONTEXT stxa = 0, stxl = 0; int coeff_ctx, i; int ctx = txfm_partition_context(tx_above + (blk_col >> 1), tx_left + (blk_row >> 1), tx_size); int64_t sum_dist = 0, sum_bsse = 0; int64_t sum_rd = INT64_MAX; int sum_rate = av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 1); int all_skip = 1; int tmp_eob = 0; int zero_blk_rate; #if CONFIG_EXT_TX assert(tx_size < TX_SIZES); #endif // CONFIG_EXT_TX if (ref_best_rd < 0) { *is_cost_valid = 0; return; } switch (tx_size) { case TX_4X4: stxa = pta[0]; stxl = ptl[0]; break; case TX_8X8: stxa = !!*(const uint16_t *)&pta[0]; stxl = !!*(const uint16_t *)&ptl[0]; break; case TX_16X16: stxa = !!*(const uint32_t *)&pta[0]; stxl = !!*(const uint32_t *)&ptl[0]; break; case TX_32X32: stxa = !!*(const uint64_t *)&pta[0]; stxl = !!*(const uint64_t *)&ptl[0]; break; default: assert(0 && "Invalid transform size."); break; } coeff_ctx = combine_entropy_contexts(stxa, stxl); if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y); if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x); *rate = 0; *dist = 0; *bsse = 0; *skip = 1; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; zero_blk_rate = x->token_costs[tx_size][pd->plane_type][1][0][0][coeff_ctx][EOB_TOKEN]; if (cpi->common.tx_mode == TX_MODE_SELECT || tx_size == TX_4X4) { inter_tx_size[0][0] = tx_size; av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, plane_bsize, coeff_ctx, rate, dist, bsse, skip); if ((RDCOST(x->rdmult, x->rddiv, *rate, *dist) >= RDCOST(x->rdmult, x->rddiv, zero_blk_rate, *bsse) || *skip == 1) && !xd->lossless[mbmi->segment_id]) { *rate = zero_blk_rate; *dist = *bsse; *skip = 1; x->blk_skip[plane][blk_row * bw + blk_col] = 1; p->eobs[block] = 0; } else { x->blk_skip[plane][blk_row * bw + blk_col] = 0; *skip = 0; } if (tx_size > TX_4X4) *rate += av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 0); this_rd = RDCOST(x->rdmult, x->rddiv, *rate, *dist); tmp_eob = p->eobs[block]; } if (tx_size > TX_4X4) { BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; int bsl = b_height_log2_lookup[bsize]; int sub_step = num_4x4_blocks_txsize_lookup[tx_size - 1]; int i; int this_rate; int64_t this_dist; int64_t this_bsse; int this_skip; int this_cost_valid = 1; int64_t tmp_rd = 0; #if CONFIG_EXT_TX assert(tx_size < TX_SIZES); #endif // CONFIG_EXT_TX --bsl; for (i = 0; i < 4 && this_cost_valid; ++i) { int offsetr = (i >> 1) << bsl; int offsetc = (i & 0x01) << bsl; select_tx_block(cpi, x, blk_row + offsetr, blk_col + offsetc, plane, block + i * sub_step, tx_size - 1, plane_bsize, ta, tl, tx_above, tx_left, &this_rate, &this_dist, &this_bsse, &this_skip, ref_best_rd - tmp_rd, &this_cost_valid); sum_rate += this_rate; sum_dist += this_dist; sum_bsse += this_bsse; all_skip &= this_skip; tmp_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (this_rd < tmp_rd) break; } if (this_cost_valid) sum_rd = tmp_rd; } if (this_rd < sum_rd) { int idx, idy; for (i = 0; i < num_4x4_blocks_wide_txsize_lookup[tx_size]; ++i) pta[i] = !(tmp_eob == 0); for (i = 0; i < num_4x4_blocks_high_txsize_lookup[tx_size]; ++i) ptl[i] = !(tmp_eob == 0); txfm_partition_update(tx_above + (blk_col >> 1), tx_left + (blk_row >> 1), tx_size); inter_tx_size[0][0] = tx_size; for (idy = 0; idy < num_4x4_blocks_high_txsize_lookup[tx_size] / 2; ++idy) for (idx = 0; idx < num_4x4_blocks_wide_txsize_lookup[tx_size] / 2; ++idx) inter_tx_size[idy][idx] = tx_size; mbmi->tx_size = tx_size; if (this_rd == INT64_MAX) *is_cost_valid = 0; x->blk_skip[plane][blk_row * bw + blk_col] = *skip; } else { *rate = sum_rate; *dist = sum_dist; *bsse = sum_bsse; *skip = all_skip; if (sum_rd == INT64_MAX) *is_cost_valid = 0; } } static void inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, BLOCK_SIZE bsize, int64_t ref_best_rd) { MACROBLOCKD *const xd = &x->e_mbd; int is_cost_valid = 1; int64_t this_rd = 0; if (ref_best_rd < 0) is_cost_valid = 0; *rate = 0; *distortion = 0; *sse = 0; *skippable = 1; if (is_cost_valid) { const struct macroblockd_plane *const pd = &xd->plane[0]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize]; const int mi_height = num_4x4_blocks_high_lookup[plane_bsize]; BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize_lookup[plane_bsize]]; int bh = num_4x4_blocks_wide_lookup[txb_size]; int idx, idy; int block = 0; int step = 1 << (max_txsize_lookup[plane_bsize] * 2); ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; int pnrate = 0, pnskip = 1; int64_t pndist = 0, pnsse = 0; av1_get_entropy_contexts(bsize, TX_4X4, pd, ctxa, ctxl); memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * (mi_width >> 1)); memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * (mi_height >> 1)); for (idy = 0; idy < mi_height; idy += bh) { for (idx = 0; idx < mi_width; idx += bh) { select_tx_block(cpi, x, idy, idx, 0, block, max_txsize_lookup[plane_bsize], plane_bsize, ctxa, ctxl, tx_above, tx_left, &pnrate, &pndist, &pnsse, &pnskip, ref_best_rd - this_rd, &is_cost_valid); *rate += pnrate; *distortion += pndist; *sse += pnsse; *skippable &= pnskip; this_rd += AOMMIN(RDCOST(x->rdmult, x->rddiv, pnrate, pndist), RDCOST(x->rdmult, x->rddiv, 0, pnsse)); block += step; } } } this_rd = AOMMIN(RDCOST(x->rdmult, x->rddiv, *rate, *distortion), RDCOST(x->rdmult, x->rddiv, 0, *sse)); if (this_rd > ref_best_rd) is_cost_valid = 0; if (!is_cost_valid) { // reset cost value *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } } static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist, int *skippable, int64_t *sse, BLOCK_SIZE bsize, int64_t ref_best_rd, TX_TYPE tx_type) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int is_inter = is_inter_block(mbmi); aom_prob skip_prob = av1_get_skip_prob(cm, xd); int s0 = av1_cost_bit(skip_prob, 0); int s1 = av1_cost_bit(skip_prob, 1); int64_t rd; mbmi->tx_type = tx_type; inter_block_yrd(cpi, x, rate, dist, skippable, sse, bsize, ref_best_rd); #if CONFIG_EXT_TX && CONFIG_RECT_TX if (is_rect_tx_allowed(xd, mbmi)) { int rate_rect_tx, skippable_rect_tx = 0; int64_t dist_rect_tx, sse_rect_tx, rd, rd_rect_tx; int tx_size_cat = inter_tx_size_cat_lookup[bsize]; TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; TX_SIZE var_tx_size = mbmi->tx_size; txfm_rd_in_plane(x, cpi, &rate_rect_tx, &dist_rect_tx, &skippable_rect_tx, &sse_rect_tx, ref_best_rd, 0, bsize, tx_size, cpi->sf.use_fast_coef_costing); if (*rate != INT_MAX) { *rate += av1_cost_bit(cm->fc->rect_tx_prob[tx_size_cat], 0); if (*skippable) { rd = RDCOST(x->rdmult, x->rddiv, s1, *sse); } else { rd = RDCOST(x->rdmult, x->rddiv, *rate + s0, *dist); if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !(*skippable)) rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, *sse)); } } else { rd = INT64_MAX; } if (rate_rect_tx != INT_MAX) { rate_rect_tx += av1_cost_bit(cm->fc->rect_tx_prob[tx_size_cat], 1); if (skippable_rect_tx) { rd_rect_tx = RDCOST(x->rdmult, x->rddiv, s1, sse_rect_tx); } else { rd_rect_tx = RDCOST(x->rdmult, x->rddiv, rate_rect_tx + s0, dist_rect_tx); if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !(skippable_rect_tx)) rd_rect_tx = AOMMIN(rd_rect_tx, RDCOST(x->rdmult, x->rddiv, s1, sse_rect_tx)); } } else { rd_rect_tx = INT64_MAX; } if (rd_rect_tx < rd) { *rate = rate_rect_tx; *dist = dist_rect_tx; *sse = sse_rect_tx; *skippable = skippable_rect_tx; if (!xd->lossless[mbmi->segment_id]) x->blk_skip[0][0] = *skippable; mbmi->tx_size = tx_size; mbmi->inter_tx_size[0][0] = mbmi->tx_size; } else { mbmi->tx_size = var_tx_size; } } #endif // CONFIG_EXT_TX && CONFIG_RECT_TX if (*rate == INT_MAX) return INT64_MAX; #if CONFIG_EXT_TX if (get_ext_tx_types(mbmi->tx_size, bsize, is_inter) > 1 && !xd->lossless[xd->mi[0]->mbmi.segment_id]) { int ext_tx_set = get_ext_tx_set(mbmi->tx_size, bsize, is_inter); if (is_inter) { if (ext_tx_set > 0) *rate += cpi->inter_tx_type_costs[ext_tx_set] [txsize_sqr_up_map[mbmi->tx_size]] [mbmi->tx_type]; } else { if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX) *rate += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->mode] [mbmi->tx_type]; } } #else // CONFIG_EXT_TX if (mbmi->tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id]) { if (is_inter) *rate += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type]; else *rate += cpi->intra_tx_type_costs[mbmi->tx_size] [intra_mode_to_tx_type_context[mbmi->mode]] [mbmi->tx_type]; } #endif // CONFIG_EXT_TX if (*skippable) rd = RDCOST(x->rdmult, x->rddiv, s1, *sse); else rd = RDCOST(x->rdmult, x->rddiv, *rate + s0, *dist); if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !(*skippable)) rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, *sse)); return rd; } static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, BLOCK_SIZE bsize, int64_t ref_best_rd) { const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int64_t rd = INT64_MAX; int64_t best_rd = INT64_MAX; TX_TYPE tx_type, best_tx_type = DCT_DCT; const int is_inter = is_inter_block(mbmi); TX_SIZE best_tx_size[MAX_MIB_SIZE][MAX_MIB_SIZE]; TX_SIZE best_tx = max_txsize_lookup[bsize]; uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE * 4]; const int n4 = 1 << (num_pels_log2_lookup[bsize] - 4); int idx, idy; int prune = 0; #if CONFIG_EXT_TX int ext_tx_set = get_ext_tx_set(max_tx_size, bsize, is_inter); #endif // CONFIG_EXT_TX if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE) #if CONFIG_EXT_TX prune = prune_tx_types(cpi, bsize, x, xd, ext_tx_set); #else prune = prune_tx_types(cpi, bsize, x, xd, 0); #endif *distortion = INT64_MAX; *rate = INT_MAX; *skippable = 0; *sse = INT64_MAX; for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) { int this_rate = 0; int this_skip = 1; int64_t this_dist = 0; int64_t this_sse = 0; #if CONFIG_EXT_TX if (is_inter) { if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue; if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { if (!do_tx_type_search(tx_type, prune)) continue; } } else { if (!ALLOW_INTRA_EXT_TX && bsize >= BLOCK_8X8) { if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue; } if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue; } #else // CONFIG_EXT_TX if (max_tx_size >= TX_32X32 && tx_type != DCT_DCT) continue; if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE && !do_tx_type_search(tx_type, prune)) continue; #endif // CONFIG_EXT_TX if (is_inter && x->use_default_inter_tx_type && tx_type != get_default_tx_type(0, xd, 0, max_tx_size)) continue; rd = select_tx_size_fix_type(cpi, x, &this_rate, &this_dist, &this_skip, &this_sse, bsize, ref_best_rd, tx_type); if (rd < best_rd) { best_rd = rd; *distortion = this_dist; *rate = this_rate; *skippable = this_skip; *sse = this_sse; best_tx_type = mbmi->tx_type; best_tx = mbmi->tx_size; memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4); for (idy = 0; idy < xd->n8_h; ++idy) for (idx = 0; idx < xd->n8_w; ++idx) best_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx]; } } mbmi->tx_type = best_tx_type; for (idy = 0; idy < xd->n8_h; ++idy) for (idx = 0; idx < xd->n8_w; ++idx) mbmi->inter_tx_size[idy][idx] = best_tx_size[idy][idx]; mbmi->tx_size = best_tx; memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4); } static void tx_block_rd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int plane, int block, TX_SIZE tx_size, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx, int *rate, int64_t *dist, int64_t *bsse, int *skip) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); TX_SIZE plane_tx_size; int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize]; int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize]; #if CONFIG_EXT_TX assert(tx_size < TX_SIZES); #endif // CONFIG_EXT_TX if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y); if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; plane_tx_size = plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] : mbmi->inter_tx_size[tx_row][tx_col]; if (tx_size == plane_tx_size) { int coeff_ctx, i; ENTROPY_CONTEXT *ta = above_ctx + blk_col; ENTROPY_CONTEXT *tl = left_ctx + blk_row; switch (tx_size) { case TX_4X4: break; case TX_8X8: ta[0] = !!*(const uint16_t *)&ta[0]; tl[0] = !!*(const uint16_t *)&tl[0]; break; case TX_16X16: ta[0] = !!*(const uint32_t *)&ta[0]; tl[0] = !!*(const uint32_t *)&tl[0]; break; case TX_32X32: ta[0] = !!*(const uint64_t *)&ta[0]; tl[0] = !!*(const uint64_t *)&tl[0]; break; default: assert(0 && "Invalid transform size."); break; } coeff_ctx = combine_entropy_contexts(ta[0], tl[0]); av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, plane_bsize, coeff_ctx, rate, dist, bsse, skip); for (i = 0; i < num_4x4_blocks_wide_txsize_lookup[tx_size]; ++i) ta[i] = !(p->eobs[block] == 0); for (i = 0; i < num_4x4_blocks_high_txsize_lookup[tx_size]; ++i) tl[i] = !(p->eobs[block] == 0); } else { int bsl = b_width_log2_lookup[bsize]; int step = num_4x4_blocks_txsize_lookup[tx_size - 1]; int i; assert(bsl > 0); --bsl; for (i = 0; i < 4; ++i) { int offsetr = (i >> 1) << bsl; int offsetc = (i & 0x01) << bsl; tx_block_rd(cpi, x, blk_row + offsetr, blk_col + offsetc, plane, block + i * step, tx_size - 1, plane_bsize, above_ctx, left_ctx, rate, dist, bsse, skip); } } } // Return value 0: early termination triggered, no valid rd cost available; // 1: rd cost values are valid. static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, BLOCK_SIZE bsize, int64_t ref_best_rd) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int plane; int is_cost_valid = 1; int64_t this_rd; if (ref_best_rd < 0) is_cost_valid = 0; *rate = 0; *distortion = 0; *sse = 0; *skippable = 1; #if CONFIG_EXT_TX && CONFIG_RECT_TX if (is_rect_tx(mbmi->tx_size)) { return super_block_uvrd(cpi, x, rate, distortion, skippable, sse, bsize, ref_best_rd); } #endif // CONFIG_EXT_TX && CONFIG_RECT_TX if (is_inter_block(mbmi) && is_cost_valid) { int plane; for (plane = 1; plane < MAX_MB_PLANE; ++plane) av1_subtract_plane(x, bsize, plane); } for (plane = 1; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize]; const int mi_height = num_4x4_blocks_high_lookup[plane_bsize]; BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize_lookup[plane_bsize]]; int bh = num_4x4_blocks_wide_lookup[txb_size]; int idx, idy; int block = 0; int step = 1 << (max_txsize_lookup[plane_bsize] * 2); int pnrate = 0, pnskip = 1; int64_t pndist = 0, pnsse = 0; ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE]; ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE]; av1_get_entropy_contexts(bsize, TX_4X4, pd, ta, tl); for (idy = 0; idy < mi_height; idy += bh) { for (idx = 0; idx < mi_width; idx += bh) { tx_block_rd(cpi, x, idy, idx, plane, block, max_txsize_lookup[plane_bsize], plane_bsize, ta, tl, &pnrate, &pndist, &pnsse, &pnskip); block += step; } } if (pnrate == INT_MAX) { is_cost_valid = 0; break; } *rate += pnrate; *distortion += pndist; *sse += pnsse; *skippable &= pnskip; this_rd = AOMMIN(RDCOST(x->rdmult, x->rddiv, *rate, *distortion), RDCOST(x->rdmult, x->rddiv, 0, *sse)); if (this_rd > ref_best_rd) { is_cost_valid = 0; break; } } if (!is_cost_valid) { // reset cost value *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } return is_cost_valid; } #endif // CONFIG_VAR_TX static void rd_pick_palette_intra_sbuv( AV1_COMP *cpi, MACROBLOCK *x, int dc_mode_cost, PALETTE_MODE_INFO *palette_mode_info, uint8_t *best_palette_color_map, PREDICTION_MODE *mode_selected, int64_t *best_rd, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >> (xd->plane[1].subsampling_y); const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >> (xd->plane[1].subsampling_x); int this_rate, this_rate_tokenonly, s; int64_t this_distortion, this_rd; int colors_u, colors_v, colors; const int src_stride = x->plane[1].src.stride; const uint8_t *const src_u = x->plane[1].src.buf; const uint8_t *const src_v = x->plane[2].src.buf; if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return; #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; #endif // CONFIG_EXT_INTRA #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) { colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols, cpi->common.bit_depth); colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols, cpi->common.bit_depth); } else { #endif // CONFIG_AOM_HIGHBITDEPTH colors_u = av1_count_colors(src_u, src_stride, rows, cols); colors_v = av1_count_colors(src_v, src_stride, rows, cols); #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH colors = colors_u > colors_v ? colors_u : colors_v; if (colors > 1 && colors <= 64) { int r, c, n, i, j; const int max_itr = 50; int color_ctx, color_idx = 0; int color_order[PALETTE_MAX_SIZE]; int64_t this_sse; float lb_u, ub_u, val_u; float lb_v, ub_v, val_v; float *const data = x->palette_buffer->kmeans_data_buf; float centroids[2 * PALETTE_MAX_SIZE]; uint8_t *const color_map = xd->plane[1].color_index_map; PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; #if CONFIG_AOM_HIGHBITDEPTH uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u); uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v); if (cpi->common.use_highbitdepth) { lb_u = src_u16[0]; ub_u = src_u16[0]; lb_v = src_v16[0]; ub_v = src_v16[0]; } else { #endif // CONFIG_AOM_HIGHBITDEPTH lb_u = src_u[0]; ub_u = src_u[0]; lb_v = src_v[0]; ub_v = src_v[0]; #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH mbmi->uv_mode = DC_PRED; #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; #endif // CONFIG_EXT_INTRA for (r = 0; r < rows; ++r) { for (c = 0; c < cols; ++c) { #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) { val_u = src_u16[r * src_stride + c]; val_v = src_v16[r * src_stride + c]; data[(r * cols + c) * 2] = val_u; data[(r * cols + c) * 2 + 1] = val_v; } else { #endif // CONFIG_AOM_HIGHBITDEPTH val_u = src_u[r * src_stride + c]; val_v = src_v[r * src_stride + c]; data[(r * cols + c) * 2] = val_u; data[(r * cols + c) * 2 + 1] = val_v; #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH if (val_u < lb_u) lb_u = val_u; else if (val_u > ub_u) ub_u = val_u; if (val_v < lb_v) lb_v = val_v; else if (val_v > ub_v) ub_v = val_v; } } for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; --n) { for (i = 0; i < n; ++i) { centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2; centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2; } av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr); pmi->palette_size[1] = n; for (i = 1; i < 3; ++i) { for (j = 0; j < n; ++j) { #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd( (int)centroids[j * 2 + i - 1], cpi->common.bit_depth); else #endif // CONFIG_AOM_HIGHBITDEPTH pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel((int)centroids[j * 2 + i - 1]); } } super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, *best_rd); if (this_rate_tokenonly == INT_MAX) continue; this_rate = this_rate_tokenonly + dc_mode_cost + 2 * cpi->common.bit_depth * n * av1_cost_bit(128, 0) + cpi->palette_uv_size_cost[bsize - BLOCK_8X8][n - 2] + write_uniform_cost(n, color_map[0]) + av1_cost_bit( av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 1); for (i = 0; i < rows; ++i) { for (j = (i == 0 ? 1 : 0); j < cols; ++j) { color_ctx = av1_get_palette_color_context(color_map, cols, i, j, n, color_order); for (r = 0; r < n; ++r) if (color_map[i * cols + j] == color_order[r]) { color_idx = r; break; } assert(color_idx >= 0 && color_idx < n); this_rate += cpi->palette_uv_color_cost[n - 2][color_ctx][color_idx]; } } this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < *best_rd) { *best_rd = this_rd; *palette_mode_info = *pmi; memcpy(best_palette_color_map, color_map, rows * cols * sizeof(best_palette_color_map[0])); *mode_selected = DC_PRED; *rate = this_rate; *distortion = this_distortion; *rate_tokenonly = this_rate_tokenonly; *skippable = s; } } } } #if CONFIG_EXT_INTRA // Return 1 if an ext intra mode is selected; return 0 otherwise. static int rd_pick_ext_intra_sbuv(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, int64_t *best_rd) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; int ext_intra_selected_flag = 0; int this_rate_tokenonly, this_rate, s; int64_t this_distortion, this_sse, this_rd; EXT_INTRA_MODE mode; EXT_INTRA_MODE_INFO ext_intra_mode_info; av1_zero(ext_intra_mode_info); mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 1; mbmi->uv_mode = DC_PRED; mbmi->palette_mode_info.palette_size[1] = 0; for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { mbmi->ext_intra_mode_info.ext_intra_mode[1] = mode; if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, *best_rd)) continue; this_rate = this_rate_tokenonly + av1_cost_bit(cpi->common.fc->ext_intra_probs[1], 1) + cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode] + write_uniform_cost(FILTER_INTRA_MODES, mode); this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < *best_rd) { *best_rd = this_rd; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; ext_intra_mode_info = mbmi->ext_intra_mode_info; ext_intra_selected_flag = 1; } } if (ext_intra_selected_flag) { mbmi->uv_mode = DC_PRED; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = ext_intra_mode_info.use_ext_intra_mode[1]; mbmi->ext_intra_mode_info.ext_intra_mode[1] = ext_intra_mode_info.ext_intra_mode[1]; return 1; } else { return 0; } } static void pick_intra_angle_routine_sbuv(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, int *best_angle_delta, BLOCK_SIZE bsize, int rate_overhead, int64_t *best_rd) { MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; int this_rate_tokenonly, this_rate, s; int64_t this_distortion, this_sse, this_rd; if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, *best_rd)) return; this_rate = this_rate_tokenonly + rate_overhead; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < *best_rd) { *best_rd = this_rd; *best_angle_delta = mbmi->angle_delta[1]; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } static int rd_pick_intra_angle_sbuv(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, int rate_overhead, int64_t best_rd) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; int this_rate_tokenonly, this_rate, s; int64_t this_distortion, this_sse, this_rd; int angle_delta, best_angle_delta = 0; const double rd_adjust = 1.2; *rate_tokenonly = INT_MAX; if (ANGLE_FAST_SEARCH) { int deltas_level1[3] = { 0, -2, 2 }; int deltas_level2[3][2] = { { -1, 1 }, { -3, -1 }, { 1, 3 }, }; const int level1 = 3, level2 = 2; int i, j, best_i = -1; for (i = 0; i < level1; ++i) { int64_t tmp_best_rd; mbmi->angle_delta[1] = deltas_level1[i]; tmp_best_rd = (i == 0 && best_rd < INT64_MAX) ? (int64_t)(best_rd * rd_adjust) : best_rd; if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, tmp_best_rd)) { if (i == 0) break; else continue; } this_rate = this_rate_tokenonly + rate_overhead; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (i == 0 && best_rd < INT64_MAX && this_rd > best_rd * rd_adjust) break; if (this_rd < best_rd) { best_i = i; best_rd = this_rd; best_angle_delta = mbmi->angle_delta[1]; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } if (best_i >= 0) { for (j = 0; j < level2; ++j) { mbmi->angle_delta[1] = deltas_level2[best_i][j]; pick_intra_angle_routine_sbuv(cpi, x, rate, rate_tokenonly, distortion, skippable, &best_angle_delta, bsize, rate_overhead, &best_rd); } } } else { for (angle_delta = -MAX_ANGLE_DELTAS; angle_delta <= MAX_ANGLE_DELTAS; ++angle_delta) { mbmi->angle_delta[1] = angle_delta; pick_intra_angle_routine_sbuv(cpi, x, rate, rate_tokenonly, distortion, skippable, &best_angle_delta, bsize, rate_overhead, &best_rd); } } mbmi->angle_delta[1] = best_angle_delta; return *rate_tokenonly != INT_MAX; } #endif // CONFIG_EXT_INTRA static int64_t rd_pick_intra_sbuv_mode(AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, TX_SIZE max_tx_size) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; PREDICTION_MODE mode; PREDICTION_MODE mode_selected = DC_PRED; int64_t best_rd = INT64_MAX, this_rd; int this_rate_tokenonly, this_rate, s; int64_t this_distortion, this_sse; const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >> (xd->plane[1].subsampling_y); const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >> (xd->plane[1].subsampling_x); PALETTE_MODE_INFO palette_mode_info; PALETTE_MODE_INFO *const pmi = &xd->mi[0]->mbmi.palette_mode_info; uint8_t *best_palette_color_map = NULL; #if CONFIG_EXT_INTRA int is_directional_mode, rate_overhead, best_angle_delta = 0; EXT_INTRA_MODE_INFO ext_intra_mode_info; ext_intra_mode_info.use_ext_intra_mode[1] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; #endif // CONFIG_EXT_INTRA palette_mode_info.palette_size[1] = 0; pmi->palette_size[1] = 0; for (mode = DC_PRED; mode <= TM_PRED; ++mode) { if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue; mbmi->uv_mode = mode; #if CONFIG_EXT_INTRA is_directional_mode = (mode != DC_PRED && mode != TM_PRED); rate_overhead = cpi->intra_uv_mode_cost[mbmi->mode][mode] + write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0); mbmi->angle_delta[1] = 0; if (mbmi->sb_type >= BLOCK_8X8 && is_directional_mode) { if (!rd_pick_intra_angle_sbuv(cpi, x, &this_rate, &this_rate_tokenonly, &this_distortion, &s, bsize, rate_overhead, best_rd)) continue; } else { if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, best_rd)) continue; } this_rate = this_rate_tokenonly + cpi->intra_uv_mode_cost[mbmi->mode][mode]; if (mbmi->sb_type >= BLOCK_8X8 && is_directional_mode) this_rate += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[1]); if (mbmi->sb_type >= BLOCK_8X8 && mode == DC_PRED && ALLOW_FILTER_INTRA_MODES) this_rate += av1_cost_bit(cpi->common.fc->ext_intra_probs[1], 0); #else if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, best_rd)) continue; this_rate = this_rate_tokenonly + cpi->intra_uv_mode_cost[mbmi->mode][mode]; #endif // CONFIG_EXT_INTRA if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8 && mode == DC_PRED) this_rate += av1_cost_bit( av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 0); this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < best_rd) { mode_selected = mode; #if CONFIG_EXT_INTRA best_angle_delta = mbmi->angle_delta[1]; #endif // CONFIG_EXT_INTRA best_rd = this_rd; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8) { best_palette_color_map = x->palette_buffer->best_palette_color_map; rd_pick_palette_intra_sbuv( cpi, x, cpi->intra_uv_mode_cost[mbmi->mode][DC_PRED], &palette_mode_info, best_palette_color_map, &mode_selected, &best_rd, rate, rate_tokenonly, distortion, skippable); } #if CONFIG_EXT_INTRA if (mbmi->sb_type >= BLOCK_8X8 && ALLOW_FILTER_INTRA_MODES) { if (rd_pick_ext_intra_sbuv(cpi, x, rate, rate_tokenonly, distortion, skippable, bsize, &best_rd)) { mode_selected = mbmi->uv_mode; ext_intra_mode_info = mbmi->ext_intra_mode_info; } } mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = ext_intra_mode_info.use_ext_intra_mode[1]; if (ext_intra_mode_info.use_ext_intra_mode[1]) { mbmi->ext_intra_mode_info.ext_intra_mode[1] = ext_intra_mode_info.ext_intra_mode[1]; palette_mode_info.palette_size[1] = 0; } mbmi->angle_delta[1] = best_angle_delta; #endif // CONFIG_EXT_INTRA mbmi->uv_mode = mode_selected; pmi->palette_size[1] = palette_mode_info.palette_size[1]; if (palette_mode_info.palette_size[1] > 0) { memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, palette_mode_info.palette_colors + PALETTE_MAX_SIZE, 2 * PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0])); memcpy(xd->plane[1].color_index_map, best_palette_color_map, rows * cols * sizeof(best_palette_color_map[0])); } return best_rd; } static int64_t rd_sbuv_dcpred(const AV1_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize) { int64_t unused; x->e_mbd.mi[0]->mbmi.uv_mode = DC_PRED; super_block_uvrd(cpi, x, rate_tokenonly, distortion, skippable, &unused, bsize, INT64_MAX); *rate = *rate_tokenonly + cpi->intra_uv_mode_cost[x->e_mbd.mi[0]->mbmi.mode][DC_PRED]; return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); } static void choose_intra_uv_mode(AV1_COMP *cpi, MACROBLOCK *const x, PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, TX_SIZE max_tx_size, int *rate_uv, int *rate_uv_tokenonly, int64_t *dist_uv, int *skip_uv, PREDICTION_MODE *mode_uv) { // Use an estimated rd for uv_intra based on DC_PRED if the // appropriate speed flag is set. if (cpi->sf.use_uv_intra_rd_estimate) { rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); // Else do a proper rd search for each possible transform size that may // be considered in the main rd loop. } else { (void)ctx; rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size); } *mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode; } static int cost_mv_ref(const AV1_COMP *cpi, PREDICTION_MODE mode, #if CONFIG_REF_MV && CONFIG_EXT_INTER int is_compound, #endif // CONFIG_REF_MV && CONFIG_EXT_INTER int16_t mode_context) { #if CONFIG_REF_MV int mode_cost = 0; #if CONFIG_EXT_INTER int16_t mode_ctx = is_compound ? mode_context : (mode_context & NEWMV_CTX_MASK); #else int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; #endif // CONFIG_EXT_INTER int16_t is_all_zero_mv = mode_context & (1 << ALL_ZERO_FLAG_OFFSET); assert(is_inter_mode(mode)); #if CONFIG_EXT_INTER if (is_compound) { return cpi->inter_compound_mode_cost[mode_context] [INTER_COMPOUND_OFFSET(mode)]; } else { if (mode == NEWMV || mode == NEWFROMNEARMV) { #else if (mode == NEWMV) { #endif // CONFIG_EXT_INTER mode_cost = cpi->newmv_mode_cost[mode_ctx][0]; #if CONFIG_EXT_INTER if (!is_compound) mode_cost += cpi->new2mv_mode_cost[mode == NEWFROMNEARMV]; #endif // CONFIG_EXT_INTER return mode_cost; } else { mode_cost = cpi->newmv_mode_cost[mode_ctx][1]; mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; if (is_all_zero_mv) return mode_cost; if (mode == ZEROMV) { mode_cost += cpi->zeromv_mode_cost[mode_ctx][0]; return mode_cost; } else { mode_cost += cpi->zeromv_mode_cost[mode_ctx][1]; mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6; if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7; if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8; mode_cost += cpi->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; return mode_cost; } } #if CONFIG_EXT_INTER } #endif // CONFIG_EXT_INTER #else assert(is_inter_mode(mode)); #if CONFIG_EXT_INTER if (is_inter_compound_mode(mode)) { return cpi->inter_compound_mode_cost[mode_context] [INTER_COMPOUND_OFFSET(mode)]; } else { #endif // CONFIG_EXT_INTER return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)]; #if CONFIG_EXT_INTER } #endif // CONFIG_EXT_INTER #endif } #if CONFIG_GLOBAL_MOTION static int get_gmbitcost(const Global_Motion_Params *gm, const aom_prob *probs) { int gmtype_cost[GLOBAL_MOTION_TYPES]; int bits; av1_cost_tokens(gmtype_cost, probs, av1_global_motion_types_tree); if (gm->motion_params.wmmat[2].as_int) { bits = (GM_ABS_TRANS_BITS + 1) * 2 + 4 * GM_ABS_ALPHA_BITS + 4; } else if (gm->motion_params.wmmat[1].as_int) { bits = (GM_ABS_TRANS_BITS + 1) * 2 + 2 * GM_ABS_ALPHA_BITS + 2; } else { bits = (gm->motion_params.wmmat[0].as_int ? ((GM_ABS_TRANS_BITS + 1) * 2) : 0); } return (bits << AV1_PROB_COST_SHIFT) + gmtype_cost[gm->gmtype]; } #define GLOBAL_MOTION_RATE(ref) \ (cpi->global_motion_used[ref] >= 2 \ ? 0 \ : get_gmbitcost(&cm->global_motion[(ref)], \ cm->fc->global_motion_types_prob) / \ 2); #endif // CONFIG_GLOBAL_MOTION static int set_and_cost_bmi_mvs(AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, int i, PREDICTION_MODE mode, int_mv this_mv[2], int_mv frame_mv[MB_MODE_COUNT] [TOTAL_REFS_PER_FRAME], int_mv seg_mvs[TOTAL_REFS_PER_FRAME], #if CONFIG_EXT_INTER int_mv compound_seg_newmvs[2], #endif // CONFIG_EXT_INTER int_mv *best_ref_mv[2], const int *mvjcost, int *mvcost[2]) { #if CONFIG_GLOBAL_MOTION const AV1_COMMON *cm = &cpi->common; #endif // CONFIG_GLOBAL_MOTION MODE_INFO *const mic = xd->mi[0]; const MB_MODE_INFO *const mbmi = &mic->mbmi; const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; int thismvcost = 0; int idx, idy; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; const int is_compound = has_second_ref(mbmi); int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]]; switch (mode) { case NEWMV: #if CONFIG_EXT_INTER case NEWFROMNEARMV: #endif // CONFIG_EXT_INTER this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int; #if CONFIG_EXT_INTER if (!cpi->common.allow_high_precision_mv || !av1_use_mv_hp(&best_ref_mv[0]->as_mv)) lower_mv_precision(&this_mv[0].as_mv, 0); #endif // CONFIG_EXT_INTER #if CONFIG_REF_MV for (idx = 0; idx < 1 + is_compound; ++idx) { this_mv[idx] = seg_mvs[mbmi->ref_frame[idx]]; av1_set_mvcost(x, mbmi->ref_frame[idx], idx, mbmi->ref_mv_idx); thismvcost += av1_mv_bit_cost(&this_mv[idx].as_mv, &best_ref_mv[idx]->as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT_SUB); } (void)mvjcost; (void)mvcost; #else thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); #if !CONFIG_EXT_INTER if (is_compound) { this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int; thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); } #endif // !CONFIG_EXT_INTER #endif break; case NEARMV: case NEARESTMV: this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int; if (is_compound) this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int; break; case ZEROMV: #if CONFIG_GLOBAL_MOTION this_mv[0].as_int = cpi->common.global_motion[mbmi->ref_frame[0]] .motion_params.wmmat[0] .as_int; thismvcost += GLOBAL_MOTION_RATE(mbmi->ref_frame[0]); if (is_compound) { this_mv[1].as_int = cpi->common.global_motion[mbmi->ref_frame[1]] .motion_params.wmmat[0] .as_int; thismvcost += GLOBAL_MOTION_RATE(mbmi->ref_frame[1]); } #else // CONFIG_GLOBAL_MOTION this_mv[0].as_int = 0; if (is_compound) this_mv[1].as_int = 0; #endif // CONFIG_GLOBAL_MOTION break; #if CONFIG_EXT_INTER case NEW_NEWMV: if (compound_seg_newmvs[0].as_int == INVALID_MV || compound_seg_newmvs[1].as_int == INVALID_MV) { this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int; this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int; } else { this_mv[0].as_int = compound_seg_newmvs[0].as_int; this_mv[1].as_int = compound_seg_newmvs[1].as_int; } if (!cpi->common.allow_high_precision_mv || !av1_use_mv_hp(&best_ref_mv[0]->as_mv)) lower_mv_precision(&this_mv[0].as_mv, 0); if (!cpi->common.allow_high_precision_mv || !av1_use_mv_hp(&best_ref_mv[1]->as_mv)) lower_mv_precision(&this_mv[1].as_mv, 0); thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); break; case NEW_NEARMV: case NEW_NEARESTMV: this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int; if (!cpi->common.allow_high_precision_mv || !av1_use_mv_hp(&best_ref_mv[0]->as_mv)) lower_mv_precision(&this_mv[0].as_mv, 0); thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int; break; case NEAR_NEWMV: case NEAREST_NEWMV: this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int; this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int; if (!cpi->common.allow_high_precision_mv || !av1_use_mv_hp(&best_ref_mv[1]->as_mv)) lower_mv_precision(&this_mv[1].as_mv, 0); thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); break; case NEAREST_NEARMV: case NEAR_NEARESTMV: case NEAREST_NEARESTMV: case NEAR_NEARMV: this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int; this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int; break; case ZERO_ZEROMV: this_mv[0].as_int = 0; this_mv[1].as_int = 0; break; #endif // CONFIG_EXT_INTER default: break; } mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int; if (is_compound) mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int; mic->bmi[i].as_mode = mode; #if CONFIG_REF_MV if (mode == NEWMV) { mic->bmi[i].pred_mv[0].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_int; if (is_compound) mic->bmi[i].pred_mv[1].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_int; } else { mic->bmi[i].pred_mv[0].as_int = this_mv[0].as_int; if (is_compound) mic->bmi[i].pred_mv[1].as_int = this_mv[1].as_int; } #endif for (idy = 0; idy < num_4x4_blocks_high; ++idy) for (idx = 0; idx < num_4x4_blocks_wide; ++idx) memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i])); #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (is_compound) mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; else #endif // CONFIG_EXT_INTER mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame, mbmi->sb_type, i); #endif #if CONFIG_REF_MV && CONFIG_EXT_INTER return cost_mv_ref(cpi, mode, is_compound, mode_ctx) + thismvcost; #else return cost_mv_ref(cpi, mode, mode_ctx) + thismvcost; #endif // CONFIG_REF_MV && CONFIG_EXT_INTER } static int64_t encode_inter_mb_segment(AV1_COMP *cpi, MACROBLOCK *x, int64_t best_yrd, int i, int *labelyrate, int64_t *distortion, int64_t *sse, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, int ir, int ic, int mi_row, int mi_col) { int k; MACROBLOCKD *xd = &x->e_mbd; struct macroblockd_plane *const pd = &xd->plane[0]; struct macroblock_plane *const p = &x->plane[0]; MODE_INFO *const mi = xd->mi[0]; const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; int idx, idy; const uint8_t *const src = &p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; uint8_t *const dst = &pd->dst.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; int64_t thisdistortion = 0, thissse = 0; int thisrate = 0; TX_SIZE tx_size = mi->mbmi.tx_size; TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, i, tx_size); const scan_order *so = get_scan(tx_size, tx_type, 1); const int num_4x4_w = num_4x4_blocks_wide_txsize_lookup[tx_size]; const int num_4x4_h = num_4x4_blocks_high_txsize_lookup[tx_size]; #if CONFIG_EXT_TX && CONFIG_RECT_TX assert(IMPLIES(xd->lossless[mi->mbmi.segment_id], tx_size == TX_4X4)); assert(IMPLIES(!xd->lossless[mi->mbmi.segment_id], tx_size == max_txsize_rect_lookup[mi->mbmi.sb_type])); #else assert(tx_size == TX_4X4); #endif // CONFIG_EXT_TX && CONFIG_RECT_TX assert(tx_type == DCT_DCT); av1_build_inter_predictor_sub8x8(xd, 0, i, ir, ic, mi_row, mi_col); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block( height, width, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src, p->src.stride, dst, pd->dst.stride, xd->bd); } else { aom_subtract_block(height, width, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src, p->src.stride, dst, pd->dst.stride); } #else aom_subtract_block(height, width, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src, p->src.stride, dst, pd->dst.stride); #endif // CONFIG_AOM_HIGHBITDEPTH k = i; for (idy = 0; idy < height / 4; idy += num_4x4_h) { for (idx = 0; idx < width / 4; idx += num_4x4_w) { int64_t dist, ssz, rd, rd1, rd2; int block; int coeff_ctx; k += (idy * 2 + idx); if (tx_size == TX_4X4) block = k; else block = (i ? 2 : 0); coeff_ctx = combine_entropy_contexts(*(ta + (k & 1)), *(tl + (k >> 1))); #if CONFIG_NEW_QUANT av1_xform_quant_fp_nuq(x, 0, block, idy + (i >> 1), idx + (i & 0x01), BLOCK_8X8, tx_size, coeff_ctx); #else av1_xform_quant(x, 0, block, idy + (i >> 1), idx + (i & 0x01), BLOCK_8X8, tx_size, AV1_XFORM_QUANT_FP); #endif // CONFIG_NEW_QUANT if (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0) av1_optimize_b(x, 0, block, tx_size, coeff_ctx); dist_block(cpi, x, 0, block, idy + (i >> 1), idx + (i & 0x1), tx_size, &dist, &ssz); thisdistortion += dist; thissse += ssz; thisrate += cost_coeffs(x, 0, block, coeff_ctx, tx_size, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); *(ta + (k & 1)) = !(p->eobs[block] == 0); *(tl + (k >> 1)) = !(p->eobs[block] == 0); #if CONFIG_EXT_TX if (tx_size == TX_8X4) { *(ta + (k & 1) + 1) = *(ta + (k & 1)); } if (tx_size == TX_4X8) { *(tl + (k >> 1) + 1) = *(tl + (k >> 1)); } #endif // CONFIG_EXT_TX rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion); rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse); rd = AOMMIN(rd1, rd2); if (rd >= best_yrd) return INT64_MAX; } } *distortion = thisdistortion; *labelyrate = thisrate; *sse = thissse; return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); } typedef struct { int eobs; int brate; int byrate; int64_t bdist; int64_t bsse; int64_t brdcost; int_mv mvs[2]; #if CONFIG_REF_MV int_mv pred_mv[2]; #endif #if CONFIG_EXT_INTER int_mv ref_mv[2]; #endif // CONFIG_EXT_INTER ENTROPY_CONTEXT ta[2]; ENTROPY_CONTEXT tl[2]; } SEG_RDSTAT; typedef struct { int_mv *ref_mv[2]; int_mv mvp; int64_t segment_rd; int r; int64_t d; int64_t sse; int segment_yrate; PREDICTION_MODE modes[4]; #if CONFIG_EXT_INTER SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES]; #else SEG_RDSTAT rdstat[4][INTER_MODES]; #endif // CONFIG_EXT_INTER int mvthresh; } BEST_SEG_INFO; static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) { return (mv->row >> 3) < x->mv_row_min || (mv->row >> 3) > x->mv_row_max || (mv->col >> 3) < x->mv_col_min || (mv->col >> 3) > x->mv_col_max; } static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; p->src.buf = &p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); pd->pre[0].buf = &pd->pre[0].buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)]; if (has_second_ref(mbmi)) pd->pre[1].buf = &pd->pre[1] .buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)]; } static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, struct buf_2d orig_pre[2]) { MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; x->plane[0].src = orig_src; x->e_mbd.plane[0].pre[0] = orig_pre[0]; if (has_second_ref(mbmi)) x->e_mbd.plane[0].pre[1] = orig_pre[1]; } // Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion. // TODO(aconverse): Find out if this is still productive then clean up or remove static int check_best_zero_mv( const AV1_COMP *cpi, const int16_t mode_context[TOTAL_REFS_PER_FRAME], #if CONFIG_REF_MV && CONFIG_EXT_INTER const int16_t compound_mode_context[TOTAL_REFS_PER_FRAME], #endif // CONFIG_REF_MV && CONFIG_EXT_INTER int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME], int this_mode, const MV_REFERENCE_FRAME ref_frames[2], const BLOCK_SIZE bsize, int block) { #if !CONFIG_EXT_INTER assert(ref_frames[1] != INTRA_FRAME); // Just sanity check #endif if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && frame_mv[this_mode][ref_frames[0]].as_int == 0 && (ref_frames[1] <= INTRA_FRAME || frame_mv[this_mode][ref_frames[1]].as_int == 0)) { #if CONFIG_REF_MV int16_t rfc = av1_mode_context_analyzer(mode_context, ref_frames, bsize, block); #else int16_t rfc = mode_context[ref_frames[0]]; #endif #if CONFIG_REF_MV && CONFIG_EXT_INTER int c1 = cost_mv_ref(cpi, NEARMV, ref_frames[1] > INTRA_FRAME, rfc); int c2 = cost_mv_ref(cpi, NEARESTMV, ref_frames[1] > INTRA_FRAME, rfc); int c3 = cost_mv_ref(cpi, ZEROMV, ref_frames[1] > INTRA_FRAME, rfc); #else int c1 = cost_mv_ref(cpi, NEARMV, rfc); int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); int c3 = cost_mv_ref(cpi, ZEROMV, rfc); #endif // CONFIG_REF_MV && CONFIG_EXT_INTER #if !CONFIG_REF_MV (void)bsize; (void)block; #endif if (this_mode == NEARMV) { if (c1 > c3) return 0; } else if (this_mode == NEARESTMV) { if (c2 > c3) return 0; } else { assert(this_mode == ZEROMV); if (ref_frames[1] <= INTRA_FRAME) { if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) || (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0)) return 0; } else { if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 && frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) || (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 && frame_mv[NEARMV][ref_frames[1]].as_int == 0)) return 0; } } } #if CONFIG_EXT_INTER else if ((this_mode == NEAREST_NEARESTMV || this_mode == NEAREST_NEARMV || this_mode == NEAR_NEARESTMV || this_mode == NEAR_NEARMV || this_mode == ZERO_ZEROMV) && frame_mv[this_mode][ref_frames[0]].as_int == 0 && frame_mv[this_mode][ref_frames[1]].as_int == 0) { #if CONFIG_REF_MV int16_t rfc = compound_mode_context[ref_frames[0]]; int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, 1, rfc); int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, 1, rfc); int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, 1, rfc); int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, 1, rfc); int c5 = cost_mv_ref(cpi, NEAR_NEARMV, 1, rfc); #else int16_t rfc = mode_context[ref_frames[0]]; int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, rfc); int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, rfc); int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, rfc); int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, rfc); int c5 = cost_mv_ref(cpi, NEAR_NEARMV, rfc); #endif if (this_mode == NEAREST_NEARMV) { if (c1 > c3) return 0; } else if (this_mode == NEAREST_NEARESTMV) { if (c2 > c3) return 0; } else if (this_mode == NEAR_NEARESTMV) { if (c4 > c3) return 0; } else if (this_mode == NEAR_NEARMV) { if (c5 > c3) return 0; } else { assert(this_mode == ZERO_ZEROMV); if ((c3 >= c2 && frame_mv[NEAREST_NEARESTMV][ref_frames[0]].as_int == 0 && frame_mv[NEAREST_NEARESTMV][ref_frames[1]].as_int == 0) || (c3 >= c1 && frame_mv[NEAREST_NEARMV][ref_frames[0]].as_int == 0 && frame_mv[NEAREST_NEARMV][ref_frames[1]].as_int == 0) || (c3 >= c5 && frame_mv[NEAR_NEARMV][ref_frames[0]].as_int == 0 && frame_mv[NEAR_NEARMV][ref_frames[1]].as_int == 0) || (c3 >= c4 && frame_mv[NEAR_NEARESTMV][ref_frames[0]].as_int == 0 && frame_mv[NEAR_NEARESTMV][ref_frames[1]].as_int == 0)) return 0; } } #endif // CONFIG_EXT_INTER return 1; } static void joint_motion_search(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row, int mi_col, #if CONFIG_EXT_INTER int_mv *ref_mv_sub8x8[2], #endif int_mv single_newmv[TOTAL_REFS_PER_FRAME], int *rate_mv, const int block) { const AV1_COMMON *const cm = &cpi->common; const int pw = 4 * num_4x4_blocks_wide_lookup[bsize]; const int ph = 4 * num_4x4_blocks_high_lookup[bsize]; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; int_mv ref_mv[2]; int ite, ref; #if CONFIG_DUAL_FILTER InterpFilter interp_filter[4] = { mbmi->interp_filter[0], mbmi->interp_filter[1], mbmi->interp_filter[2], mbmi->interp_filter[3], }; #else const InterpFilter interp_filter = mbmi->interp_filter; #endif struct scale_factors sf; // Do joint motion search in compound mode to get more accurate mv. struct buf_2d backup_yv12[2][MAX_MB_PLANE]; int last_besterr[2] = { INT_MAX, INT_MAX }; const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]), av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[1]) }; // Prediction buffer from second frame. #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); uint8_t *second_pred; #else DECLARE_ALIGNED(16, uint8_t, second_pred[MAX_SB_SQUARE]); #endif // CONFIG_AOM_HIGHBITDEPTH for (ref = 0; ref < 2; ++ref) { #if CONFIG_EXT_INTER if (bsize < BLOCK_8X8 && ref_mv_sub8x8 != NULL) ref_mv[ref].as_int = ref_mv_sub8x8[ref]->as_int; else #endif // CONFIG_EXT_INTER ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0]; if (scaled_ref_frame[ref]) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[ref][i] = xd->plane[i].pre[ref]; av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, NULL); } frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int; } // Since we have scaled the reference frames to match the size of the current // frame we must use a unit scaling factor during mode selection. #if CONFIG_AOM_HIGHBITDEPTH av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, cm->height, cm->use_highbitdepth); #else av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, cm->height); #endif // CONFIG_AOM_HIGHBITDEPTH // Allow joint search multiple times iteratively for each reference frame // and break out of the search loop if it couldn't find a better mv. for (ite = 0; ite < 4; ite++) { struct buf_2d ref_yv12[2]; int bestsme = INT_MAX; int sadpb = x->sadperbit16; MV *const best_mv = &x->best_mv.as_mv; int search_range = 3; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; int id = ite % 2; // Even iterations search in the first reference frame, // odd iterations search in the second. The predictor // found for the 'other' reference frame is factored in. // Initialized here because of compiler problem in Visual Studio. ref_yv12[0] = xd->plane[0].pre[0]; ref_yv12[1] = xd->plane[0].pre[1]; #if CONFIG_DUAL_FILTER // reload the filter types interp_filter[0] = (id == 0) ? mbmi->interp_filter[2] : mbmi->interp_filter[0]; interp_filter[1] = (id == 0) ? mbmi->interp_filter[3] : mbmi->interp_filter[1]; #endif // Get the prediction block from the 'other' reference frame. #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); av1_highbd_build_inter_predictor( ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd); } else { second_pred = (uint8_t *)second_pred_alloc_16; av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE); } #else av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE); #endif // CONFIG_AOM_HIGHBITDEPTH // Do compound motion search on the current reference frame. if (id) xd->plane[0].pre[0] = ref_yv12[id]; av1_set_mv_search_range(x, &ref_mv[id].as_mv); // Use the mv result from the single mode as mv predictor. *best_mv = frame_mv[refs[id]].as_mv; best_mv->col >>= 3; best_mv->row >>= 3; #if CONFIG_REF_MV av1_set_mvcost(x, refs[id], id, mbmi->ref_mv_idx); #endif // Small-range full-pixel motion search. bestsme = av1_refining_search_8p_c(x, sadpb, search_range, &cpi->fn_ptr[bsize], &ref_mv[id].as_mv, second_pred); if (bestsme < INT_MAX) bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv, second_pred, &cpi->fn_ptr[bsize], 1); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int dis; /* TODO: use dis in distortion calculation later. */ unsigned int sse; if (cpi->sf.use_upsampled_references) { // Use up-sampled reference frames. struct macroblockd_plane *const pd = &xd->plane[0]; struct buf_2d backup_pred = pd->pre[0]; const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, refs[id]); // Set pred for Y plane setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer, upsampled_ref->y_crop_width, upsampled_ref->y_crop_height, upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL, pd->subsampling_x, pd->subsampling_y); // If bsize < BLOCK_8X8, adjust pred pointer for this block if (bsize < BLOCK_8X8) pd->pre[0].buf = &pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, block, pd->pre[0].stride)) << 3]; bestsme = cpi->find_fractional_mv_step( x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, pw, ph, 1); // Restore the reference frames. pd->pre[0] = backup_pred; } else { (void)block; bestsme = cpi->find_fractional_mv_step( x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, pw, ph, 0); } } // Restore the pointer to the first (possibly scaled) prediction buffer. if (id) xd->plane[0].pre[0] = ref_yv12[0]; if (bestsme < last_besterr[id]) { frame_mv[refs[id]].as_mv = *best_mv; last_besterr[id] = bestsme; } else { break; } } *rate_mv = 0; for (ref = 0; ref < 2; ++ref) { if (scaled_ref_frame[ref]) { // Restore the prediction frame pointers to their unscaled versions. int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[ref] = backup_yv12[ref][i]; } #if CONFIG_REF_MV av1_set_mvcost(x, refs[ref], ref, mbmi->ref_mv_idx); #endif #if CONFIG_EXT_INTER if (bsize >= BLOCK_8X8) #endif // CONFIG_EXT_INTER *rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv, &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); #if CONFIG_EXT_INTER else *rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv, &ref_mv_sub8x8[ref]->as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); #endif // CONFIG_EXT_INTER } } static int64_t rd_pick_best_sub8x8_mode( AV1_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv, int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate, int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse, int mvthresh, #if CONFIG_EXT_INTER int_mv seg_mvs[4][2][TOTAL_REFS_PER_FRAME], int_mv compound_seg_newmvs[4][2], #else int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME], #endif // CONFIG_EXT_INTER BEST_SEG_INFO *bsi_buf, int filter_idx, int mi_row, int mi_col) { BEST_SEG_INFO *bsi = bsi_buf + filter_idx; #if CONFIG_REF_MV int_mv tmp_ref_mv[2]; #endif MACROBLOCKD *xd = &x->e_mbd; MODE_INFO *mi = xd->mi[0]; MB_MODE_INFO *mbmi = &mi->mbmi; int mode_idx; int k, br = 0, idx, idy; int64_t bd = 0, block_sse = 0; PREDICTION_MODE this_mode; AV1_COMMON *cm = &cpi->common; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const int label_count = 4; int64_t this_segment_rd = 0; int label_mv_thresh; int segmentyrate = 0; const BLOCK_SIZE bsize = mbmi->sb_type; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; ENTROPY_CONTEXT t_above[2], t_left[2]; int subpelmv = 1, have_ref = 0; const int has_second_rf = has_second_ref(mbmi); const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize]; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; #if CONFIG_EXT_TX && CONFIG_RECT_TX mbmi->tx_size = xd->lossless[mbmi->segment_id] ? TX_4X4 : max_txsize_rect_lookup[bsize]; #else mbmi->tx_size = TX_4X4; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX av1_zero(*bsi); bsi->segment_rd = best_rd; bsi->ref_mv[0] = best_ref_mv; bsi->ref_mv[1] = second_best_ref_mv; bsi->mvp.as_int = best_ref_mv->as_int; bsi->mvthresh = mvthresh; for (idx = 0; idx < 4; ++idx) bsi->modes[idx] = ZEROMV; #if CONFIG_REFMV for (idx = 0; idx < 4; ++idx) { for (k = NEARESTMV; k <= NEWMV; ++k) { bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[0].as_int = INVALID_MV; bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[1].as_int = INVALID_MV; bsi->rdstat[idx][INTER_OFFSET(k)].mvs[0].as_int = INVALID_MV; bsi->rdstat[idx][INTER_OFFSET(k)].mvs[1].as_int = INVALID_MV; } } #endif memcpy(t_above, pd->above_context, sizeof(t_above)); memcpy(t_left, pd->left_context, sizeof(t_left)); // 64 makes this threshold really big effectively // making it so that we very rarely check mvs on // segments. setting this to 1 would make mv thresh // roughly equal to what it is for macroblocks label_mv_thresh = 1 * bsi->mvthresh / label_count; // Segmentation method overheads for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { // TODO(jingning,rbultje): rewrite the rate-distortion optimization // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop int_mv mode_mv[MB_MODE_COUNT][2]; int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; PREDICTION_MODE mode_selected = ZEROMV; int64_t best_rd = INT64_MAX; const int i = idy * 2 + idx; int ref; #if CONFIG_REF_MV CANDIDATE_MV ref_mv_stack[2][MAX_REF_MV_STACK_SIZE]; uint8_t ref_mv_count[2]; #endif #if CONFIG_EXT_INTER int mv_idx; int_mv ref_mvs_sub8x8[2][2]; #endif // CONFIG_EXT_INTER for (ref = 0; ref < 1 + has_second_rf; ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; #if CONFIG_EXT_INTER int_mv mv_ref_list[MAX_MV_REF_CANDIDATES]; av1_update_mv_context(xd, mi, frame, mv_ref_list, i, mi_row, mi_col, NULL); #endif // CONFIG_EXT_INTER #if CONFIG_GLOBAL_MOTION frame_mv[ZEROMV][frame].as_int = cm->global_motion[frame].motion_params.wmmat[0].as_int; #else // CONFIG_GLOBAL_MOTION frame_mv[ZEROMV][frame].as_int = 0; #endif // CONFIG_GLOBAL_MOTION av1_append_sub8x8_mvs_for_idx(cm, xd, i, ref, mi_row, mi_col, #if CONFIG_REF_MV ref_mv_stack[ref], &ref_mv_count[ref], #endif #if CONFIG_EXT_INTER mv_ref_list, #endif // CONFIG_EXT_INTER &frame_mv[NEARESTMV][frame], &frame_mv[NEARMV][frame]); #if CONFIG_REF_MV tmp_ref_mv[ref] = frame_mv[NEARESTMV][mbmi->ref_frame[ref]]; lower_mv_precision(&tmp_ref_mv[ref].as_mv, cm->allow_high_precision_mv); bsi->ref_mv[ref] = &tmp_ref_mv[ref]; mbmi_ext->ref_mvs[frame][0] = tmp_ref_mv[ref]; #endif #if CONFIG_EXT_INTER mv_ref_list[0].as_int = frame_mv[NEARESTMV][frame].as_int; mv_ref_list[1].as_int = frame_mv[NEARMV][frame].as_int; av1_find_best_ref_mvs(cm->allow_high_precision_mv, mv_ref_list, &ref_mvs_sub8x8[0][ref], &ref_mvs_sub8x8[1][ref]); if (has_second_rf) { frame_mv[ZERO_ZEROMV][frame].as_int = 0; frame_mv[NEAREST_NEARESTMV][frame].as_int = frame_mv[NEARESTMV][frame].as_int; if (ref == 0) { frame_mv[NEAREST_NEARMV][frame].as_int = frame_mv[NEARESTMV][frame].as_int; frame_mv[NEAR_NEARESTMV][frame].as_int = frame_mv[NEARMV][frame].as_int; frame_mv[NEAREST_NEWMV][frame].as_int = frame_mv[NEARESTMV][frame].as_int; frame_mv[NEAR_NEWMV][frame].as_int = frame_mv[NEARMV][frame].as_int; frame_mv[NEAR_NEARMV][frame].as_int = frame_mv[NEARMV][frame].as_int; } else if (ref == 1) { frame_mv[NEAREST_NEARMV][frame].as_int = frame_mv[NEARMV][frame].as_int; frame_mv[NEAR_NEARESTMV][frame].as_int = frame_mv[NEARESTMV][frame].as_int; frame_mv[NEW_NEARESTMV][frame].as_int = frame_mv[NEARESTMV][frame].as_int; frame_mv[NEW_NEARMV][frame].as_int = frame_mv[NEARMV][frame].as_int; frame_mv[NEAR_NEARMV][frame].as_int = frame_mv[NEARMV][frame].as_int; } } #endif // CONFIG_EXT_INTER } // search for the best motion vector on this segment #if CONFIG_EXT_INTER for (this_mode = (has_second_rf ? NEAREST_NEARESTMV : NEARESTMV); this_mode <= (has_second_rf ? NEW_NEWMV : NEWFROMNEARMV); ++this_mode) #else for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) #endif // CONFIG_EXT_INTER { const struct buf_2d orig_src = x->plane[0].src; struct buf_2d orig_pre[2]; // This flag controls if the motion estimation will kick off. When it // is set to a non-zero value, the encoder will force motion estimation. int run_mv_search = 0; mode_idx = INTER_OFFSET(this_mode); #if CONFIG_EXT_INTER mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0; for (ref = 0; ref < 1 + has_second_rf; ++ref) bsi->ref_mv[ref]->as_int = ref_mvs_sub8x8[mv_idx][ref].as_int; #endif // CONFIG_EXT_INTER bsi->rdstat[i][mode_idx].brdcost = INT64_MAX; if (!(inter_mode_mask & (1 << this_mode))) continue; #if CONFIG_REF_MV run_mv_search = 2; #if !CONFIG_EXT_INTER if (filter_idx > 0 && this_mode == NEWMV) { BEST_SEG_INFO *ref_bsi = bsi_buf; SEG_RDSTAT *ref_rdstat = &ref_bsi->rdstat[i][mode_idx]; if (has_second_rf) { if (seg_mvs[i][mbmi->ref_frame[0]].as_int == ref_rdstat->mvs[0].as_int && ref_rdstat->mvs[0].as_int != INVALID_MV) if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int) --run_mv_search; if (seg_mvs[i][mbmi->ref_frame[1]].as_int == ref_rdstat->mvs[1].as_int && ref_rdstat->mvs[1].as_int != INVALID_MV) if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int) --run_mv_search; } else { if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int && ref_rdstat->mvs[0].as_int != INVALID_MV) { run_mv_search = 0; seg_mvs[i][mbmi->ref_frame[0]].as_int = ref_rdstat->mvs[0].as_int; } } if (run_mv_search != 0 && filter_idx > 1) { ref_bsi = bsi_buf + 1; ref_rdstat = &ref_bsi->rdstat[i][mode_idx]; run_mv_search = 2; if (has_second_rf) { if (seg_mvs[i][mbmi->ref_frame[0]].as_int == ref_rdstat->mvs[0].as_int && ref_rdstat->mvs[0].as_int != INVALID_MV) if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int) --run_mv_search; if (seg_mvs[i][mbmi->ref_frame[1]].as_int == ref_rdstat->mvs[1].as_int && ref_rdstat->mvs[1].as_int != INVALID_MV) if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int) --run_mv_search; } else { if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int && ref_rdstat->mvs[0].as_int != INVALID_MV) { run_mv_search = 0; seg_mvs[i][mbmi->ref_frame[0]].as_int = ref_rdstat->mvs[0].as_int; } } } } #endif // CONFIG_EXT_INTER #endif // CONFIG_REF_MV #if CONFIG_GLOBAL_MOTION if (get_gmtype(&cm->global_motion[mbmi->ref_frame[0]]) == GLOBAL_ZERO && (!has_second_rf || get_gmtype(&cm->global_motion[mbmi->ref_frame[1]]) == GLOBAL_ZERO)) #endif // CONFIG_GLOBAL_MOTION if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, #if CONFIG_REF_MV && CONFIG_EXT_INTER mbmi_ext->compound_mode_context, #endif // CONFIG_REF_MV && CONFIG_EXT_INTER frame_mv, this_mode, mbmi->ref_frame, bsize, i)) continue; memcpy(orig_pre, pd->pre, sizeof(orig_pre)); memcpy(bsi->rdstat[i][mode_idx].ta, t_above, sizeof(bsi->rdstat[i][mode_idx].ta)); memcpy(bsi->rdstat[i][mode_idx].tl, t_left, sizeof(bsi->rdstat[i][mode_idx].tl)); // motion search for newmv (single predictor case only) if (!has_second_rf && #if CONFIG_EXT_INTER have_newmv_in_inter_mode(this_mode) && (seg_mvs[i][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV || av1_use_mv_hp(&bsi->ref_mv[0]->as_mv) == 0) #else this_mode == NEWMV && (seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV || run_mv_search) #endif // CONFIG_EXT_INTER ) { int step_param = 0; int bestsme = INT_MAX; int sadpb = x->sadperbit4; MV mvp_full; int max_mv; int cost_list[5]; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; /* Is the best so far sufficiently good that we cant justify doing * and new motion search. */ if (best_rd < label_mv_thresh) break; if (cpi->oxcf.mode != BEST) { #if CONFIG_EXT_INTER bsi->mvp.as_int = bsi->ref_mv[0]->as_int; #else // use previous block's result as next block's MV predictor. #if !CONFIG_REF_MV if (i > 0) { bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int; if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int; } #endif #endif // CONFIG_EXT_INTER } if (i == 0) max_mv = x->max_mv_context[mbmi->ref_frame[0]]; else max_mv = AOMMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3; if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and the best ref mvs of the current block for // the given reference. step_param = (av1_init_search_range(max_mv) + cpi->mv_step_param) / 2; } else { step_param = cpi->mv_step_param; } #if CONFIG_REF_MV mvp_full.row = bsi->ref_mv[0]->as_mv.row >> 3; mvp_full.col = bsi->ref_mv[0]->as_mv.col >> 3; #else mvp_full.row = bsi->mvp.as_mv.row >> 3; mvp_full.col = bsi->mvp.as_mv.col >> 3; #endif if (cpi->sf.adaptive_motion_search) { mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3; mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3; step_param = AOMMAX(step_param, 8); } // adjust src pointer for this block mi_buf_shift(x, i); av1_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv); x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; #if CONFIG_REF_MV av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx); #endif bestsme = av1_full_pixel_search( cpi, x, bsize, &mvp_full, step_param, sadpb, cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL, &bsi->ref_mv[0]->as_mv, INT_MAX, 1); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int distortion; if (cpi->sf.use_upsampled_references) { int best_mv_var; const int try_second = x->second_best_mv.as_int != INVALID_MV && x->second_best_mv.as_int != x->best_mv.as_int; const int pw = 4 * num_4x4_blocks_wide_lookup[bsize]; const int ph = 4 * num_4x4_blocks_high_lookup[bsize]; // Use up-sampled reference frames. struct macroblockd_plane *const pd = &xd->plane[0]; struct buf_2d backup_pred = pd->pre[0]; const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, mbmi->ref_frame[0]); // Set pred for Y plane setup_pred_plane( &pd->pre[0], upsampled_ref->y_buffer, upsampled_ref->y_crop_width, upsampled_ref->y_crop_height, upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL, pd->subsampling_x, pd->subsampling_y); // adjust pred pointer for this block pd->pre[0].buf = &pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)) << 3]; best_mv_var = cpi->find_fractional_mv_step( x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, pw, ph, 1); if (try_second) { int this_var; MV best_mv = x->best_mv.as_mv; const MV ref_mv = bsi->ref_mv[0]->as_mv; const int minc = AOMMAX(x->mv_col_min * 8, ref_mv.col - MV_MAX); const int maxc = AOMMIN(x->mv_col_max * 8, ref_mv.col + MV_MAX); const int minr = AOMMAX(x->mv_row_min * 8, ref_mv.row - MV_MAX); const int maxr = AOMMIN(x->mv_row_max * 8, ref_mv.row + MV_MAX); x->best_mv = x->second_best_mv; if (x->best_mv.as_mv.row * 8 <= maxr && x->best_mv.as_mv.row * 8 >= minr && x->best_mv.as_mv.col * 8 <= maxc && x->best_mv.as_mv.col * 8 >= minc) { this_var = cpi->find_fractional_mv_step( x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, pw, ph, 1); if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; x->best_mv.as_mv = best_mv; } } // Restore the reference frames. pd->pre[0] = backup_pred; } else { cpi->find_fractional_mv_step( x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, 0, 0, 0); } // save motion search result for use in compound prediction #if CONFIG_EXT_INTER seg_mvs[i][mv_idx][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv; #else seg_mvs[i][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv; #endif // CONFIG_EXT_INTER } if (cpi->sf.adaptive_motion_search) x->pred_mv[mbmi->ref_frame[0]] = x->best_mv.as_mv; #if CONFIG_EXT_INTER mode_mv[this_mode][0] = x->best_mv; #else mode_mv[NEWMV][0] = x->best_mv; #endif // CONFIG_EXT_INTER // restore src pointers mi_buf_restore(x, orig_src, orig_pre); } if (has_second_rf) { #if CONFIG_EXT_INTER if (seg_mvs[i][mv_idx][mbmi->ref_frame[1]].as_int == INVALID_MV || seg_mvs[i][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV) #else if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV || seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) #endif // CONFIG_EXT_INTER continue; } #if CONFIG_DUAL_FILTER (void)run_mv_search; #endif if (has_second_rf && #if CONFIG_EXT_INTER this_mode == NEW_NEWMV && #else this_mode == NEWMV && #endif // CONFIG_EXT_INTER #if CONFIG_DUAL_FILTER (mbmi->interp_filter[0] == EIGHTTAP_REGULAR || run_mv_search)) #else (mbmi->interp_filter == EIGHTTAP_REGULAR || run_mv_search)) #endif { // adjust src pointers mi_buf_shift(x, i); if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { int rate_mv; joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row, mi_col, #if CONFIG_EXT_INTER bsi->ref_mv, seg_mvs[i][mv_idx], #else seg_mvs[i], #endif // CONFIG_EXT_INTER &rate_mv, i); #if CONFIG_EXT_INTER compound_seg_newmvs[i][0].as_int = frame_mv[this_mode][mbmi->ref_frame[0]].as_int; compound_seg_newmvs[i][1].as_int = frame_mv[this_mode][mbmi->ref_frame[1]].as_int; #else seg_mvs[i][mbmi->ref_frame[0]].as_int = frame_mv[this_mode][mbmi->ref_frame[0]].as_int; seg_mvs[i][mbmi->ref_frame[1]].as_int = frame_mv[this_mode][mbmi->ref_frame[1]].as_int; #endif // CONFIG_EXT_INTER } // restore src pointers mi_buf_restore(x, orig_src, orig_pre); } bsi->rdstat[i][mode_idx].brate = set_and_cost_bmi_mvs( cpi, x, xd, i, this_mode, mode_mv[this_mode], frame_mv, #if CONFIG_EXT_INTER seg_mvs[i][mv_idx], compound_seg_newmvs[i], #else seg_mvs[i], #endif // CONFIG_EXT_INTER bsi->ref_mv, x->nmvjointcost, x->mvcost); for (ref = 0; ref < 1 + has_second_rf; ++ref) { bsi->rdstat[i][mode_idx].mvs[ref].as_int = mode_mv[this_mode][ref].as_int; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int = mode_mv[this_mode][ref].as_int; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int = mode_mv[this_mode][ref].as_int; #if CONFIG_REF_MV bsi->rdstat[i][mode_idx].pred_mv[ref].as_int = mi->bmi[i].pred_mv[ref].as_int; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].pred_mv[ref].as_int = mi->bmi[i].pred_mv[ref].as_int; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].pred_mv[ref].as_int = mi->bmi[i].pred_mv[ref].as_int; #endif #if CONFIG_EXT_INTER bsi->rdstat[i][mode_idx].ref_mv[ref].as_int = bsi->ref_mv[ref]->as_int; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].ref_mv[ref].as_int = bsi->ref_mv[ref]->as_int; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].ref_mv[ref].as_int = bsi->ref_mv[ref]->as_int; #endif // CONFIG_EXT_INTER } // Trap vectors that reach beyond the UMV borders if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) || (has_second_rf && mv_check_bounds(x, &mode_mv[this_mode][1].as_mv))) continue; if (filter_idx > 0) { BEST_SEG_INFO *ref_bsi = bsi_buf; subpelmv = 0; have_ref = 1; for (ref = 0; ref < 1 + has_second_rf; ++ref) { subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv); #if CONFIG_EXT_INTER if (have_newmv_in_inter_mode(this_mode)) have_ref &= ((mode_mv[this_mode][ref].as_int == ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int) && (bsi->ref_mv[ref]->as_int == ref_bsi->rdstat[i][mode_idx].ref_mv[ref].as_int)); else #endif // CONFIG_EXT_INTER have_ref &= mode_mv[this_mode][ref].as_int == ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; } have_ref &= ref_bsi->rdstat[i][mode_idx].brate > 0; if (filter_idx > 1 && !subpelmv && !have_ref) { ref_bsi = bsi_buf + 1; have_ref = 1; for (ref = 0; ref < 1 + has_second_rf; ++ref) #if CONFIG_EXT_INTER if (have_newmv_in_inter_mode(this_mode)) have_ref &= ((mode_mv[this_mode][ref].as_int == ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int) && (bsi->ref_mv[ref]->as_int == ref_bsi->rdstat[i][mode_idx].ref_mv[ref].as_int)); else #endif // CONFIG_EXT_INTER have_ref &= mode_mv[this_mode][ref].as_int == ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; have_ref &= ref_bsi->rdstat[i][mode_idx].brate > 0; } if (!subpelmv && have_ref && ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { #if CONFIG_REF_MV bsi->rdstat[i][mode_idx].byrate = ref_bsi->rdstat[i][mode_idx].byrate; bsi->rdstat[i][mode_idx].bdist = ref_bsi->rdstat[i][mode_idx].bdist; bsi->rdstat[i][mode_idx].bsse = ref_bsi->rdstat[i][mode_idx].bsse; bsi->rdstat[i][mode_idx].brate += ref_bsi->rdstat[i][mode_idx].byrate; bsi->rdstat[i][mode_idx].eobs = ref_bsi->rdstat[i][mode_idx].eobs; bsi->rdstat[i][mode_idx].brdcost = RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, bsi->rdstat[i][mode_idx].bdist); memcpy(bsi->rdstat[i][mode_idx].ta, ref_bsi->rdstat[i][mode_idx].ta, sizeof(bsi->rdstat[i][mode_idx].ta)); memcpy(bsi->rdstat[i][mode_idx].tl, ref_bsi->rdstat[i][mode_idx].tl, sizeof(bsi->rdstat[i][mode_idx].tl)); #else memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx], sizeof(SEG_RDSTAT)); #endif if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].eobs = ref_bsi->rdstat[i + 1][mode_idx].eobs; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].eobs = ref_bsi->rdstat[i + 2][mode_idx].eobs; if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { #if CONFIG_REF_MV // If the NEWMV mode is using the same motion vector as the // NEARESTMV mode, skip the rest rate-distortion calculations // and use the inferred motion vector modes. if (this_mode == NEWMV) { if (has_second_rf) { if (bsi->rdstat[i][mode_idx].mvs[0].as_int == bsi->ref_mv[0]->as_int && bsi->rdstat[i][mode_idx].mvs[1].as_int == bsi->ref_mv[1]->as_int) continue; } else { if (bsi->rdstat[i][mode_idx].mvs[0].as_int == bsi->ref_mv[0]->as_int) continue; } } #endif mode_selected = this_mode; best_rd = bsi->rdstat[i][mode_idx].brdcost; } continue; } } bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment( cpi, x, bsi->segment_rd - this_segment_rd, i, &bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist, &bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta, bsi->rdstat[i][mode_idx].tl, idy, idx, mi_row, mi_col); if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0); bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate; bsi->rdstat[i][mode_idx].eobs = p->eobs[i]; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1]; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2]; } if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { #if CONFIG_REF_MV // If the NEWMV mode is using the same motion vector as the // NEARESTMV mode, skip the rest rate-distortion calculations // and use the inferred motion vector modes. if (this_mode == NEWMV) { if (has_second_rf) { if (bsi->rdstat[i][mode_idx].mvs[0].as_int == bsi->ref_mv[0]->as_int && bsi->rdstat[i][mode_idx].mvs[1].as_int == bsi->ref_mv[1]->as_int) continue; } else { if (bsi->rdstat[i][mode_idx].mvs[0].as_int == bsi->ref_mv[0]->as_int) continue; } } #endif mode_selected = this_mode; best_rd = bsi->rdstat[i][mode_idx].brdcost; } } /*for each 4x4 mode*/ if (best_rd == INT64_MAX) { int iy, midx; for (iy = i + 1; iy < 4; ++iy) #if CONFIG_EXT_INTER for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx) #else for (midx = 0; midx < INTER_MODES; ++midx) #endif // CONFIG_EXT_INTER bsi->rdstat[iy][midx].brdcost = INT64_MAX; bsi->segment_rd = INT64_MAX; return INT64_MAX; } mode_idx = INTER_OFFSET(mode_selected); memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above)); memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left)); #if CONFIG_EXT_INTER mv_idx = (mode_selected == NEWFROMNEARMV) ? 1 : 0; bsi->ref_mv[0]->as_int = bsi->rdstat[i][mode_idx].ref_mv[0].as_int; if (has_second_rf) bsi->ref_mv[1]->as_int = bsi->rdstat[i][mode_idx].ref_mv[1].as_int; #endif // CONFIG_EXT_INTER set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected], frame_mv, #if CONFIG_EXT_INTER seg_mvs[i][mv_idx], compound_seg_newmvs[i], #else seg_mvs[i], #endif // CONFIG_EXT_INTER bsi->ref_mv, x->nmvjointcost, x->mvcost); br += bsi->rdstat[i][mode_idx].brate; bd += bsi->rdstat[i][mode_idx].bdist; block_sse += bsi->rdstat[i][mode_idx].bsse; segmentyrate += bsi->rdstat[i][mode_idx].byrate; this_segment_rd += bsi->rdstat[i][mode_idx].brdcost; if (this_segment_rd > bsi->segment_rd) { int iy, midx; for (iy = i + 1; iy < 4; ++iy) #if CONFIG_EXT_INTER for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx) #else for (midx = 0; midx < INTER_MODES; ++midx) #endif // CONFIG_EXT_INTER bsi->rdstat[iy][midx].brdcost = INT64_MAX; bsi->segment_rd = INT64_MAX; return INT64_MAX; } } } /* for each label */ bsi->r = br; bsi->d = bd; bsi->segment_yrate = segmentyrate; bsi->segment_rd = this_segment_rd; bsi->sse = block_sse; // update the coding decisions for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode; if (bsi->segment_rd > best_rd) return INT64_MAX; /* set it to the best */ for (idx = 0; idx < 4; idx++) { mode_idx = INTER_OFFSET(bsi->modes[idx]); mi->bmi[idx].as_mv[0].as_int = bsi->rdstat[idx][mode_idx].mvs[0].as_int; if (has_second_ref(mbmi)) mi->bmi[idx].as_mv[1].as_int = bsi->rdstat[idx][mode_idx].mvs[1].as_int; #if CONFIG_REF_MV mi->bmi[idx].pred_mv[0] = bsi->rdstat[idx][mode_idx].pred_mv[0]; if (has_second_ref(mbmi)) mi->bmi[idx].pred_mv[1] = bsi->rdstat[idx][mode_idx].pred_mv[1]; #endif #if CONFIG_EXT_INTER mi->bmi[idx].ref_mv[0].as_int = bsi->rdstat[idx][mode_idx].ref_mv[0].as_int; if (has_second_rf) mi->bmi[idx].ref_mv[1].as_int = bsi->rdstat[idx][mode_idx].ref_mv[1].as_int; #endif // CONFIG_EXT_INTER x->plane[0].eobs[idx] = bsi->rdstat[idx][mode_idx].eobs; mi->bmi[idx].as_mode = bsi->modes[idx]; } /* * used to set mbmi->mv.as_int */ *returntotrate = bsi->r; *returndistortion = bsi->d; *returnyrate = bsi->segment_yrate; *skippable = av1_is_skippable_in_plane(x, BLOCK_8X8, 0); *psse = bsi->sse; mbmi->mode = bsi->modes[3]; return bsi->segment_rd; } static void estimate_ref_frame_costs(const AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, unsigned int *ref_costs_single, unsigned int *ref_costs_comp, aom_prob *comp_mode_p) { int seg_ref_active = segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { memset(ref_costs_single, 0, TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_single)); memset(ref_costs_comp, 0, TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_comp)); *comp_mode_p = 128; } else { aom_prob intra_inter_p = av1_get_intra_inter_prob(cm, xd); aom_prob comp_inter_p = 128; if (cm->reference_mode == REFERENCE_MODE_SELECT) { comp_inter_p = av1_get_reference_mode_prob(cm, xd); *comp_mode_p = comp_inter_p; } else { *comp_mode_p = 128; } ref_costs_single[INTRA_FRAME] = av1_cost_bit(intra_inter_p, 0); if (cm->reference_mode != COMPOUND_REFERENCE) { aom_prob ref_single_p1 = av1_get_pred_prob_single_ref_p1(cm, xd); aom_prob ref_single_p2 = av1_get_pred_prob_single_ref_p2(cm, xd); #if CONFIG_EXT_REFS aom_prob ref_single_p3 = av1_get_pred_prob_single_ref_p3(cm, xd); aom_prob ref_single_p4 = av1_get_pred_prob_single_ref_p4(cm, xd); aom_prob ref_single_p5 = av1_get_pred_prob_single_ref_p5(cm, xd); #endif // CONFIG_EXT_REFS unsigned int base_cost = av1_cost_bit(intra_inter_p, 1); ref_costs_single[LAST_FRAME] = #if CONFIG_EXT_REFS ref_costs_single[LAST2_FRAME] = ref_costs_single[LAST3_FRAME] = ref_costs_single[BWDREF_FRAME] = #endif // CONFIG_EXT_REFS ref_costs_single[GOLDEN_FRAME] = ref_costs_single[ALTREF_FRAME] = base_cost; #if CONFIG_EXT_REFS ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0); ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p1, 0); ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p1, 0); ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 0); ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p1, 1); ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1); ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p3, 0); ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p3, 0); ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p3, 1); ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p3, 1); ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p2, 0); ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1); ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p4, 0); ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p4, 1); ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p5, 0); ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p5, 1); #else ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0); ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 1); ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1); ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p2, 0); ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1); #endif // CONFIG_EXT_REFS } else { ref_costs_single[LAST_FRAME] = 512; #if CONFIG_EXT_REFS ref_costs_single[LAST2_FRAME] = 512; ref_costs_single[LAST3_FRAME] = 512; ref_costs_single[BWDREF_FRAME] = 512; #endif // CONFIG_EXT_REFS ref_costs_single[GOLDEN_FRAME] = 512; ref_costs_single[ALTREF_FRAME] = 512; } if (cm->reference_mode != SINGLE_REFERENCE) { aom_prob ref_comp_p = av1_get_pred_prob_comp_ref_p(cm, xd); #if CONFIG_EXT_REFS aom_prob ref_comp_p1 = av1_get_pred_prob_comp_ref_p1(cm, xd); aom_prob ref_comp_p2 = av1_get_pred_prob_comp_ref_p2(cm, xd); aom_prob bwdref_comp_p = av1_get_pred_prob_comp_bwdref_p(cm, xd); #endif // CONFIG_EXT_REFS unsigned int base_cost = av1_cost_bit(intra_inter_p, 1); ref_costs_comp[LAST_FRAME] = #if CONFIG_EXT_REFS ref_costs_comp[LAST2_FRAME] = ref_costs_comp[LAST3_FRAME] = #endif // CONFIG_EXT_REFS ref_costs_comp[GOLDEN_FRAME] = base_cost; #if CONFIG_EXT_REFS ref_costs_comp[BWDREF_FRAME] = ref_costs_comp[ALTREF_FRAME] = 0; #endif // CONFIG_EXT_REFS #if CONFIG_EXT_REFS ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0); ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p, 0); ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p, 1); ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1); ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p1, 1); ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p1, 0); ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p2, 0); ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p2, 1); // NOTE(zoeliu): BWDREF and ALTREF each add an extra cost by coding 1 // more bit. ref_costs_comp[BWDREF_FRAME] += av1_cost_bit(bwdref_comp_p, 0); ref_costs_comp[ALTREF_FRAME] += av1_cost_bit(bwdref_comp_p, 1); #else ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0); ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1); #endif // CONFIG_EXT_REFS } else { ref_costs_comp[LAST_FRAME] = 512; #if CONFIG_EXT_REFS ref_costs_comp[LAST2_FRAME] = 512; ref_costs_comp[LAST3_FRAME] = 512; ref_costs_comp[BWDREF_FRAME] = 512; ref_costs_comp[ALTREF_FRAME] = 512; #endif // CONFIG_EXT_REFS ref_costs_comp[GOLDEN_FRAME] = 512; } } } static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index, int64_t comp_pred_diff[REFERENCE_MODES], int skippable) { MACROBLOCKD *const xd = &x->e_mbd; // Take a snapshot of the coding context so it can be // restored if we decide to encode this way ctx->skip = x->skip; ctx->skippable = skippable; ctx->best_mode_index = mode_index; ctx->mic = *xd->mi[0]; ctx->mbmi_ext = *x->mbmi_ext; ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; } static void setup_buffer_inter(AV1_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE block_size, int mi_row, int mi_col, int_mv frame_nearest_mv[TOTAL_REFS_PER_FRAME], int_mv frame_near_mv[TOTAL_REFS_PER_FRAME], struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME] [MAX_MB_PLANE]) { const AV1_COMMON *cm = &cpi->common; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; assert(yv12 != NULL); // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this // use the UV scaling factors. av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); // Gets an initial list of candidate vectors from neighbours and orders them av1_find_mv_refs( cm, xd, mi, ref_frame, #if CONFIG_REF_MV &mbmi_ext->ref_mv_count[ref_frame], mbmi_ext->ref_mv_stack[ref_frame], #if CONFIG_EXT_INTER mbmi_ext->compound_mode_context, #endif // CONFIG_EXT_INTER #endif candidates, mi_row, mi_col, NULL, NULL, mbmi_ext->mode_context); // Candidate refinement carried out at encoder and decoder av1_find_best_ref_mvs(cm->allow_high_precision_mv, candidates, &frame_nearest_mv[ref_frame], &frame_near_mv[ref_frame]); // Further refinement that is encode side only to test the top few candidates // in full and choose the best as the centre point for subsequent searches. // The current implementation doesn't support scaling. if (!av1_is_scaled(sf) && block_size >= BLOCK_8X8) av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, block_size); } static void single_motion_search(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, #if CONFIG_EXT_INTER int ref_idx, int mv_idx, #endif // CONFIG_EXT_INTER int *rate_mv) { MACROBLOCKD *xd = &x->e_mbd; const AV1_COMMON *cm = &cpi->common; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; int bestsme = INT_MAX; int step_param; int sadpb = x->sadperbit16; MV mvp_full; #if CONFIG_EXT_INTER int ref = mbmi->ref_frame[ref_idx]; MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv; #else int ref = mbmi->ref_frame[0]; MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; int ref_idx = 0; #endif // CONFIG_EXT_INTER int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; int cost_list[5]; const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref); MV pred_mv[3]; pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; pred_mv[2] = x->pred_mv[ref]; if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL); } av1_set_mv_search_range(x, &ref_mv); #if CONFIG_REF_MV av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx); #endif // Work out the size of the first step in the mv step search. // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and that based on the best ref mvs of the current // block for the given reference. step_param = (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / 2; } else { step_param = cpi->mv_step_param; } if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size) { int boffset = 2 * (b_width_log2_lookup[cm->sb_size] - AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); step_param = AOMMAX(step_param, boffset); } if (cpi->sf.adaptive_motion_search) { int bwl = b_width_log2_lookup[bsize]; int bhl = b_height_log2_lookup[bsize]; int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); if (tlevel < 5) step_param += 2; // prev_mv_sad is not setup for dynamically scaled frames. if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { int i; for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { x->pred_mv[ref].row = 0; x->pred_mv[ref].col = 0; x->best_mv.as_int = INVALID_MV; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) xd->plane[i].pre[ref_idx] = backup_yv12[i]; } return; } } } } av1_set_mv_search_range(x, &ref_mv); mvp_full = pred_mv[x->mv_best_ref_index[ref]]; mvp_full.col >>= 3; mvp_full.row >>= 3; x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb, cond_cost_list(cpi, cost_list), &ref_mv, INT_MAX, 1); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int dis; /* TODO: use dis in distortion calculation later. */ if (cpi->sf.use_upsampled_references) { int best_mv_var; const int try_second = x->second_best_mv.as_int != INVALID_MV && x->second_best_mv.as_int != x->best_mv.as_int; const int pw = 4 * num_4x4_blocks_wide_lookup[bsize]; const int ph = 4 * num_4x4_blocks_high_lookup[bsize]; // Use up-sampled reference frames. struct macroblockd_plane *const pd = &xd->plane[0]; struct buf_2d backup_pred = pd->pre[ref_idx]; const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, ref); // Set pred for Y plane setup_pred_plane(&pd->pre[ref_idx], upsampled_ref->y_buffer, upsampled_ref->y_crop_width, upsampled_ref->y_crop_height, upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL, pd->subsampling_x, pd->subsampling_y); best_mv_var = cpi->find_fractional_mv_step( x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph, 1); if (try_second) { const int minc = AOMMAX(x->mv_col_min * 8, ref_mv.col - MV_MAX); const int maxc = AOMMIN(x->mv_col_max * 8, ref_mv.col + MV_MAX); const int minr = AOMMAX(x->mv_row_min * 8, ref_mv.row - MV_MAX); const int maxr = AOMMIN(x->mv_row_max * 8, ref_mv.row + MV_MAX); int this_var; MV best_mv = x->best_mv.as_mv; x->best_mv = x->second_best_mv; if (x->best_mv.as_mv.row * 8 <= maxr && x->best_mv.as_mv.row * 8 >= minr && x->best_mv.as_mv.col * 8 <= maxc && x->best_mv.as_mv.col * 8 >= minc) { this_var = cpi->find_fractional_mv_step( x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph, 1); if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; x->best_mv.as_mv = best_mv; } } // Restore the reference frames. pd->pre[ref_idx] = backup_pred; } else { cpi->find_fractional_mv_step( x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0, 0); } } *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); if (cpi->sf.adaptive_motion_search) x->pred_mv[ref] = x->best_mv.as_mv; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[ref_idx] = backup_yv12[i]; } } static INLINE void restore_dst_buf(MACROBLOCKD *xd, uint8_t *orig_dst[MAX_MB_PLANE], int orig_dst_stride[MAX_MB_PLANE]) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } } #if CONFIG_OBMC static void single_motion_search_obmc(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, const int32_t *wsrc, const int32_t *mask, #if CONFIG_EXT_INTER int ref_idx, int mv_idx, #endif // CONFIG_EXT_INTER int_mv *tmp_mv, int_mv pred_mv, int *rate_mv) { MACROBLOCKD *xd = &x->e_mbd; const AV1_COMMON *cm = &cpi->common; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; int bestsme = INT_MAX; int step_param; int sadpb = x->sadperbit16; MV mvp_full; #if CONFIG_EXT_INTER int ref = mbmi->ref_frame[ref_idx]; MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv; #else int ref = mbmi->ref_frame[0]; MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; int ref_idx = 0; #endif // CONFIG_EXT_INTER int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref); #if CONFIG_REF_MV av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx); #endif if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL); } // Work out the size of the first step in the mv step search. // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and that based on the best ref mvs of the current // block for the given reference. step_param = (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / 2; } else { step_param = cpi->mv_step_param; } if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size) { int boffset = 2 * (b_width_log2_lookup[cm->sb_size] - AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); step_param = AOMMAX(step_param, boffset); } if (cpi->sf.adaptive_motion_search) { int bwl = b_width_log2_lookup[bsize]; int bhl = b_height_log2_lookup[bsize]; int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); if (tlevel < 5) step_param += 2; // prev_mv_sad is not setup for dynamically scaled frames. if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { int i; for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { x->pred_mv[ref].row = 0; x->pred_mv[ref].col = 0; tmp_mv->as_int = INVALID_MV; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) xd->plane[i].pre[ref_idx] = backup_yv12[i]; } return; } } } } av1_set_mv_search_range(x, &ref_mv); mvp_full = pred_mv.as_mv; mvp_full.col >>= 3; mvp_full.row >>= 3; bestsme = av1_obmc_full_pixel_diamond( cpi, x, wsrc, mask, &mvp_full, step_param, sadpb, MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv, &tmp_mv->as_mv, ref_idx); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int dis; av1_find_best_obmc_sub_pixel_tree_up( cpi, x, wsrc, mask, mi_row, mi_col, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], ref_idx, cpi->sf.use_upsampled_references); } *rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[ref_idx] = backup_yv12[i]; } } #endif // CONFIG_OBMC #if CONFIG_EXT_INTER static void do_masked_motion_search(AV1_COMP *cpi, MACROBLOCK *x, const uint8_t *mask, int mask_stride, BLOCK_SIZE bsize, int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int ref_idx, int mv_idx) { MACROBLOCKD *xd = &x->e_mbd; const AV1_COMMON *cm = &cpi->common; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; int bestsme = INT_MAX; int step_param; int sadpb = x->sadperbit16; MV mvp_full; int ref = mbmi->ref_frame[ref_idx]; MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref); MV pred_mv[3]; pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; pred_mv[2] = x->pred_mv[ref]; #if CONFIG_REF_MV av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx); #endif if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL); } av1_set_mv_search_range(x, &ref_mv); // Work out the size of the first step in the mv step search. // 0 here is maximum length first step. 1 is MAX >> 1 etc. if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and that based on the best ref mvs of the current // block for the given reference. step_param = (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / 2; } else { step_param = cpi->mv_step_param; } // TODO(debargha): is show_frame needed here? if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size && cm->show_frame) { int boffset = 2 * (b_width_log2_lookup[cm->sb_size] - AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); step_param = AOMMAX(step_param, boffset); } if (cpi->sf.adaptive_motion_search) { int bwl = b_width_log2_lookup[bsize]; int bhl = b_height_log2_lookup[bsize]; int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); if (tlevel < 5) step_param += 2; // prev_mv_sad is not setup for dynamically scaled frames. if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { int i; for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { x->pred_mv[ref].row = 0; x->pred_mv[ref].col = 0; tmp_mv->as_int = INVALID_MV; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) xd->plane[i].pre[ref_idx] = backup_yv12[i]; } return; } } } } mvp_full = pred_mv[x->mv_best_ref_index[ref]]; mvp_full.col >>= 3; mvp_full.row >>= 3; bestsme = av1_masked_full_pixel_diamond( cpi, x, mask, mask_stride, &mvp_full, step_param, sadpb, MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv, &tmp_mv->as_mv, ref_idx); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int dis; /* TODO: use dis in distortion calculation later. */ av1_find_best_masked_sub_pixel_tree_up( cpi, x, mask, mask_stride, mi_row, mi_col, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], ref_idx, cpi->sf.use_upsampled_references); } *rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); if (cpi->sf.adaptive_motion_search && cm->show_frame) x->pred_mv[ref] = tmp_mv->as_mv; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[ref_idx] = backup_yv12[i]; } } static void do_masked_motion_search_indexed(AV1_COMP *cpi, MACROBLOCK *x, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int mv_idx[2], int which) { // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; BLOCK_SIZE sb_type = mbmi->sb_type; const uint8_t *mask; const int mask_stride = 4 * num_4x4_blocks_wide_lookup[bsize]; mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); if (which == 0 || which == 2) do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col, &tmp_mv[0], &rate_mv[0], 0, mv_idx[0]); if (which == 1 || which == 2) { // get the negative mask mask = av1_get_contiguous_soft_mask(wedge_index, !wedge_sign, sb_type); do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col, &tmp_mv[1], &rate_mv[1], 1, mv_idx[1]); } } #endif // CONFIG_EXT_INTER // In some situations we want to discount tha pparent cost of a new motion // vector. Where there is a subtle motion field and especially where there is // low spatial complexity then it can be hard to cover the cost of a new motion // vector in a single block, even if that motion vector reduces distortion. // However, once established that vector may be usable through the nearest and // near mv modes to reduce distortion in subsequent blocks and also improve // visual quality. static int discount_newmv_test(const AV1_COMP *cpi, int this_mode, int_mv this_mv, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int ref_frame) { return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) && (this_mv.as_int != 0) && ((mode_mv[NEARESTMV][ref_frame].as_int == 0) || (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) && ((mode_mv[NEARMV][ref_frame].as_int == 0) || (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV))); } #define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) #define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) // TODO(jingning): this mv clamping function should be block size dependent. static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN, xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, xd->mb_to_top_edge - LEFT_TOP_MARGIN, xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); } #if CONFIG_EXT_INTER static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x, const BLOCK_SIZE bsize, const uint8_t *pred0, int stride0, const uint8_t *pred1, int stride1) { const struct macroblock_plane *const p = &x->plane[0]; const uint8_t *src = p->src.buf; int src_stride = p->src.stride; const int f_index = bsize - BLOCK_8X8; const int bw = 4 << (b_width_log2_lookup[bsize]); const int bh = 4 << (b_height_log2_lookup[bsize]); uint32_t esq[2][4], var; int64_t tl, br; #if CONFIG_AOM_HIGHBITDEPTH if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { pred0 = CONVERT_TO_BYTEPTR(pred0); pred1 = CONVERT_TO_BYTEPTR(pred1); } #endif // CONFIG_AOM_HIGHBITDEPTH var = cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]); var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, stride0, &esq[0][1]); var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, pred0 + bh / 2 * stride0, stride0, &esq[0][2]); var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, pred0 + bh / 2 * stride0 + bw / 2, stride0, &esq[0][3]); var = cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]); var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, stride1, &esq[1][1]); var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, pred1 + bh / 2 * stride1, stride0, &esq[1][2]); var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, pred1 + bh / 2 * stride1 + bw / 2, stride0, &esq[1][3]); (void)var; tl = (int64_t)(esq[0][0] + esq[0][1] + esq[0][2]) - (int64_t)(esq[1][0] + esq[1][1] + esq[1][2]); br = (int64_t)(esq[1][3] + esq[1][1] + esq[1][2]) - (int64_t)(esq[0][3] + esq[0][1] + esq[0][2]); return (tl + br > 0); } #endif // CONFIG_EXT_INTER #if !CONFIG_DUAL_FILTER static InterpFilter predict_interp_filter( const AV1_COMP *cpi, const MACROBLOCK *x, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, InterpFilter (*single_filter)[TOTAL_REFS_PER_FRAME]) { InterpFilter best_filter = SWITCHABLE; const AV1_COMMON *cm = &cpi->common; const MACROBLOCKD *xd = &x->e_mbd; int bsl = mi_width_log2_lookup[bsize]; int pred_filter_search = cpi->sf.cb_pred_filter_search ? (((mi_row + mi_col) >> bsl) + get_chessboard_index(cm->current_video_frame)) & 0x1 : 0; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const int is_comp_pred = has_second_ref(mbmi); const int this_mode = mbmi->mode; int refs[2] = { mbmi->ref_frame[0], (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; #if CONFIG_DUAL_FILTER (void)pred_filter_search; return SWITCHABLE; #else if (pred_filter_search) { InterpFilter af = SWITCHABLE, lf = SWITCHABLE; if (xd->up_available) af = xd->mi[-xd->mi_stride]->mbmi.interp_filter; if (xd->left_available) lf = xd->mi[-1]->mbmi.interp_filter; #if CONFIG_EXT_INTER if ((this_mode != NEWMV && this_mode != NEWFROMNEARMV && this_mode != NEW_NEWMV) || (af == lf)) #else if ((this_mode != NEWMV) || (af == lf)) #endif // CONFIG_EXT_INTER best_filter = af; } #endif if (is_comp_pred) { if (cpi->sf.adaptive_mode_search) { #if CONFIG_EXT_INTER switch (this_mode) { case NEAREST_NEARESTMV: if (single_filter[NEARESTMV][refs[0]] == single_filter[NEARESTMV][refs[1]]) best_filter = single_filter[NEARESTMV][refs[0]]; break; case NEAREST_NEARMV: if (single_filter[NEARESTMV][refs[0]] == single_filter[NEARMV][refs[1]]) best_filter = single_filter[NEARESTMV][refs[0]]; break; case NEAR_NEARESTMV: if (single_filter[NEARMV][refs[0]] == single_filter[NEARESTMV][refs[1]]) best_filter = single_filter[NEARMV][refs[0]]; break; case NEAR_NEARMV: if (single_filter[NEARMV][refs[0]] == single_filter[NEARMV][refs[1]]) best_filter = single_filter[NEARMV][refs[0]]; break; case ZERO_ZEROMV: if (single_filter[ZEROMV][refs[0]] == single_filter[ZEROMV][refs[1]]) best_filter = single_filter[ZEROMV][refs[0]]; break; case NEW_NEWMV: if (single_filter[NEWMV][refs[0]] == single_filter[NEWMV][refs[1]]) best_filter = single_filter[NEWMV][refs[0]]; break; case NEAREST_NEWMV: if (single_filter[NEARESTMV][refs[0]] == single_filter[NEWMV][refs[1]]) best_filter = single_filter[NEARESTMV][refs[0]]; break; case NEAR_NEWMV: if (single_filter[NEARMV][refs[0]] == single_filter[NEWMV][refs[1]]) best_filter = single_filter[NEARMV][refs[0]]; break; case NEW_NEARESTMV: if (single_filter[NEWMV][refs[0]] == single_filter[NEARESTMV][refs[1]]) best_filter = single_filter[NEWMV][refs[0]]; break; case NEW_NEARMV: if (single_filter[NEWMV][refs[0]] == single_filter[NEARMV][refs[1]]) best_filter = single_filter[NEWMV][refs[0]]; break; default: if (single_filter[this_mode][refs[0]] == single_filter[this_mode][refs[1]]) best_filter = single_filter[this_mode][refs[0]]; break; } #else if (single_filter[this_mode][refs[0]] == single_filter[this_mode][refs[1]]) best_filter = single_filter[this_mode][refs[0]]; #endif // CONFIG_EXT_INTER } } if (cm->interp_filter != BILINEAR) { if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { best_filter = EIGHTTAP_REGULAR; } #if CONFIG_EXT_INTERP else if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE) { best_filter = EIGHTTAP_REGULAR; } #endif } return best_filter; } #endif #if CONFIG_EXT_INTER // Choose the best wedge index and sign static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1, int *const best_wedge_sign, int *const best_wedge_index) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const src = &x->plane[0].src; const int bw = 4 * num_4x4_blocks_wide_lookup[bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[bsize]; const int N = bw * bh; int rate; int64_t dist; int64_t rd, best_rd = INT64_MAX; int wedge_index; int wedge_sign; int wedge_types = (1 << get_wedge_bits_lookup(bsize)); const uint8_t *mask; uint64_t sse; #if CONFIG_AOM_HIGHBITDEPTH const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; #else const int bd_round = 0; #endif // CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); int64_t sign_limit; #if CONFIG_AOM_HIGHBITDEPTH if (hbd) { aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride, CONVERT_TO_BYTEPTR(p0), bw, xd->bd); aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, CONVERT_TO_BYTEPTR(p1), bw, xd->bd); aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, CONVERT_TO_BYTEPTR(p0), bw, xd->bd); } else // NOLINT #endif // CONFIG_AOM_HIGHBITDEPTH { aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw); aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); } sign_limit = ((int64_t)aom_sum_squares_i16(r0, N) - (int64_t)aom_sum_squares_i16(r1, N)) * (1 << WEDGE_WEIGHT_BITS) / 2; av1_wedge_compute_delta_squares(ds, r0, r1, N); for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize); wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit); mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); sse = av1_wedge_sse_from_residuals(r1, d10, mask, N); sse = ROUND_POWER_OF_TWO(sse, bd_round); model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); rd = RDCOST(x->rdmult, x->rddiv, rate, dist); if (rd < best_rd) { *best_wedge_index = wedge_index; *best_wedge_sign = wedge_sign; best_rd = rd; } } return best_rd; } // Choose the best wedge index the specified sign static int64_t pick_wedge_fixed_sign( const AV1_COMP *const cpi, const MACROBLOCK *const x, const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1, const int wedge_sign, int *const best_wedge_index) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const src = &x->plane[0].src; const int bw = 4 * num_4x4_blocks_wide_lookup[bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[bsize]; const int N = bw * bh; int rate; int64_t dist; int64_t rd, best_rd = INT64_MAX; int wedge_index; int wedge_types = (1 << get_wedge_bits_lookup(bsize)); const uint8_t *mask; uint64_t sse; #if CONFIG_AOM_HIGHBITDEPTH const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; #else const int bd_round = 0; #endif // CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); #if CONFIG_AOM_HIGHBITDEPTH if (hbd) { aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, CONVERT_TO_BYTEPTR(p1), bw, xd->bd); aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, CONVERT_TO_BYTEPTR(p0), bw, xd->bd); } else // NOLINT #endif // CONFIG_AOM_HIGHBITDEPTH { aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); } for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); sse = av1_wedge_sse_from_residuals(r1, d10, mask, N); sse = ROUND_POWER_OF_TWO(sse, bd_round); model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); rd = RDCOST(x->rdmult, x->rddiv, rate, dist); if (rd < best_rd) { *best_wedge_index = wedge_index; best_rd = rd; } } return best_rd; } static int64_t pick_interinter_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1) { const MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int bw = 4 * num_4x4_blocks_wide_lookup[bsize]; int64_t rd; int wedge_index = -1; int wedge_sign = 0; assert(is_interinter_wedge_used(bsize)); if (cpi->sf.fast_wedge_sign_estimate) { wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw); rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, wedge_sign, &wedge_index); } else { rd = pick_wedge(cpi, x, bsize, p0, p1, &wedge_sign, &wedge_index); } mbmi->interinter_wedge_sign = wedge_sign; mbmi->interinter_wedge_index = wedge_index; return rd; } static int64_t pick_interintra_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1) { const MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int64_t rd; int wedge_index = -1; assert(is_interintra_wedge_used(bsize)); rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, 0, &wedge_index); mbmi->interintra_wedge_sign = 0; mbmi->interintra_wedge_index = wedge_index; return rd; } #endif // CONFIG_EXT_INTER static int64_t handle_inter_mode( AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2, int64_t *distortion, int *skippable, int *rate_y, int *rate_uv, int *disable_skip, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int mi_row, int mi_col, #if CONFIG_OBMC uint8_t *dst_buf1[3], int dst_stride1[3], uint8_t *dst_buf2[3], int dst_stride2[3], const int32_t *const wsrc, const int32_t *const mask2d, #endif // CONFIG_OBMC #if CONFIG_EXT_INTER int_mv single_newmvs[2][TOTAL_REFS_PER_FRAME], int single_newmvs_rate[2][TOTAL_REFS_PER_FRAME], int *compmode_interintra_cost, int *compmode_wedge_cost, int64_t (*const modelled_rd)[TOTAL_REFS_PER_FRAME], #else int_mv single_newmv[TOTAL_REFS_PER_FRAME], #endif // CONFIG_EXT_INTER InterpFilter (*single_filter)[TOTAL_REFS_PER_FRAME], int (*single_skippable)[TOTAL_REFS_PER_FRAME], int64_t *psse, const int64_t ref_best_rd) { AV1_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const int is_comp_pred = has_second_ref(mbmi); const int this_mode = mbmi->mode; int_mv *frame_mv = mode_mv[this_mode]; int i; int refs[2] = { mbmi->ref_frame[0], (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; int_mv cur_mv[2]; int rate_mv = 0; #if CONFIG_EXT_INTER const int bw = 4 * num_4x4_blocks_wide_lookup[bsize]; int mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0; int_mv single_newmv[TOTAL_REFS_PER_FRAME]; const unsigned int *const interintra_mode_cost = cpi->interintra_mode_cost[size_group_lookup[bsize]]; const int is_comp_interintra_pred = (mbmi->ref_frame[1] == INTRA_FRAME); #if CONFIG_REF_MV uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); #endif #endif // CONFIG_EXT_INTER #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); #else DECLARE_ALIGNED(16, uint8_t, tmp_buf_[MAX_MB_PLANE * MAX_SB_SQUARE]); #endif // CONFIG_AOM_HIGHBITDEPTH uint8_t *tmp_buf; #if CONFIG_OBMC || CONFIG_WARPED_MOTION int allow_motvar = #if CONFIG_EXT_INTER !is_comp_interintra_pred && #endif // CONFIG_EXT_INTER is_motvar_allowed(mbmi); int rate2_nocoeff = 0, best_rate2 = INT_MAX, best_skippable, best_xskip, best_disable_skip = 0; int best_rate_y, best_rate_uv; #if CONFIG_VAR_TX uint8_t best_blk_skip[MAX_MB_PLANE][MAX_MIB_SIZE * MAX_MIB_SIZE * 4]; #endif // CONFIG_VAR_TX int64_t best_distortion = INT64_MAX; MB_MODE_INFO best_mbmi; #if CONFIG_EXT_INTER int rate2_bmc_nocoeff; int rate_mv_bmc; MB_MODE_INFO best_bmc_mbmi; #endif // CONFIG_EXT_INTER #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION int pred_exists = 0; int intpel_mv; int64_t rd, tmp_rd, best_rd = INT64_MAX; int best_needs_copy = 0; uint8_t *orig_dst[MAX_MB_PLANE]; int orig_dst_stride[MAX_MB_PLANE]; int rs = 0; #if CONFIG_DUAL_FILTER // Index use case: // {0, 1} -> (vertical, horizontal) filter types for the first ref frame // {2, 3} -> (vertical, horizontal) filter types for the second ref frame InterpFilter best_filter[4] = { SWITCHABLE, SWITCHABLE, SWITCHABLE, SWITCHABLE, }; #else InterpFilter best_filter = SWITCHABLE; #endif int skip_txfm_sb = 0; int64_t skip_sse_sb = INT64_MAX; int64_t distortion_y = 0, distortion_uv = 0; int16_t mode_ctx = mbmi_ext->mode_context[refs[0]]; #if CONFIG_EXT_INTER *compmode_interintra_cost = 0; mbmi->use_wedge_interintra = 0; *compmode_wedge_cost = 0; mbmi->use_wedge_interinter = 0; // is_comp_interintra_pred implies !is_comp_pred assert(!is_comp_interintra_pred || (!is_comp_pred)); // is_comp_interintra_pred implies is_interintra_allowed(mbmi->sb_type) assert(!is_comp_interintra_pred || is_interintra_allowed(mbmi)); #endif // CONFIG_EXT_INTER #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (is_comp_pred) mode_ctx = mbmi_ext->compound_mode_context[refs[0]]; else #endif // CONFIG_EXT_INTER mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame, bsize, -1); #endif #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_); else #endif // CONFIG_AOM_HIGHBITDEPTH tmp_buf = tmp_buf_; if (is_comp_pred) { if (frame_mv[refs[0]].as_int == INVALID_MV || frame_mv[refs[1]].as_int == INVALID_MV) return INT64_MAX; } if (have_newmv_in_inter_mode(this_mode)) { if (is_comp_pred) { #if CONFIG_EXT_INTER for (i = 0; i < 2; ++i) { single_newmv[refs[i]].as_int = single_newmvs[mv_idx][refs[i]].as_int; } if (this_mode == NEW_NEWMV) { frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, NULL, single_newmv, &rate_mv, 0); } else { #if CONFIG_REF_MV av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx); #endif // CONFIG_REF_MV rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv, &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); #if CONFIG_REF_MV av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx); #endif // CONFIG_REF_MV rate_mv += av1_mv_bit_cost( &frame_mv[refs[1]].as_mv, &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); } } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; rate_mv = av1_mv_bit_cost(&frame_mv[refs[1]].as_mv, &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); } else { frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv, &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); } #else // Initialize mv using single prediction mode result. frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, single_newmv, &rate_mv, 0); } else { #if CONFIG_REF_MV av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx); #endif // CONFIG_REF_MV rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv, &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); #if CONFIG_REF_MV av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx); #endif // CONFIG_REF_MV rate_mv += av1_mv_bit_cost(&frame_mv[refs[1]].as_mv, &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); } #endif // CONFIG_EXT_INTER } else { #if CONFIG_EXT_INTER if (is_comp_interintra_pred) { x->best_mv = single_newmvs[mv_idx][refs[0]]; rate_mv = single_newmvs_rate[mv_idx][refs[0]]; } else { single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, mv_idx, &rate_mv); single_newmvs[mv_idx][refs[0]] = x->best_mv; single_newmvs_rate[mv_idx][refs[0]] = rate_mv; } #else single_motion_search(cpi, x, bsize, mi_row, mi_col, &rate_mv); single_newmv[refs[0]] = x->best_mv; #endif // CONFIG_EXT_INTER if (x->best_mv.as_int == INVALID_MV) return INT64_MAX; frame_mv[refs[0]] = x->best_mv; xd->mi[0]->bmi[0].as_mv[0] = x->best_mv; // Estimate the rate implications of a new mv but discount this // under certain circumstances where we want to help initiate a weak // motion field, where the distortion gain for a single block may not // be enough to overcome the cost of a new mv. if (discount_newmv_test(cpi, this_mode, x->best_mv, mode_mv, refs[0])) { rate_mv = AOMMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); } } *rate2 += rate_mv; } for (i = 0; i < is_comp_pred + 1; ++i) { cur_mv[i] = frame_mv[refs[i]]; // Clip "next_nearest" so that it does not extend to far out of image #if CONFIG_EXT_INTER if (this_mode != NEWMV && this_mode != NEWFROMNEARMV) #else if (this_mode != NEWMV) #endif // CONFIG_EXT_INTER clamp_mv2(&cur_mv[i].as_mv, xd); if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX; mbmi->mv[i].as_int = cur_mv[i].as_int; } #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (this_mode == NEAREST_NEARESTMV) { #else if (this_mode == NEARESTMV && is_comp_pred) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); #endif // CONFIG_EXT_INTER if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) { cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; for (i = 0; i < 2; ++i) { clamp_mv2(&cur_mv[i].as_mv, xd); if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX; mbmi->mv[i].as_int = cur_mv[i].as_int; } } } #if CONFIG_EXT_INTER if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) { if (this_mode == NEAREST_NEWMV || this_mode == NEAREST_NEARMV) { cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv); clamp_mv2(&cur_mv[0].as_mv, xd); if (mv_check_bounds(x, &cur_mv[0].as_mv)) return INT64_MAX; mbmi->mv[0].as_int = cur_mv[0].as_int; } if (this_mode == NEW_NEARESTMV || this_mode == NEAR_NEARESTMV) { cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv); clamp_mv2(&cur_mv[1].as_mv, xd); if (mv_check_bounds(x, &cur_mv[1].as_mv)) return INT64_MAX; mbmi->mv[1].as_int = cur_mv[1].as_int; } } if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) { if (this_mode == NEAR_NEWMV || this_mode == NEAR_NEARESTMV || this_mode == NEAR_NEARMV) { cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][1].this_mv; lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv); clamp_mv2(&cur_mv[0].as_mv, xd); if (mv_check_bounds(x, &cur_mv[0].as_mv)) return INT64_MAX; mbmi->mv[0].as_int = cur_mv[0].as_int; } if (this_mode == NEW_NEARMV || this_mode == NEAREST_NEARMV || this_mode == NEAR_NEARMV) { cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][1].comp_mv; lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv); clamp_mv2(&cur_mv[1].as_mv, xd); if (mv_check_bounds(x, &cur_mv[1].as_mv)) return INT64_MAX; mbmi->mv[1].as_int = cur_mv[1].as_int; } } #else if (this_mode == NEARMV && is_comp_pred) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) { int ref_mv_idx = mbmi->ref_mv_idx + 1; cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; for (i = 0; i < 2; ++i) { clamp_mv2(&cur_mv[i].as_mv, xd); if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX; mbmi->mv[i].as_int = cur_mv[i].as_int; } } } #endif // CONFIG_EXT_INTER #endif // CONFIG_REF_MV // do first prediction into the destination buffer. Do the next // prediction into a temporary buffer. Then keep track of which one // of these currently holds the best predictor, and use the other // one for future predictions. In the end, copy from tmp_buf to // dst if necessary. for (i = 0; i < MAX_MB_PLANE; i++) { orig_dst[i] = xd->plane[i].dst.buf; orig_dst_stride[i] = xd->plane[i].dst.stride; } // We don't include the cost of the second reference here, because there // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other // words if you present them in that order, the second one is always known // if the first is known. // // Under some circumstances we discount the cost of new mv mode to encourage // initiation of a motion field. if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv, refs[0])) { #if CONFIG_REF_MV && CONFIG_EXT_INTER *rate2 += AOMMIN(cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx), cost_mv_ref(cpi, NEARESTMV, is_comp_pred, mode_ctx)); #else *rate2 += AOMMIN(cost_mv_ref(cpi, this_mode, mode_ctx), cost_mv_ref(cpi, NEARESTMV, mode_ctx)); #endif // CONFIG_REF_MV && CONFIG_EXT_INTER } else { #if CONFIG_REF_MV && CONFIG_EXT_INTER *rate2 += cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx); #else *rate2 += cost_mv_ref(cpi, this_mode, mode_ctx); #endif // CONFIG_REF_MV && CONFIG_EXT_INTER } if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd && #if CONFIG_EXT_INTER mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV #else mbmi->mode != NEARESTMV #endif // CONFIG_EXT_INTER ) return INT64_MAX; pred_exists = 0; // Are all MVs integer pel for Y and UV intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv); if (is_comp_pred) intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv); #if !CONFIG_DUAL_FILTER best_filter = predict_interp_filter(cpi, x, bsize, mi_row, mi_col, single_filter); #endif if (cm->interp_filter != BILINEAR) { int newbest; int tmp_rate_sum = 0; int64_t tmp_dist_sum = 0; #if CONFIG_DUAL_FILTER #if CONFIG_EXT_INTERP for (i = 0; i < 25; ++i) { #else for (i = 0; i < 9; ++i) { #endif #else for (i = 0; i < SWITCHABLE_FILTERS; ++i) { #endif int j; int64_t rs_rd; int tmp_skip_sb = 0; int64_t tmp_skip_sse = INT64_MAX; #if CONFIG_DUAL_FILTER mbmi->interp_filter[0] = filter_sets[i][0]; mbmi->interp_filter[1] = filter_sets[i][1]; mbmi->interp_filter[2] = filter_sets[i][0]; mbmi->interp_filter[3] = filter_sets[i][1]; #else mbmi->interp_filter = i; #endif rs = av1_get_switchable_rate(cpi, xd); rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); if (i > 0 && intpel_mv && IsInterpolatingFilter(i)) { rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum); if (cm->interp_filter == SWITCHABLE) rd += rs_rd; } else { int rate_sum = 0; int64_t dist_sum = 0; if (i > 0 && cpi->sf.adaptive_interp_filter_search && (cpi->sf.interp_filter_search_mask & (1 << i))) { rate_sum = INT_MAX; dist_sum = INT64_MAX; continue; } if ((cm->interp_filter == SWITCHABLE && (!i || best_needs_copy)) || #if CONFIG_EXT_INTER is_comp_interintra_pred || #endif // CONFIG_EXT_INTER (cm->interp_filter != SWITCHABLE && ( #if CONFIG_DUAL_FILTER cm->interp_filter == mbmi->interp_filter[0] #else cm->interp_filter == mbmi->interp_filter #endif || (i == 0 && intpel_mv && IsInterpolatingFilter(i))))) { restore_dst_buf(xd, orig_dst, orig_dst_stride); } else { for (j = 0; j < MAX_MB_PLANE; j++) { xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE; xd->plane[j].dst.stride = MAX_SB_SIZE; } } av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &rate_sum, &dist_sum, &tmp_skip_sb, &tmp_skip_sse); rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum); if (cm->interp_filter == SWITCHABLE) rd += rs_rd; if (i == 0 && intpel_mv && IsInterpolatingFilter(i)) { tmp_rate_sum = rate_sum; tmp_dist_sum = dist_sum; } } if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { if (rd / 2 > ref_best_rd) { restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } } newbest = i == 0 || rd < best_rd; if (newbest) { best_rd = rd; #if CONFIG_DUAL_FILTER best_filter[0] = mbmi->interp_filter[0]; best_filter[1] = mbmi->interp_filter[1]; best_filter[2] = mbmi->interp_filter[2]; best_filter[3] = mbmi->interp_filter[3]; #else best_filter = mbmi->interp_filter; #endif if (cm->interp_filter == SWITCHABLE && i && !(intpel_mv && IsInterpolatingFilter(i))) best_needs_copy = !best_needs_copy; } if ((cm->interp_filter == SWITCHABLE && newbest) || (cm->interp_filter != SWITCHABLE && #if CONFIG_DUAL_FILTER cm->interp_filter == mbmi->interp_filter[0])) { #else cm->interp_filter == mbmi->interp_filter)) { #endif pred_exists = 1; tmp_rd = best_rd; skip_txfm_sb = tmp_skip_sb; skip_sse_sb = tmp_skip_sse; } else { pred_exists = 0; } } restore_dst_buf(xd, orig_dst, orig_dst_stride); } // Set the appropriate filter #if CONFIG_DUAL_FILTER mbmi->interp_filter[0] = cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter[0]; mbmi->interp_filter[1] = cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter[1]; if (mbmi->ref_frame[1] > INTRA_FRAME) { mbmi->interp_filter[2] = cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter[2]; mbmi->interp_filter[3] = cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter[3]; } #else mbmi->interp_filter = cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter; #endif rs = cm->interp_filter == SWITCHABLE ? av1_get_switchable_rate(cpi, xd) : 0; #if CONFIG_EXT_INTER #if CONFIG_OBMC best_bmc_mbmi = *mbmi; rate_mv_bmc = rate_mv; rate2_bmc_nocoeff = *rate2; if (cm->interp_filter == SWITCHABLE) rate2_bmc_nocoeff += rs; #endif // CONFIG_OBMC if (is_comp_pred && is_interinter_wedge_used(bsize)) { int rate_sum, rs; int64_t dist_sum; int64_t best_rd_nowedge = INT64_MAX; int64_t best_rd_wedge = INT64_MAX; int tmp_skip_txfm_sb; int64_t tmp_skip_sse_sb; rs = av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 0); mbmi->use_wedge_interinter = 0; av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); av1_subtract_plane(x, bsize, 0); rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); if (rd != INT64_MAX) rd = RDCOST(x->rdmult, x->rddiv, rs + rate_mv + rate_sum, dist_sum); best_rd_nowedge = rd; // Disbale wedge search if source variance is small if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh && best_rd_nowedge / 3 < ref_best_rd) { uint8_t pred0[2 * MAX_SB_SQUARE]; uint8_t pred1[2 * MAX_SB_SQUARE]; uint8_t *preds0[1] = { pred0 }; uint8_t *preds1[1] = { pred1 }; int strides[1] = { bw }; mbmi->use_wedge_interinter = 1; rs = av1_cost_literal(get_interinter_wedge_bits(bsize)) + av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 1); av1_build_inter_predictors_for_planes_single_buf( xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides); av1_build_inter_predictors_for_planes_single_buf( xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides); // Choose the best wedge best_rd_wedge = pick_interinter_wedge(cpi, x, bsize, pred0, pred1); best_rd_wedge += RDCOST(x->rdmult, x->rddiv, rs + rate_mv, 0); if (have_newmv_in_inter_mode(this_mode)) { int_mv tmp_mv[2]; int rate_mvs[2], tmp_rate_mv = 0; if (this_mode == NEW_NEWMV) { int mv_idxs[2] = { 0, 0 }; do_masked_motion_search_indexed( cpi, x, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign, bsize, mi_row, mi_col, tmp_mv, rate_mvs, mv_idxs, 2); tmp_rate_mv = rate_mvs[0] + rate_mvs[1]; mbmi->mv[0].as_int = tmp_mv[0].as_int; mbmi->mv[1].as_int = tmp_mv[1].as_int; } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) { int mv_idxs[2] = { 0, 0 }; do_masked_motion_search_indexed( cpi, x, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign, bsize, mi_row, mi_col, tmp_mv, rate_mvs, mv_idxs, 0); tmp_rate_mv = rate_mvs[0]; mbmi->mv[0].as_int = tmp_mv[0].as_int; } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { int mv_idxs[2] = { 0, 0 }; do_masked_motion_search_indexed( cpi, x, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign, bsize, mi_row, mi_col, tmp_mv, rate_mvs, mv_idxs, 1); tmp_rate_mv = rate_mvs[1]; mbmi->mv[1].as_int = tmp_mv[1].as_int; } av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb); rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum); if (rd < best_rd_wedge) { best_rd_wedge = rd; } else { mbmi->mv[0].as_int = cur_mv[0].as_int; mbmi->mv[1].as_int = cur_mv[1].as_int; tmp_rate_mv = rate_mv; av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, preds1, strides); } av1_subtract_plane(x, bsize, 0); rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); if (rd != INT64_MAX) rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum); best_rd_wedge = rd; if (best_rd_wedge < best_rd_nowedge) { mbmi->use_wedge_interinter = 1; xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int; xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int; *rate2 += tmp_rate_mv - rate_mv; rate_mv = tmp_rate_mv; } else { mbmi->use_wedge_interinter = 0; mbmi->mv[0].as_int = cur_mv[0].as_int; mbmi->mv[1].as_int = cur_mv[1].as_int; xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int; xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int; } } else { av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, preds1, strides); av1_subtract_plane(x, bsize, 0); rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); if (rd != INT64_MAX) rd = RDCOST(x->rdmult, x->rddiv, rs + rate_mv + rate_sum, dist_sum); best_rd_wedge = rd; if (best_rd_wedge < best_rd_nowedge) { mbmi->use_wedge_interinter = 1; } else { mbmi->use_wedge_interinter = 0; } } } if (ref_best_rd < INT64_MAX && AOMMIN(best_rd_wedge, best_rd_nowedge) / 3 > ref_best_rd) return INT64_MAX; pred_exists = 0; tmp_rd = AOMMIN(best_rd_wedge, best_rd_nowedge); if (mbmi->use_wedge_interinter) *compmode_wedge_cost = av1_cost_literal(get_interinter_wedge_bits(bsize)) + av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 1); else *compmode_wedge_cost = av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 0); } if (is_comp_interintra_pred) { INTERINTRA_MODE best_interintra_mode = II_DC_PRED; int64_t best_interintra_rd = INT64_MAX; int rmode, rate_sum; int64_t dist_sum; int j; int64_t best_interintra_rd_nowedge = INT64_MAX; int64_t best_interintra_rd_wedge = INT64_MAX; int rwedge; int_mv tmp_mv; int tmp_rate_mv = 0; int tmp_skip_txfm_sb; int64_t tmp_skip_sse_sb; DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_SB_SQUARE]); uint8_t *intrapred; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) intrapred = CONVERT_TO_BYTEPTR(intrapred_); else #endif // CONFIG_AOM_HIGHBITDEPTH intrapred = intrapred_; mbmi->ref_frame[1] = NONE; for (j = 0; j < MAX_MB_PLANE; j++) { xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE; xd->plane[j].dst.stride = bw; } av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); restore_dst_buf(xd, orig_dst, orig_dst_stride); mbmi->ref_frame[1] = INTRA_FRAME; mbmi->use_wedge_interintra = 0; for (j = 0; j < INTERINTRA_MODES; ++j) { mbmi->interintra_mode = (INTERINTRA_MODE)j; rmode = interintra_mode_cost[mbmi->interintra_mode]; av1_build_intra_predictors_for_interintra(xd, bsize, 0, intrapred, bw); av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb); rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum); if (rd < best_interintra_rd) { best_interintra_rd = rd; best_interintra_mode = mbmi->interintra_mode; } } mbmi->interintra_mode = best_interintra_mode; rmode = interintra_mode_cost[mbmi->interintra_mode]; av1_build_intra_predictors_for_interintra(xd, bsize, 0, intrapred, bw); av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); av1_subtract_plane(x, bsize, 0); rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); if (rd != INT64_MAX) rd = RDCOST(x->rdmult, x->rddiv, rate_mv + rmode + rate_sum, dist_sum); best_interintra_rd = rd; if (ref_best_rd < INT64_MAX && best_interintra_rd > 2 * ref_best_rd) { return INT64_MAX; } if (is_interintra_wedge_used(bsize)) { rwedge = av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 0); if (rd != INT64_MAX) rd = RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge + rate_sum, dist_sum); best_interintra_rd_nowedge = rd; // Disbale wedge search if source variance is small if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) { mbmi->use_wedge_interintra = 1; rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) + av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 1); best_interintra_rd_wedge = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); best_interintra_rd_wedge += RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge, 0); // Refine motion vector. if (have_newmv_in_inter_mode(this_mode)) { // get negative of mask const uint8_t *mask = av1_get_contiguous_soft_mask( mbmi->interintra_wedge_index, 1, bsize); do_masked_motion_search(cpi, x, mask, bw, bsize, mi_row, mi_col, &tmp_mv, &tmp_rate_mv, 0, mv_idx); mbmi->mv[0].as_int = tmp_mv.as_int; av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb); rd = RDCOST(x->rdmult, x->rddiv, rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum); if (rd < best_interintra_rd_wedge) { best_interintra_rd_wedge = rd; } else { tmp_mv.as_int = cur_mv[0].as_int; tmp_rate_mv = rate_mv; } } else { tmp_mv.as_int = cur_mv[0].as_int; tmp_rate_mv = rate_mv; av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); } // Evaluate closer to true rd av1_subtract_plane(x, bsize, 0); rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); if (rd != INT64_MAX) rd = RDCOST(x->rdmult, x->rddiv, rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum); best_interintra_rd_wedge = rd; if (best_interintra_rd_wedge < best_interintra_rd_nowedge) { mbmi->use_wedge_interintra = 1; best_interintra_rd = best_interintra_rd_wedge; mbmi->mv[0].as_int = tmp_mv.as_int; *rate2 += tmp_rate_mv - rate_mv; rate_mv = tmp_rate_mv; } else { mbmi->use_wedge_interintra = 0; best_interintra_rd = best_interintra_rd_nowedge; mbmi->mv[0].as_int = cur_mv[0].as_int; } } else { mbmi->use_wedge_interintra = 0; best_interintra_rd = best_interintra_rd_nowedge; } } pred_exists = 0; tmp_rd = best_interintra_rd; *compmode_interintra_cost = av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 1); *compmode_interintra_cost += interintra_mode_cost[mbmi->interintra_mode]; if (is_interintra_wedge_used(bsize)) { *compmode_interintra_cost += av1_cost_bit( cm->fc->wedge_interintra_prob[bsize], mbmi->use_wedge_interintra); if (mbmi->use_wedge_interintra) { *compmode_interintra_cost += av1_cost_literal(get_interintra_wedge_bits(bsize)); } } } else if (is_interintra_allowed(mbmi)) { *compmode_interintra_cost = av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 0); } #if CONFIG_EXT_INTERP if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE) { #if CONFIG_DUAL_FILTER for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = EIGHTTAP_REGULAR; #else mbmi->interp_filter = EIGHTTAP_REGULAR; #endif pred_exists = 0; } #endif // CONFIG_EXT_INTERP #endif // CONFIG_EXT_INTER if (pred_exists) { if (best_needs_copy) { // again temporarily set the buffers to local memory to prevent a memcpy for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = tmp_buf + i * MAX_SB_SQUARE; xd->plane[i].dst.stride = MAX_SB_SIZE; } } rd = tmp_rd; } else { int tmp_rate; int64_t tmp_dist; // Handles the special case when a filter that is not in the // switchable list (ex. bilinear) is indicated at the frame level, or // skip condition holds. av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate, &tmp_dist, &skip_txfm_sb, &skip_sse_sb); rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); } #if CONFIG_DUAL_FILTER if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter[0]; #else if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter; #endif #if CONFIG_EXT_INTER if (modelled_rd != NULL) { if (is_comp_pred) { const int mode0 = compound_ref0_mode(this_mode); const int mode1 = compound_ref1_mode(this_mode); int64_t mrd = AOMMIN(modelled_rd[mode0][refs[0]], modelled_rd[mode1][refs[1]]); if (rd / 4 * 3 > mrd && ref_best_rd < INT64_MAX) { restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } } else if (!is_comp_interintra_pred) { modelled_rd[this_mode][refs[0]] = rd; } } #endif // CONFIG_EXT_INTER if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { // if current pred_error modeled rd is substantially more than the best // so far, do not bother doing full rd if (rd / 2 > ref_best_rd) { restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } } if (cm->interp_filter == SWITCHABLE) *rate2 += rs; #if CONFIG_OBMC rate2_nocoeff = *rate2; #endif // CONFIG_OBMC #if CONFIG_OBMC || CONFIG_WARPED_MOTION best_rd = INT64_MAX; for (mbmi->motion_variation = SIMPLE_TRANSLATION; mbmi->motion_variation < (allow_motvar ? MOTION_VARIATIONS : 1); mbmi->motion_variation++) { int64_t tmp_rd; #if CONFIG_EXT_INTER int tmp_rate2 = mbmi->motion_variation != SIMPLE_TRANSLATION ? rate2_bmc_nocoeff : rate2_nocoeff; #else int tmp_rate2 = rate2_nocoeff; #endif // CONFIG_EXT_INTER #if CONFIG_EXT_INTERP #if CONFIG_DUAL_FILTER InterpFilter obmc_interp_filter[2][2] = { { mbmi->interp_filter[0], mbmi->interp_filter[1] }, // obmc == 0 { mbmi->interp_filter[0], mbmi->interp_filter[1] } // obmc == 1 }; #else InterpFilter obmc_interp_filter[2] = { mbmi->interp_filter, // obmc == 0 mbmi->interp_filter // obmc == 1 }; #endif // CONFIG_DUAL_FILTER #endif // CONFIG_EXT_INTERP #if CONFIG_OBMC int tmp_rate; int64_t tmp_dist; if (mbmi->motion_variation == OBMC_CAUSAL) { #if CONFIG_EXT_INTER *mbmi = best_bmc_mbmi; mbmi->motion_variation = OBMC_CAUSAL; #endif // CONFIG_EXT_INTER if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) { int_mv tmp_mv; int_mv pred_mv; int tmp_rate_mv = 0; pred_mv.as_int = mbmi->mv[0].as_int; single_motion_search_obmc(cpi, x, bsize, mi_row, mi_col, wsrc, mask2d, #if CONFIG_EXT_INTER 0, mv_idx, #endif // CONFIG_EXT_INTER &tmp_mv, pred_mv, &tmp_rate_mv); mbmi->mv[0].as_int = tmp_mv.as_int; if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) { tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); } #if CONFIG_EXT_INTER tmp_rate2 = rate2_bmc_nocoeff - rate_mv_bmc + tmp_rate_mv; #else tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv; #endif // CONFIG_EXT_INTER #if CONFIG_EXT_INTERP #if CONFIG_DUAL_FILTER if (!has_subpel_mv_component(xd->mi[0], xd, 0)) obmc_interp_filter[1][0] = mbmi->interp_filter[0] = EIGHTTAP_REGULAR; if (!has_subpel_mv_component(xd->mi[0], xd, 1)) obmc_interp_filter[1][1] = mbmi->interp_filter[1] = EIGHTTAP_REGULAR; #else if (!av1_is_interp_needed(xd)) obmc_interp_filter[1] = mbmi->interp_filter = EIGHTTAP_REGULAR; #endif // CONFIG_DUAL_FILTER // This is not quite correct with CONFIG_DUAL_FILTER when a filter // is needed in only one direction if (!av1_is_interp_needed(xd)) tmp_rate2 -= rs; #endif // CONFIG_EXT_INTERP av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); #if CONFIG_EXT_INTER } else { av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); #endif // CONFIG_EXT_INTER } av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate, &tmp_dist, &skip_txfm_sb, &skip_sse_sb); } #endif // CONFIG_OBMC #if CONFIG_WARPED_MOTION if (mbmi->motion_variation == WARPED_CAUSAL) { // TODO(yuec): Add code } #endif // CONFIG_WARPED_MOTION x->skip = 0; *rate2 = tmp_rate2; if (allow_motvar) *rate2 += cpi->motvar_cost[bsize][mbmi->motion_variation]; *distortion = 0; #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION if (!skip_txfm_sb) { int skippable_y, skippable_uv; int64_t sseuv = INT64_MAX; int64_t rdcosty = INT64_MAX; // Y cost and distortion av1_subtract_plane(x, bsize, 0); #if CONFIG_VAR_TX if (cm->tx_mode == TX_MODE_SELECT || xd->lossless[mbmi->segment_id]) { select_tx_type_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize, ref_best_rd); } else { int idx, idy; super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize, ref_best_rd); for (idy = 0; idy < xd->n8_h; ++idy) for (idx = 0; idx < xd->n8_w; ++idx) mbmi->inter_tx_size[idy][idx] = mbmi->tx_size; memset(x->blk_skip[0], skippable_y, sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); } #else super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize, ref_best_rd); #endif // CONFIG_VAR_TX if (*rate_y == INT_MAX) { *rate2 = INT_MAX; *distortion = INT64_MAX; #if CONFIG_OBMC || CONFIG_WARPED_MOTION if (mbmi->motion_variation != SIMPLE_TRANSLATION) { continue; } else { #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; #if CONFIG_OBMC || CONFIG_WARPED_MOTION } #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION } *rate2 += *rate_y; *distortion += distortion_y; rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); rdcosty = AOMMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse)); #if CONFIG_VAR_TX if (!inter_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv, &sseuv, bsize, ref_best_rd - rdcosty)) #else if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv, &sseuv, bsize, ref_best_rd - rdcosty)) #endif // CONFIG_VAR_TX { *rate2 = INT_MAX; *distortion = INT64_MAX; #if CONFIG_OBMC || CONFIG_WARPED_MOTION continue; #else restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION } *psse += sseuv; *rate2 += *rate_uv; *distortion += distortion_uv; *skippable = skippable_y && skippable_uv; #if CONFIG_OBMC || CONFIG_WARPED_MOTION if (*skippable) { *rate2 -= *rate_uv + *rate_y; *rate_y = 0; *rate_uv = 0; *rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); mbmi->skip = 0; // here mbmi->skip temporarily plays a role as what this_skip2 does } else if (!xd->lossless[mbmi->segment_id] && (RDCOST(x->rdmult, x->rddiv, *rate_y + *rate_uv + av1_cost_bit(av1_get_skip_prob(cm, xd), 0), *distortion) >= RDCOST(x->rdmult, x->rddiv, av1_cost_bit(av1_get_skip_prob(cm, xd), 1), *psse))) { *rate2 -= *rate_uv + *rate_y; *rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); *distortion = *psse; *rate_y = 0; *rate_uv = 0; mbmi->skip = 1; } else { *rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); mbmi->skip = 0; } *disable_skip = 0; #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION } else { x->skip = 1; *disable_skip = 1; mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1); // The cost of skip bit needs to be added. #if CONFIG_OBMC || CONFIG_WARPED_MOTION mbmi->skip = 0; #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION *rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); *distortion = skip_sse_sb; *psse = skip_sse_sb; *rate_y = 0; *rate_uv = 0; *skippable = 1; } #if CONFIG_GLOBAL_MOTION if (this_mode == ZEROMV) { *rate2 += GLOBAL_MOTION_RATE(mbmi->ref_frame[0]); if (is_comp_pred) *rate2 += GLOBAL_MOTION_RATE(mbmi->ref_frame[1]); } #endif // CONFIG_GLOBAL_MOTION #if CONFIG_OBMC || CONFIG_WARPED_MOTION tmp_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); if (mbmi->motion_variation == SIMPLE_TRANSLATION || (tmp_rd < best_rd)) { #if CONFIG_EXT_INTERP #if CONFIG_DUAL_FILTER mbmi->interp_filter[0] = obmc_interp_filter[mbmi->motion_variation][0]; mbmi->interp_filter[1] = obmc_interp_filter[mbmi->motion_variation][1]; #else mbmi->interp_filter = obmc_interp_filter[mbmi->motion_variation]; #endif // CONFIG_DUAL_FILTER #endif // CONFIG_EXT_INTERP best_mbmi = *mbmi; best_rd = tmp_rd; best_rate2 = *rate2; best_rate_y = *rate_y; best_rate_uv = *rate_uv; #if CONFIG_VAR_TX for (i = 0; i < MAX_MB_PLANE; ++i) memcpy(best_blk_skip[i], x->blk_skip[i], sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); #endif // CONFIG_VAR_TX best_distortion = *distortion; best_skippable = *skippable; best_xskip = x->skip; best_disable_skip = *disable_skip; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->recon_variance = av1_high_get_sby_perpixel_variance( cpi, &xd->plane[0].dst, bsize, xd->bd); } else { x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); } #else x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); #endif // CONFIG_AOM_HIGHBITDEPTH } } if (best_rd == INT64_MAX) { *rate2 = INT_MAX; *distortion = INT64_MAX; restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } *mbmi = best_mbmi; *rate2 = best_rate2; *rate_y = best_rate_y; *rate_uv = best_rate_uv; #if CONFIG_VAR_TX for (i = 0; i < MAX_MB_PLANE; ++i) memcpy(x->blk_skip[i], best_blk_skip[i], sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); #endif // CONFIG_VAR_TX *distortion = best_distortion; *skippable = best_skippable; x->skip = best_xskip; *disable_skip = best_disable_skip; #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable; #if !(CONFIG_OBMC || CONFIG_WARPED_MOTION) #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->recon_variance = av1_high_get_sby_perpixel_variance( cpi, &xd->plane[0].dst, bsize, xd->bd); } else { x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); } #else x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); #endif // CONFIG_AOM_HIGHBITDEPTH #endif // !(CONFIG_OBMC || CONFIG_WARPED_MOTION) restore_dst_buf(xd, orig_dst, orig_dst_stride); return 0; // The rate-distortion cost will be re-calculated by caller. } void av1_rd_pick_intra_mode_sb(AV1_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; struct macroblockd_plane *const pd = xd->plane; int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; int y_skip = 0, uv_skip = 0; int64_t dist_y = 0, dist_uv = 0; TX_SIZE max_uv_tx_size; ctx->skip = 0; xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME; xd->mi[0]->mbmi.ref_frame[1] = NONE; if (bsize >= BLOCK_8X8) { if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, &y_skip, bsize, best_rd) >= best_rd) { rd_cost->rate = INT_MAX; return; } } else { if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, &y_skip, best_rd) >= best_rd) { rd_cost->rate = INT_MAX; return; } } max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->mbmi.tx_size] [pd[1].subsampling_x][pd[1].subsampling_y]; rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, &uv_skip, AOMMAX(BLOCK_8X8, bsize), max_uv_tx_size); if (y_skip && uv_skip) { rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + av1_cost_bit(av1_get_skip_prob(cm, xd), 1); rd_cost->dist = dist_y + dist_uv; } else { rd_cost->rate = rate_y + rate_uv + av1_cost_bit(av1_get_skip_prob(cm, xd), 0); rd_cost->dist = dist_y + dist_uv; } ctx->mic = *xd->mi[0]; ctx->mbmi_ext = *x->mbmi_ext; rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); } // This function is designed to apply a bias or adjustment to an rd value based // on the relative variance of the source and reconstruction. #define LOW_VAR_THRESH 16 #define VLOW_ADJ_MAX 25 #define VHIGH_ADJ_MAX 8 static void rd_variance_adjustment(MACROBLOCK *x, int64_t *this_rd, MV_REFERENCE_FRAME ref_frame, unsigned int source_variance) { unsigned int recon_variance = x->recon_variance; unsigned int absvar_diff = 0; int64_t var_error = 0; int64_t var_factor = 0; if (*this_rd == INT64_MAX) return; if ((source_variance + recon_variance) > LOW_VAR_THRESH) { absvar_diff = (source_variance > recon_variance) ? (source_variance - recon_variance) : (recon_variance - source_variance); var_error = ((int64_t)200 * source_variance * recon_variance) / (((int64_t)source_variance * source_variance) + ((int64_t)recon_variance * recon_variance)); var_error = 100 - var_error; } // Source variance above a threshold and ref frame is intra. // This case is targeted mainly at discouraging intra modes that give rise // to a predictor with a low spatial complexity compared to the source. if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) && (source_variance > recon_variance)) { var_factor = AOMMIN(absvar_diff, AOMMIN(VLOW_ADJ_MAX, var_error)); // A second possible case of interest is where the source variance // is very low and we wish to discourage false texture or motion trails. } else if ((source_variance < (LOW_VAR_THRESH >> 1)) && (recon_variance > source_variance)) { var_factor = AOMMIN(absvar_diff, AOMMIN(VHIGH_ADJ_MAX, var_error)); } *this_rd += (*this_rd * var_factor) / 100; } // Do we have an internal image edge (e.g. formatting bars). int av1_internal_image_edge(AV1_COMP *cpi) { return (cpi->oxcf.pass == 2) && ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); } // Checks to see if a super block is on a horizontal image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int av1_active_h_edge(AV1_COMP *cpi, int mi_row, int mi_step) { int top_edge = 0; int bottom_edge = cpi->common.mi_rows; int is_active_h_edge = 0; // For two pass account for any formatting bars detected. if (cpi->oxcf.pass == 2) { TWO_PASS *twopass = &cpi->twopass; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); bottom_edge = AOMMAX(top_edge, bottom_edge); } if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { is_active_h_edge = 1; } return is_active_h_edge; } // Checks to see if a super block is on a vertical image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int av1_active_v_edge(AV1_COMP *cpi, int mi_col, int mi_step) { int left_edge = 0; int right_edge = cpi->common.mi_cols; int is_active_v_edge = 0; // For two pass account for any formatting bars detected. if (cpi->oxcf.pass == 2) { TWO_PASS *twopass = &cpi->twopass; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); right_edge = AOMMAX(left_edge, right_edge); } if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { is_active_v_edge = 1; } return is_active_v_edge; } // Checks to see if a super block is at the edge of the active image. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int av1_active_edge_sb(AV1_COMP *cpi, int mi_row, int mi_col) { return av1_active_h_edge(cpi, mi_row, cpi->common.mib_size) || av1_active_v_edge(cpi, mi_col, cpi->common.mib_size); } static void restore_uv_color_map(AV1_COMP *cpi, MACROBLOCK *x) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; const BLOCK_SIZE bsize = mbmi->sb_type; const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >> (xd->plane[1].subsampling_y); const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >> (xd->plane[1].subsampling_x); int src_stride = x->plane[1].src.stride; const uint8_t *const src_u = x->plane[1].src.buf; const uint8_t *const src_v = x->plane[2].src.buf; float *const data = x->palette_buffer->kmeans_data_buf; float centroids[2 * PALETTE_MAX_SIZE]; uint8_t *const color_map = xd->plane[1].color_index_map; int r, c; #if CONFIG_AOM_HIGHBITDEPTH const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u); const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v); #endif // CONFIG_AOM_HIGHBITDEPTH (void)cpi; for (r = 0; r < rows; ++r) { for (c = 0; c < cols; ++c) { #if CONFIG_AOM_HIGHBITDEPTH if (cpi->common.use_highbitdepth) { data[(r * cols + c) * 2] = src_u16[r * src_stride + c]; data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c]; } else { #endif // CONFIG_AOM_HIGHBITDEPTH data[(r * cols + c) * 2] = src_u[r * src_stride + c]; data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c]; #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH } } for (r = 1; r < 3; ++r) { for (c = 0; c < pmi->palette_size[1]; ++c) { centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c]; } } av1_calc_indices(data, centroids, color_map, rows * cols, pmi->palette_size[1], 2); } #if CONFIG_EXT_INTRA static void pick_ext_intra_interframe( AV1_COMP *cpi, MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, int *rate_uv_intra, int *rate_uv_tokenonly, int64_t *dist_uv, int *skip_uv, PREDICTION_MODE *mode_uv, EXT_INTRA_MODE_INFO *ext_intra_mode_info_uv, PALETTE_MODE_INFO *pmi_uv, int8_t *uv_angle_delta, int palette_ctx, int skip_mask, unsigned int *ref_costs_single, int64_t *best_rd, int64_t *best_intra_rd, PREDICTION_MODE *best_intra_mode, int *best_mode_index, int *best_skip2, int *best_mode_skippable, #if CONFIG_SUPERTX int *returnrate_nocoef, #endif // CONFIG_SUPERTX int64_t *best_pred_rd, MB_MODE_INFO *best_mbmode, RD_COST *rd_cost) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; int rate2 = 0, rate_y = INT_MAX, skippable = 0, rate_uv, rate_dummy, i; int dc_mode_index; const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]]; int64_t distortion2 = 0, distortion_y = 0, this_rd = *best_rd, distortion_uv; TX_SIZE uv_tx; for (i = 0; i < MAX_MODES; ++i) if (av1_mode_order[i].mode == DC_PRED && av1_mode_order[i].ref_frame[0] == INTRA_FRAME) break; dc_mode_index = i; assert(i < MAX_MODES); // TODO(huisu): use skip_mask for further speedup. (void)skip_mask; mbmi->mode = DC_PRED; mbmi->uv_mode = DC_PRED; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; if (!rd_pick_ext_intra_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y, &skippable, bsize, intra_mode_cost[mbmi->mode], &this_rd, 0)) return; if (rate_y == INT_MAX) return; uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x] [xd->plane[1].subsampling_y]; if (rate_uv_intra[uv_tx] == INT_MAX) { choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]); if (cm->allow_screen_content_tools) pmi_uv[uv_tx] = *pmi; ext_intra_mode_info_uv[uv_tx] = mbmi->ext_intra_mode_info; uv_angle_delta[uv_tx] = mbmi->angle_delta[1]; } rate_uv = rate_uv_tokenonly[uv_tx]; distortion_uv = dist_uv[uv_tx]; skippable = skippable && skip_uv[uv_tx]; mbmi->uv_mode = mode_uv[uv_tx]; if (cm->allow_screen_content_tools) { pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); } mbmi->angle_delta[1] = uv_angle_delta[uv_tx]; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]; if (ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]) { mbmi->ext_intra_mode_info.ext_intra_mode[1] = ext_intra_mode_info_uv[uv_tx].ext_intra_mode[1]; } rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv + cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode]; if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED) rate2 += av1_cost_bit( av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0); if (!xd->lossless[mbmi->segment_id]) { // super_block_yrd above includes the cost of the tx_size in the // tokenonly rate, but for intra blocks, tx_size is always coded // (prediction granularity), so we account for it in the full rate, // not the tokenonly rate. rate_y -= cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)] [mbmi->tx_size]; } rate2 += av1_cost_bit(cm->fc->ext_intra_probs[0], mbmi->ext_intra_mode_info.use_ext_intra_mode[0]); rate2 += write_uniform_cost(FILTER_INTRA_MODES, mbmi->ext_intra_mode_info.ext_intra_mode[0]); if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) { rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[1]); } if (mbmi->mode == DC_PRED) { rate2 += av1_cost_bit(cpi->common.fc->ext_intra_probs[1], mbmi->ext_intra_mode_info.use_ext_intra_mode[1]); if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1]) rate2 += write_uniform_cost(FILTER_INTRA_MODES, mbmi->ext_intra_mode_info.ext_intra_mode[1]); } distortion2 = distortion_y + distortion_uv; av1_encode_intra_block_plane(x, bsize, 0, 0); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->recon_variance = av1_high_get_sby_perpixel_variance( cpi, &xd->plane[0].dst, bsize, xd->bd); } else { x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); } #else x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); #endif // CONFIG_AOM_HIGHBITDEPTH rate2 += ref_costs_single[INTRA_FRAME]; if (skippable) { rate2 -= (rate_y + rate_uv); rate_y = 0; rate_uv = 0; rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); } else { rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); } this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); rd_variance_adjustment(x, &this_rd, INTRA_FRAME, x->source_variance); if (this_rd < *best_intra_rd) { *best_intra_rd = this_rd; *best_intra_mode = mbmi->mode; } for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd); if (this_rd < *best_rd) { *best_mode_index = dc_mode_index; mbmi->mv[0].as_int = 0; rd_cost->rate = rate2; #if CONFIG_SUPERTX if (x->skip) *returnrate_nocoef = rate2; else *returnrate_nocoef = rate2 - rate_y - rate_uv; *returnrate_nocoef -= av1_cost_bit(av1_get_skip_prob(cm, xd), skippable); *returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd), mbmi->ref_frame[0] != INTRA_FRAME); #endif // CONFIG_SUPERTX rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; *best_rd = this_rd; *best_mbmode = *mbmi; *best_skip2 = 0; *best_mode_skippable = skippable; } } #endif // CONFIG_EXT_INTRA #if CONFIG_OBMC static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd, int mi_row, int mi_col, const uint8_t *above, int above_stride, const uint8_t *left, int left_stride, int32_t *mask_buf, int32_t *wsrc_buf); #endif // CONFIG_OBMC void av1_rd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, int mi_row, int mi_col, RD_COST *rd_cost, #if CONFIG_SUPERTX int *returnrate_nocoef, #endif // CONFIG_SUPERTX BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { AV1_COMMON *const cm = &cpi->common; RD_OPT *const rd_opt = &cpi->rd; SPEED_FEATURES *const sf = &cpi->sf; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const struct segmentation *const seg = &cm->seg; PREDICTION_MODE this_mode; MV_REFERENCE_FRAME ref_frame, second_ref_frame; unsigned char segment_id = mbmi->segment_id; int comp_pred, i, k; int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]; #if CONFIG_EXT_INTER int_mv single_newmvs[2][TOTAL_REFS_PER_FRAME] = { { { 0 } }, { { 0 } } }; int single_newmvs_rate[2][TOTAL_REFS_PER_FRAME] = { { 0 }, { 0 } }; int64_t modelled_rd[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; #else int_mv single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } }; #endif // CONFIG_EXT_INTER InterpFilter single_inter_filter[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; int single_skippable[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; static const int flag_list[TOTAL_REFS_PER_FRAME] = { 0, AOM_LAST_FLAG, #if CONFIG_EXT_REFS AOM_LAST2_FLAG, AOM_LAST3_FLAG, #endif // CONFIG_EXT_REFS AOM_GOLD_FLAG, #if CONFIG_EXT_REFS AOM_BWD_FLAG, #endif // CONFIG_EXT_REFS AOM_ALT_FLAG }; int64_t best_rd = best_rd_so_far; int best_rate_y = INT_MAX, best_rate_uv = INT_MAX; int64_t best_pred_diff[REFERENCE_MODES]; int64_t best_pred_rd[REFERENCE_MODES]; MB_MODE_INFO best_mbmode; #if CONFIG_REF_MV int rate_skip0 = av1_cost_bit(av1_get_skip_prob(cm, xd), 0); int rate_skip1 = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); #endif int best_mode_skippable = 0; int midx, best_mode_index = -1; unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; aom_prob comp_mode_p; int64_t best_intra_rd = INT64_MAX; unsigned int best_pred_sse = UINT_MAX; PREDICTION_MODE best_intra_mode = DC_PRED; int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES]; int64_t dist_uv[TX_SIZES]; int skip_uv[TX_SIZES]; PREDICTION_MODE mode_uv[TX_SIZES]; PALETTE_MODE_INFO pmi_uv[TX_SIZES]; #if CONFIG_EXT_INTRA EXT_INTRA_MODE_INFO ext_intra_mode_info_uv[TX_SIZES]; int8_t uv_angle_delta[TX_SIZES], dc_skipped = 1; int is_directional_mode, angle_stats_ready = 0; int rate_overhead, rate_dummy; uint8_t directional_mode_skip_mask[INTRA_MODES]; #endif // CONFIG_EXT_INTRA const int intra_cost_penalty = av1_get_intra_cost_penalty( cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth); const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]]; int best_skip2 = 0; uint8_t ref_frame_skip_mask[2] = { 0 }; #if CONFIG_EXT_INTER uint32_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 }; MV_REFERENCE_FRAME best_single_inter_ref = LAST_FRAME; int64_t best_single_inter_rd = INT64_MAX; #else uint16_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 }; #endif // CONFIG_EXT_INTER int mode_skip_start = sf->mode_skip_start + 1; const int *const rd_threshes = rd_opt->threshes[segment_id][bsize]; const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; int64_t mode_threshold[MAX_MODES]; int *mode_map = tile_data->mode_map[bsize]; const int mode_search_skip_flags = sf->mode_search_skip_flags; const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; int palette_ctx = 0; const int rows = 4 * num_4x4_blocks_high_lookup[bsize]; const int cols = 4 * num_4x4_blocks_wide_lookup[bsize]; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; #if CONFIG_OBMC #if CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); #else DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); #endif // CONFIG_AOM_HIGHBITDEPTH DECLARE_ALIGNED(16, int32_t, weighted_src_buf[MAX_SB_SQUARE]); DECLARE_ALIGNED(16, int32_t, mask2d_buf[MAX_SB_SQUARE]); uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_SB_SQUARE * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_SB_SQUARE * len); } else { #endif // CONFIG_AOM_HIGHBITDEPTH dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; dst_buf1[2] = tmp_buf1 + 2 * MAX_SB_SQUARE; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; dst_buf2[2] = tmp_buf2 + 2 * MAX_SB_SQUARE; #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH #endif // CONFIG_OBMC av1_zero(best_mbmode); av1_zero(pmi_uv); if (cm->allow_screen_content_tools) { if (above_mi) palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); if (left_mi) palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); } #if CONFIG_EXT_INTRA memset(directional_mode_skip_mask, 0, sizeof(directional_mode_skip_mask[0]) * INTRA_MODES); #endif // CONFIG_EXT_INTRA estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, &comp_mode_p); for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX; for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX; for (i = 0; i < MB_MODE_COUNT; ++i) { for (k = 0; k < TOTAL_REFS_PER_FRAME; ++k) { single_inter_filter[i][k] = SWITCHABLE; single_skippable[i][k] = 0; } } rd_cost->rate = INT_MAX; #if CONFIG_SUPERTX *returnrate_nocoef = INT_MAX; #endif // CONFIG_SUPERTX for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { x->pred_mv_sad[ref_frame] = INT_MAX; x->mbmi_ext->mode_context[ref_frame] = 0; #if CONFIG_REF_MV && CONFIG_EXT_INTER x->mbmi_ext->compound_mode_context[ref_frame] = 0; #endif // CONFIG_REF_MV && CONFIG_EXT_INTER if (cpi->ref_frame_flags & flag_list[ref_frame]) { assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); } frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; #if CONFIG_GLOBAL_MOTION frame_mv[ZEROMV][ref_frame].as_int = cm->global_motion[ref_frame].motion_params.wmmat[0].as_int; #else // CONFIG_GLOBAL_MOTION frame_mv[ZEROMV][ref_frame].as_int = 0; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_EXT_INTER frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV; frame_mv[NEW_NEWMV][ref_frame].as_int = INVALID_MV; frame_mv[ZERO_ZEROMV][ref_frame].as_int = 0; #endif // CONFIG_EXT_INTER } #if CONFIG_REF_MV for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { MODE_INFO *const mi = xd->mi[0]; int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; x->mbmi_ext->mode_context[ref_frame] = 0; av1_find_mv_refs(cm, xd, mi, ref_frame, &mbmi_ext->ref_mv_count[ref_frame], mbmi_ext->ref_mv_stack[ref_frame], #if CONFIG_EXT_INTER mbmi_ext->compound_mode_context, #endif // CONFIG_EXT_INTER candidates, mi_row, mi_col, NULL, NULL, mbmi_ext->mode_context); } #endif // CONFIG_REF_MV #if CONFIG_OBMC av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); calc_target_weighted_pred(cm, x, xd, mi_row, mi_col, dst_buf1[0], dst_stride1[0], dst_buf2[0], dst_stride2[0], mask2d_buf, weighted_src_buf); #endif // CONFIG_OBMC for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { if (!(cpi->ref_frame_flags & flag_list[ref_frame])) { // Skip checking missing references in both single and compound reference // modes. Note that a mode will be skipped iff both reference frames // are masked out. #if CONFIG_EXT_REFS if (ref_frame == BWDREF_FRAME || ref_frame == ALTREF_FRAME) { ref_frame_skip_mask[0] |= (1 << ref_frame); ref_frame_skip_mask[1] |= ((1 << ref_frame) | 0x01); } else { #endif // CONFIG_EXT_REFS ref_frame_skip_mask[0] |= (1 << ref_frame); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; #if CONFIG_EXT_REFS } #endif // CONFIG_EXT_REFS } else { for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { // Skip fixed mv modes for poor references if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) { mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; break; } } } // If the segment reference frame feature is enabled.... // then do nothing if the current ref frame is not allowed.. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { ref_frame_skip_mask[0] |= (1 << ref_frame); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; } } // Disable this drop out case if the ref frame // segment level feature is enabled for this segment. This is to // prevent the possibility that we end up unable to pick any mode. if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative. We allow near/nearest as well // because they may result in zero-zero MVs but be cheaper. if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { int_mv zeromv; ref_frame_skip_mask[0] = (1 << LAST_FRAME) | #if CONFIG_EXT_REFS (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | #endif // CONFIG_EXT_REFS (1 << GOLDEN_FRAME); ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; // TODO(zoeliu): To further explore whether following needs to be done for // BWDREF_FRAME as well. mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; #if CONFIG_GLOBAL_MOTION zeromv.as_int = cm->global_motion[ALTREF_FRAME].motion_params.wmmat[0].as_int; #else zeromv.as_int = 0; #endif // CONFIG_GLOBAL_MOTION if (frame_mv[NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); #if CONFIG_EXT_INTER if (frame_mv[NEAREST_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARESTMV); if (frame_mv[NEAREST_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARMV); if (frame_mv[NEAR_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARESTMV); if (frame_mv[NEAR_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARMV); #endif // CONFIG_EXT_INTER } } if (cpi->rc.is_src_frame_alt_ref) { if (sf->alt_ref_search_fp) { assert(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]); mode_skip_mask[ALTREF_FRAME] = 0; ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME); ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; } } if (sf->alt_ref_search_fp) if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; if (sf->adaptive_mode_search) { if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && cpi->rc.frames_since_golden >= 3) if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1)) mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; } if (bsize > sf->max_intra_bsize) { ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); } mode_skip_mask[INTRA_FRAME] |= ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0; for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5; midx = sf->schedule_mode_search ? mode_skip_start : 0; while (midx > 4) { uint8_t end_pos = 0; for (i = 5; i < midx; ++i) { if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) { uint8_t tmp = mode_map[i]; mode_map[i] = mode_map[i - 1]; mode_map[i - 1] = tmp; end_pos = i; } } midx = end_pos; } if (cpi->sf.tx_type_search.fast_intra_tx_type_search) x->use_default_intra_tx_type = 1; else x->use_default_intra_tx_type = 0; if (cpi->sf.tx_type_search.fast_inter_tx_type_search) x->use_default_inter_tx_type = 1; else x->use_default_inter_tx_type = 0; #if CONFIG_EXT_INTER for (i = 0; i < MB_MODE_COUNT; ++i) for (ref_frame = 0; ref_frame < TOTAL_REFS_PER_FRAME; ++ref_frame) modelled_rd[i][ref_frame] = INT64_MAX; #endif // CONFIG_EXT_INTER for (midx = 0; midx < MAX_MODES; ++midx) { int mode_index; int mode_excluded = 0; int64_t this_rd = INT64_MAX; int disable_skip = 0; int compmode_cost = 0; #if CONFIG_EXT_INTER int compmode_interintra_cost = 0; int compmode_wedge_cost = 0; #endif // CONFIG_EXT_INTER int rate2 = 0, rate_y = 0, rate_uv = 0; int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; int skippable = 0; int this_skip2 = 0; int64_t total_sse = INT64_MAX; int early_term = 0; #if CONFIG_REF_MV uint8_t ref_frame_type; #endif mode_index = mode_map[midx]; this_mode = av1_mode_order[mode_index].mode; ref_frame = av1_mode_order[mode_index].ref_frame[0]; second_ref_frame = av1_mode_order[mode_index].ref_frame[1]; #if CONFIG_REF_MV mbmi->ref_mv_idx = 0; #endif #if CONFIG_EXT_INTER if (ref_frame > INTRA_FRAME && second_ref_frame == INTRA_FRAME) { // Mode must by compatible assert(is_interintra_allowed_mode(this_mode)); if (!is_interintra_allowed_bsize(bsize)) continue; } if (is_inter_compound_mode(this_mode)) { frame_mv[this_mode][ref_frame].as_int = frame_mv[compound_ref0_mode(this_mode)][ref_frame].as_int; frame_mv[this_mode][second_ref_frame].as_int = frame_mv[compound_ref1_mode(this_mode)][second_ref_frame].as_int; } #endif // CONFIG_EXT_INTER // Look at the reference frame of the best mode so far and set the // skip mask to look at a subset of the remaining modes. if (midx == mode_skip_start && best_mode_index >= 0) { switch (best_mbmode.ref_frame[0]) { case INTRA_FRAME: break; case LAST_FRAME: ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK; ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; #if CONFIG_EXT_REFS case LAST2_FRAME: ref_frame_skip_mask[0] |= LAST2_FRAME_MODE_MASK; ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; case LAST3_FRAME: ref_frame_skip_mask[0] |= LAST3_FRAME_MODE_MASK; ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; #endif // CONFIG_EXT_REFS case GOLDEN_FRAME: ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK; ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; #if CONFIG_EXT_REFS case BWDREF_FRAME: ref_frame_skip_mask[0] |= BWDREF_FRAME_MODE_MASK; ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; #endif // CONFIG_EXT_REFS case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALTREF_FRAME_MODE_MASK; #if CONFIG_EXT_REFS ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; #endif // CONFIG_EXT_REFS break; case NONE: case TOTAL_REFS_PER_FRAME: assert(0 && "Invalid Reference frame"); break; } } if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && (ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame)))) continue; if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue; // Test best rd so far against threshold for trying this mode. if (best_mode_skippable && sf->schedule_mode_search) mode_threshold[mode_index] <<= 1; if (best_rd < mode_threshold[mode_index]) continue; comp_pred = second_ref_frame > INTRA_FRAME; if (comp_pred) { if (!cpi->allow_comp_inter_inter) continue; // Skip compound inter modes if ARF is not available. if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; // Do not allow compound prediction if the segment level reference frame // feature is in use as in this case there can only be one reference. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME) continue; mode_excluded = cm->reference_mode == SINGLE_REFERENCE; } else { if (ref_frame != INTRA_FRAME) mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; } if (ref_frame == INTRA_FRAME) { if (sf->adaptive_mode_search) if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse) continue; if (this_mode != DC_PRED) { // Disable intra modes other than DC_PRED for blocks with low variance // Threshold for intra skipping based on source variance // TODO(debargha): Specialize the threshold for super block sizes const unsigned int skip_intra_var_thresh = 64; if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && x->source_variance < skip_intra_var_thresh) continue; // Only search the oblique modes if the best so far is // one of the neighboring directional modes if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && (this_mode >= D45_PRED && this_mode <= TM_PRED)) { if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME) continue; } if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(this_mode, best_intra_mode)) continue; } } #if CONFIG_GLOBAL_MOTION } else if (get_gmtype(&cm->global_motion[ref_frame]) == GLOBAL_ZERO && (!comp_pred || get_gmtype(&cm->global_motion[second_ref_frame]) == GLOBAL_ZERO)) { #else // CONFIG_GLOBAL_MOTION } else { #endif // CONFIG_GLOBAL_MOTION const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame }; if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, #if CONFIG_REF_MV && CONFIG_EXT_INTER mbmi_ext->compound_mode_context, #endif // CONFIG_REF_MV && CONFIG_EXT_INTER frame_mv, this_mode, ref_frames, bsize, -1)) continue; } mbmi->mode = this_mode; mbmi->uv_mode = DC_PRED; mbmi->ref_frame[0] = ref_frame; mbmi->ref_frame[1] = second_ref_frame; pmi->palette_size[0] = 0; pmi->palette_size[1] = 0; #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; #endif // CONFIG_EXT_INTRA // Evaluate all sub-pel filters irrespective of whether we can use // them for this frame. #if CONFIG_DUAL_FILTER for (i = 0; i < 4; ++i) { mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter; } #else mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter; #endif mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; mbmi->motion_variation = SIMPLE_TRANSLATION; x->skip = 0; set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); // Select prediction reference frames. for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; } #if CONFIG_EXT_INTER mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); #endif // CONFIG_EXT_INTER if (ref_frame == INTRA_FRAME) { TX_SIZE uv_tx; struct macroblockd_plane *const pd = &xd->plane[1]; #if CONFIG_EXT_INTRA is_directional_mode = (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED); if (is_directional_mode) { if (!angle_stats_ready) { const int src_stride = x->plane[0].src.stride; const uint8_t *src = x->plane[0].src.buf; const int rows = 4 * num_4x4_blocks_high_lookup[bsize]; const int cols = 4 * num_4x4_blocks_wide_lookup[bsize]; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) highbd_angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask); else #endif angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask); angle_stats_ready = 1; } if (directional_mode_skip_mask[mbmi->mode]) continue; rate_overhead = write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0) + intra_mode_cost[mbmi->mode]; rate_y = INT_MAX; this_rd = rd_pick_intra_angle_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y, &skippable, bsize, rate_overhead, best_rd); } else { mbmi->angle_delta[0] = 0; super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize, best_rd); } #else super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize, best_rd); #endif // CONFIG_EXT_INTRA if (rate_y == INT_MAX) continue; #if CONFIG_EXT_INTRA if (mbmi->mode == DC_PRED) dc_skipped = 0; #endif // CONFIG_EXT_INTRA uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][pd->subsampling_x] [pd->subsampling_y]; if (rate_uv_intra[uv_tx] == INT_MAX) { choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]); if (cm->allow_screen_content_tools) pmi_uv[uv_tx] = *pmi; #if CONFIG_EXT_INTRA ext_intra_mode_info_uv[uv_tx] = mbmi->ext_intra_mode_info; uv_angle_delta[uv_tx] = mbmi->angle_delta[1]; #endif // CONFIG_EXT_INTRA } rate_uv = rate_uv_tokenonly[uv_tx]; distortion_uv = dist_uv[uv_tx]; skippable = skippable && skip_uv[uv_tx]; mbmi->uv_mode = mode_uv[uv_tx]; if (cm->allow_screen_content_tools) { pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); } #if CONFIG_EXT_INTRA mbmi->angle_delta[1] = uv_angle_delta[uv_tx]; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]; if (ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]) { mbmi->ext_intra_mode_info.ext_intra_mode[1] = ext_intra_mode_info_uv[uv_tx].ext_intra_mode[1]; } #endif // CONFIG_EXT_INTRA rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv + cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode]; if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED) rate2 += av1_cost_bit( av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0); if (!xd->lossless[mbmi->segment_id]) { // super_block_yrd above includes the cost of the tx_size in the // tokenonly rate, but for intra blocks, tx_size is always coded // (prediction granularity), so we account for it in the full rate, // not the tokenonly rate. rate_y -= cpi->tx_size_cost[max_tx_size - TX_8X8] [get_tx_size_context(xd)][mbmi->tx_size]; } #if CONFIG_EXT_INTRA if (is_directional_mode) { int p_angle; const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[0]); p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (av1_is_intra_filter_switchable(p_angle)) rate2 += cpi->intra_filter_cost[intra_filter_ctx][mbmi->intra_filter]; } if (mbmi->mode == DC_PRED && ALLOW_FILTER_INTRA_MODES) { rate2 += av1_cost_bit(cm->fc->ext_intra_probs[0], mbmi->ext_intra_mode_info.use_ext_intra_mode[0]); if (mbmi->ext_intra_mode_info.use_ext_intra_mode[0]) { rate2 += write_uniform_cost( FILTER_INTRA_MODES, mbmi->ext_intra_mode_info.ext_intra_mode[0]); } } if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) { rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[1]); } if (ALLOW_FILTER_INTRA_MODES && mbmi->mode == DC_PRED) { rate2 += av1_cost_bit(cpi->common.fc->ext_intra_probs[1], mbmi->ext_intra_mode_info.use_ext_intra_mode[1]); if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1]) rate2 += write_uniform_cost( FILTER_INTRA_MODES, mbmi->ext_intra_mode_info.ext_intra_mode[1]); } #endif // CONFIG_EXT_INTRA if (this_mode != DC_PRED && this_mode != TM_PRED) rate2 += intra_cost_penalty; distortion2 = distortion_y + distortion_uv; av1_encode_intra_block_plane(x, bsize, 0, 1); #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->recon_variance = av1_high_get_sby_perpixel_variance( cpi, &xd->plane[0].dst, bsize, xd->bd); } else { x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); } #else x->recon_variance = av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); #endif // CONFIG_AOM_HIGHBITDEPTH } else { #if CONFIG_REF_MV int_mv backup_ref_mv[2]; backup_ref_mv[0] = mbmi_ext->ref_mvs[ref_frame][0]; if (comp_pred) backup_ref_mv[1] = mbmi_ext->ref_mvs[second_ref_frame][0]; #endif #if CONFIG_EXT_INTER if (second_ref_frame == INTRA_FRAME) { if (best_single_inter_ref != ref_frame) continue; mbmi->interintra_mode = intra_to_interintra_mode[best_intra_mode]; #if CONFIG_EXT_INTRA // TODO(debargha|geza.lore): // Should we use ext_intra modes for interintra? mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; mbmi->angle_delta[0] = 0; mbmi->angle_delta[1] = 0; mbmi->intra_filter = INTRA_FILTER_LINEAR; #endif // CONFIG_EXT_INTRA } #endif // CONFIG_EXT_INTER #if CONFIG_REF_MV mbmi->ref_mv_idx = 0; ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (this_mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1) { int ref; for (ref = 0; ref < 1 + comp_pred; ++ref) { int_mv this_mv = (ref == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv : mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd); mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv; } } #endif this_rd = handle_inter_mode( cpi, x, bsize, &rate2, &distortion2, &skippable, &rate_y, &rate_uv, &disable_skip, frame_mv, mi_row, mi_col, #if CONFIG_OBMC dst_buf1, dst_stride1, dst_buf2, dst_stride2, weighted_src_buf, mask2d_buf, #endif // CONFIG_OBMC #if CONFIG_EXT_INTER single_newmvs, single_newmvs_rate, &compmode_interintra_cost, &compmode_wedge_cost, modelled_rd, #else single_newmv, #endif // CONFIG_EXT_INTER single_inter_filter, single_skippable, &total_sse, best_rd); #if CONFIG_REF_MV // TODO(jingning): This needs some refactoring to improve code quality // and reduce redundant steps. if ((mbmi->mode == NEARMV && mbmi_ext->ref_mv_count[ref_frame_type] > 2) || (mbmi->mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1)) { int_mv backup_mv = frame_mv[NEARMV][ref_frame]; MB_MODE_INFO backup_mbmi = *mbmi; int backup_skip = x->skip; int64_t tmp_ref_rd = this_rd; int ref_idx; // TODO(jingning): This should be deprecated shortly. int idx_offset = (mbmi->mode == NEARMV) ? 1 : 0; int ref_set = AOMMIN(2, mbmi_ext->ref_mv_count[ref_frame_type] - 1 - idx_offset); uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx_offset); // Dummy int_mv backup_fmv[2]; backup_fmv[0] = frame_mv[NEWMV][ref_frame]; if (comp_pred) backup_fmv[1] = frame_mv[NEWMV][second_ref_frame]; rate2 += (rate2 < INT_MAX ? cpi->drl_mode_cost0[drl_ctx][0] : 0); if (this_rd < INT64_MAX) { if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < RDCOST(x->rdmult, x->rddiv, 0, total_sse)) tmp_ref_rd = RDCOST(x->rdmult, x->rddiv, rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 0), distortion2); else tmp_ref_rd = RDCOST(x->rdmult, x->rddiv, rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 1) - rate_y - rate_uv, total_sse); } #if CONFIG_VAR_TX for (i = 0; i < MAX_MB_PLANE; ++i) memcpy(x->blk_skip_drl[i], x->blk_skip[i], sizeof(uint8_t) * ctx->num_4x4_blk); #endif for (ref_idx = 0; ref_idx < ref_set; ++ref_idx) { int64_t tmp_alt_rd = INT64_MAX; int tmp_rate = 0, tmp_rate_y = 0, tmp_rate_uv = 0; int tmp_skip = 1; int64_t tmp_dist = 0, tmp_sse = 0; int dummy_disable_skip = 0; int ref; int_mv cur_mv; mbmi->ref_mv_idx = 1 + ref_idx; for (ref = 0; ref < 1 + comp_pred; ++ref) { int_mv this_mv = (ref == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] .this_mv : mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] .comp_mv; clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd); mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv; } cur_mv = mbmi_ext->ref_mv_stack[ref_frame][mbmi->ref_mv_idx + idx_offset] .this_mv; clamp_mv2(&cur_mv.as_mv, xd); if (!mv_check_bounds(x, &cur_mv.as_mv)) { InterpFilter dummy_single_inter_filter[MB_MODE_COUNT] [TOTAL_REFS_PER_FRAME] = { { 0 } }; int dummy_single_skippable[MB_MODE_COUNT] [TOTAL_REFS_PER_FRAME] = { { 0 } }; int dummy_disable_skip = 0; #if CONFIG_EXT_INTER int_mv dummy_single_newmvs[2][TOTAL_REFS_PER_FRAME] = { { { 0 } }, { { 0 } } }; int dummy_single_newmvs_rate[2][TOTAL_REFS_PER_FRAME] = { { 0 }, { 0 } }; int dummy_compmode_interintra_cost = 0; int dummy_compmode_wedge_cost = 0; #else int_mv dummy_single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } }; #endif frame_mv[NEARMV][ref_frame] = cur_mv; tmp_alt_rd = handle_inter_mode( cpi, x, bsize, &tmp_rate, &tmp_dist, &tmp_skip, &tmp_rate_y, &tmp_rate_uv, &dummy_disable_skip, frame_mv, mi_row, mi_col, #if CONFIG_OBMC dst_buf1, dst_stride1, dst_buf2, dst_stride2, weighted_src_buf, mask2d_buf, #endif // CONFIG_OBMC #if CONFIG_EXT_INTER dummy_single_newmvs, dummy_single_newmvs_rate, &dummy_compmode_interintra_cost, &dummy_compmode_wedge_cost, NULL, #else dummy_single_newmv, #endif dummy_single_inter_filter, dummy_single_skippable, &tmp_sse, best_rd); } for (i = 0; i < mbmi->ref_mv_idx; ++i) { uint8_t drl1_ctx = 0; drl1_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], i + idx_offset); tmp_rate += (tmp_rate < INT_MAX ? cpi->drl_mode_cost0[drl1_ctx][1] : 0); } if (mbmi_ext->ref_mv_count[ref_frame_type] > mbmi->ref_mv_idx + idx_offset + 1 && ref_idx < ref_set - 1) { uint8_t drl1_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi->ref_mv_idx + idx_offset); tmp_rate += cpi->drl_mode_cost0[drl1_ctx][0]; } if (tmp_alt_rd < INT64_MAX) { #if CONFIG_OBMC tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rate, tmp_dist); #else if (RDCOST(x->rdmult, x->rddiv, tmp_rate_y + tmp_rate_uv, tmp_dist) < RDCOST(x->rdmult, x->rddiv, 0, tmp_sse)) tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rate + av1_cost_bit(av1_get_skip_prob(cm, xd), 0), tmp_dist); else tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rate + av1_cost_bit(av1_get_skip_prob(cm, xd), 1) - tmp_rate_y - tmp_rate_uv, tmp_sse); #endif // CONFIG_OBMC } if (tmp_ref_rd > tmp_alt_rd) { rate2 = tmp_rate; disable_skip = dummy_disable_skip; distortion2 = tmp_dist; skippable = tmp_skip; rate_y = tmp_rate_y; rate_uv = tmp_rate_uv; total_sse = tmp_sse; this_rd = tmp_alt_rd; tmp_ref_rd = tmp_alt_rd; backup_mbmi = *mbmi; backup_skip = x->skip; #if CONFIG_VAR_TX for (i = 0; i < MAX_MB_PLANE; ++i) memcpy(x->blk_skip_drl[i], x->blk_skip[i], sizeof(uint8_t) * ctx->num_4x4_blk); #endif } else { *mbmi = backup_mbmi; x->skip = backup_skip; } } frame_mv[NEARMV][ref_frame] = backup_mv; frame_mv[NEWMV][ref_frame] = backup_fmv[0]; if (comp_pred) frame_mv[NEWMV][second_ref_frame] = backup_fmv[1]; #if CONFIG_VAR_TX for (i = 0; i < MAX_MB_PLANE; ++i) memcpy(x->blk_skip[i], x->blk_skip_drl[i], sizeof(uint8_t) * ctx->num_4x4_blk); #endif } mbmi_ext->ref_mvs[ref_frame][0] = backup_ref_mv[0]; if (comp_pred) mbmi_ext->ref_mvs[second_ref_frame][0] = backup_ref_mv[1]; #endif // CONFIG_REF_MV if (this_rd == INT64_MAX) continue; compmode_cost = av1_cost_bit(comp_mode_p, comp_pred); if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; } #if CONFIG_EXT_INTER rate2 += compmode_interintra_cost; if (cm->reference_mode != SINGLE_REFERENCE && comp_pred) #if CONFIG_OBMC || CONFIG_WARPED_MOTION if (mbmi->motion_variation == SIMPLE_TRANSLATION) #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION rate2 += compmode_wedge_cost; #endif // CONFIG_EXT_INTER // Estimate the reference frame signaling cost and add it // to the rolling cost variable. if (comp_pred) { rate2 += ref_costs_comp[ref_frame]; #if CONFIG_EXT_REFS rate2 += ref_costs_comp[second_ref_frame]; #endif // CONFIG_EXT_REFS } else { rate2 += ref_costs_single[ref_frame]; } #if CONFIG_OBMC if (ref_frame == INTRA_FRAME) { #else if (!disable_skip) { #endif // CONFIG_OBMC if (skippable) { // Back out the coefficient coding costs rate2 -= (rate_y + rate_uv); rate_y = 0; rate_uv = 0; // Cost the skip mb case rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); } else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) { #if CONFIG_REF_MV if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + rate_skip0, distortion2) < RDCOST(x->rdmult, x->rddiv, rate_skip1, total_sse)) { #else if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { #endif // Add in the cost of the no skip flag. rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); } else { // FIXME(rbultje) make this work for splitmv also rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); distortion2 = total_sse; assert(total_sse >= 0); rate2 -= (rate_y + rate_uv); this_skip2 = 1; rate_y = 0; rate_uv = 0; } } else { // Add in the cost of the no skip flag. rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); } // Calculate the final RD estimate for this mode. this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); #if CONFIG_OBMC } else { this_skip2 = mbmi->skip; this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); if (this_skip2) { rate_y = 0; rate_uv = 0; } #endif // CONFIG_OBMC } // Apply an adjustment to the rd value based on the similarity of the // source variance and reconstructed variance. rd_variance_adjustment(x, &this_rd, ref_frame, x->source_variance); if (ref_frame == INTRA_FRAME) { // Keep record of best intra rd if (this_rd < best_intra_rd) { best_intra_rd = this_rd; best_intra_mode = mbmi->mode; } #if CONFIG_EXT_INTER } else if (second_ref_frame == NONE) { if (this_rd < best_single_inter_rd) { best_single_inter_rd = this_rd; best_single_inter_ref = mbmi->ref_frame[0]; } #endif // CONFIG_EXT_INTER } if (!disable_skip && ref_frame == INTRA_FRAME) { for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd); } // Did this mode help.. i.e. is it the new best mode if (this_rd < best_rd || x->skip) { if (!mode_excluded) { // Note index of best mode so far best_mode_index = mode_index; if (ref_frame == INTRA_FRAME) { /* required for left and above block mv */ mbmi->mv[0].as_int = 0; } else { best_pred_sse = x->pred_sse[ref_frame]; } rd_cost->rate = rate2; #if CONFIG_SUPERTX if (x->skip) *returnrate_nocoef = rate2; else *returnrate_nocoef = rate2 - rate_y - rate_uv; *returnrate_nocoef -= av1_cost_bit( av1_get_skip_prob(cm, xd), disable_skip || skippable || this_skip2); *returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd), mbmi->ref_frame[0] != INTRA_FRAME); #if CONFIG_OBMC || CONFIG_WARPED_MOTION if (is_inter_block(mbmi) && is_motvar_allowed(mbmi)) *returnrate_nocoef -= cpi->motvar_cost[bsize][mbmi->motion_variation]; #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION #endif // CONFIG_SUPERTX rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; best_rd = this_rd; best_mbmode = *mbmi; best_skip2 = this_skip2; best_mode_skippable = skippable; best_rate_y = rate_y + av1_cost_bit(av1_get_skip_prob(cm, xd), this_skip2 || skippable); best_rate_uv = rate_uv; #if CONFIG_VAR_TX for (i = 0; i < MAX_MB_PLANE; ++i) memcpy(ctx->blk_skip[i], x->blk_skip[i], sizeof(uint8_t) * ctx->num_4x4_blk); #endif // TODO(debargha): enhance this test with a better distortion prediction // based on qp, activity mask and history if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) && (mode_index > MIN_EARLY_TERM_INDEX)) { int qstep = xd->plane[0].dequant[1]; // TODO(debargha): Enhance this by specializing for each mode_index int scale = 4; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { qstep >>= (xd->bd - 8); } #endif // CONFIG_AOM_HIGHBITDEPTH if (x->source_variance < UINT_MAX) { const int var_adjust = (x->source_variance < 16); scale -= var_adjust; } if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { early_term = 1; } } } } /* keep record of best compound/single-only prediction */ if (!disable_skip && ref_frame != INTRA_FRAME) { int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; if (cm->reference_mode == REFERENCE_MODE_SELECT) { single_rate = rate2 - compmode_cost; hybrid_rate = rate2; } else { single_rate = rate2; hybrid_rate = rate2 + compmode_cost; } single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); if (!comp_pred) { if (single_rd < best_pred_rd[SINGLE_REFERENCE]) best_pred_rd[SINGLE_REFERENCE] = single_rd; } else { if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) best_pred_rd[COMPOUND_REFERENCE] = single_rd; } if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; } if (early_term) break; if (x->skip && !comp_pred) break; } if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 && ((sf->tx_type_search.fast_inter_tx_type_search == 1 && is_inter_mode(best_mbmode.mode)) || (sf->tx_type_search.fast_intra_tx_type_search == 1 && !is_inter_mode(best_mbmode.mode)))) { int rate_y = 0, rate_uv = 0; int64_t dist_y = 0, dist_uv = 0; int skip_y = 0, skip_uv = 0, skip_blk = 0; int64_t sse_y = 0, sse_uv = 0; x->use_default_inter_tx_type = 0; x->use_default_intra_tx_type = 0; *mbmi = best_mbmode; set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); // Select prediction reference frames. for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; if (has_second_ref(mbmi)) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; } if (is_inter_mode(mbmi->mode)) { av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); #if CONFIG_OBMC if (mbmi->motion_variation == OBMC_CAUSAL) av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); #endif // CONFIG_OBMC av1_subtract_plane(x, bsize, 0); #if CONFIG_VAR_TX if (cm->tx_mode == TX_MODE_SELECT || xd->lossless[mbmi->segment_id]) { select_tx_type_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y, bsize, INT64_MAX); } else { int idx, idy; super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y, bsize, INT64_MAX); for (idy = 0; idy < xd->n8_h; ++idy) for (idx = 0; idx < xd->n8_w; ++idx) mbmi->inter_tx_size[idy][idx] = mbmi->tx_size; memset(x->blk_skip[0], skip_y, sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); } inter_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv, &sse_uv, bsize, INT64_MAX); #else super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y, bsize, INT64_MAX); super_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv, &sse_uv, bsize, INT64_MAX); #endif // CONFIG_VAR_TX } else { super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y, bsize, INT64_MAX); super_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv, &sse_uv, bsize, INT64_MAX); } if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, (dist_y + dist_uv)) > RDCOST(x->rdmult, x->rddiv, 0, (sse_y + sse_uv))) { skip_blk = 1; rate_y = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); rate_uv = 0; dist_y = sse_y; dist_uv = sse_uv; } else { skip_blk = 0; rate_y += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); } if (RDCOST(x->rdmult, x->rddiv, best_rate_y + best_rate_uv, rd_cost->dist) > RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, (dist_y + dist_uv))) { #if CONFIG_VAR_TX int idx, idy; #endif best_mbmode.tx_type = mbmi->tx_type; best_mbmode.tx_size = mbmi->tx_size; #if CONFIG_VAR_TX for (idy = 0; idy < xd->n8_h; ++idy) for (idx = 0; idx < xd->n8_w; ++idx) best_mbmode.inter_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx]; for (i = 0; i < MAX_MB_PLANE; ++i) memcpy(ctx->blk_skip[i], x->blk_skip[i], sizeof(uint8_t) * ctx->num_4x4_blk); #endif rd_cost->rate += (rate_y + rate_uv - best_rate_y - best_rate_uv); rd_cost->dist = dist_y + dist_uv; rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); best_skip2 = skip_blk; } } // Only try palette mode when the best mode so far is an intra mode. if (cm->allow_screen_content_tools && !is_inter_mode(best_mbmode.mode)) { PREDICTION_MODE mode_selected; int rate2 = 0, rate_y = 0; #if CONFIG_SUPERTX int best_rate_nocoef; #endif int64_t distortion2 = 0, distortion_y = 0, dummy_rd = best_rd, this_rd; int skippable = 0, rate_overhead = 0; TX_SIZE best_tx_size, uv_tx; TX_TYPE best_tx_type; PALETTE_MODE_INFO palette_mode_info; uint8_t *const best_palette_color_map = x->palette_buffer->best_palette_color_map; uint8_t *const color_map = xd->plane[0].color_index_map; mbmi->mode = DC_PRED; mbmi->uv_mode = DC_PRED; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; palette_mode_info.palette_size[0] = 0; rate_overhead = rd_pick_palette_intra_sby( cpi, x, bsize, palette_ctx, intra_mode_cost[DC_PRED], &palette_mode_info, best_palette_color_map, &best_tx_size, &best_tx_type, &mode_selected, &dummy_rd); if (palette_mode_info.palette_size[0] == 0) goto PALETTE_EXIT; pmi->palette_size[0] = palette_mode_info.palette_size[0]; if (palette_mode_info.palette_size[0] > 0) { memcpy(pmi->palette_colors, palette_mode_info.palette_colors, PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0])); memcpy(color_map, best_palette_color_map, rows * cols * sizeof(best_palette_color_map[0])); } super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize, best_rd); if (rate_y == INT_MAX) goto PALETTE_EXIT; uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x] [xd->plane[1].subsampling_y]; if (rate_uv_intra[uv_tx] == INT_MAX) { choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]); pmi_uv[uv_tx] = *pmi; #if CONFIG_EXT_INTRA ext_intra_mode_info_uv[uv_tx] = mbmi->ext_intra_mode_info; uv_angle_delta[uv_tx] = mbmi->angle_delta[1]; #endif // CONFIG_EXT_INTRA } mbmi->uv_mode = mode_uv[uv_tx]; pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; if (pmi->palette_size[1] > 0) memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); #if CONFIG_EXT_INTRA mbmi->angle_delta[1] = uv_angle_delta[uv_tx]; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]; if (ext_intra_mode_info_uv[uv_tx].use_ext_intra_mode[1]) { mbmi->ext_intra_mode_info.ext_intra_mode[1] = ext_intra_mode_info_uv[uv_tx].ext_intra_mode[1]; } #endif // CONFIG_EXT_INTRA skippable = skippable && skip_uv[uv_tx]; distortion2 = distortion_y + dist_uv[uv_tx]; rate2 = rate_y + rate_overhead + rate_uv_intra[uv_tx]; rate2 += ref_costs_single[INTRA_FRAME]; if (skippable) { rate2 -= (rate_y + rate_uv_tokenonly[uv_tx]); #if CONFIG_SUPERTX best_rate_nocoef = rate2; #endif rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); } else { #if CONFIG_SUPERTX best_rate_nocoef = rate2 - (rate_y + rate_uv_tokenonly[uv_tx]); #endif rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); } this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); if (this_rd < best_rd) { best_mode_index = 3; mbmi->mv[0].as_int = 0; rd_cost->rate = rate2; #if CONFIG_SUPERTX *returnrate_nocoef = best_rate_nocoef; #endif rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; best_rd = this_rd; best_mbmode = *mbmi; best_skip2 = 0; best_mode_skippable = skippable; } } PALETTE_EXIT: #if CONFIG_EXT_INTRA // TODO(huisu): ext-intra is turned off in lossless mode for now to // avoid a unit test failure if (!xd->lossless[mbmi->segment_id] && ALLOW_FILTER_INTRA_MODES && mbmi->palette_mode_info.palette_size[0] == 0 && !dc_skipped && best_mode_index >= 0 && best_intra_rd < (best_rd + (best_rd >> 3))) { pick_ext_intra_interframe( cpi, x, ctx, bsize, rate_uv_intra, rate_uv_tokenonly, dist_uv, skip_uv, mode_uv, ext_intra_mode_info_uv, pmi_uv, uv_angle_delta, palette_ctx, 0, ref_costs_single, &best_rd, &best_intra_rd, &best_intra_mode, &best_mode_index, &best_skip2, &best_mode_skippable, #if CONFIG_SUPERTX returnrate_nocoef, #endif // CONFIG_SUPERTX best_pred_rd, &best_mbmode, rd_cost); } #endif // CONFIG_EXT_INTRA // The inter modes' rate costs are not calculated precisely in some cases. // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and // ZEROMV. Here, checks are added for those cases, and the mode decisions // are corrected. if (best_mbmode.mode == NEWMV #if CONFIG_EXT_INTER || best_mbmode.mode == NEWFROMNEARMV || best_mbmode.mode == NEW_NEWMV #endif // CONFIG_EXT_INTER ) { const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], best_mbmode.ref_frame[1] }; int comp_pred_mode = refs[1] > INTRA_FRAME; int_mv zeromv[2]; #if CONFIG_REF_MV const uint8_t rf_type = av1_ref_frame_type(best_mbmode.ref_frame); #endif // CONFIG_REF_MV #if CONFIG_GLOBAL_MOTION zeromv[0].as_int = cm->global_motion[refs[0]].motion_params.wmmat[0].as_int; zeromv[1].as_int = cm->global_motion[refs[1]].motion_params.wmmat[0].as_int; #else zeromv[0].as_int = 0; zeromv[1].as_int = 0; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_REF_MV if (!comp_pred_mode) { int i; int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) ? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) : INT_MAX; for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) { int_mv cur_mv = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv; if (cur_mv.as_int == best_mbmode.mv[0].as_int) { best_mbmode.mode = NEARMV; best_mbmode.ref_mv_idx = i; } } if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int) best_mbmode.mode = NEARESTMV; else if (best_mbmode.mv[0].as_int == zeromv[0].as_int) best_mbmode.mode = ZEROMV; } else { int_mv nearestmv[2]; int_mv nearmv[2]; #if CONFIG_EXT_INTER if (mbmi_ext->ref_mv_count[rf_type] > 1) { nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][1].this_mv; nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][1].comp_mv; } else { nearmv[0] = frame_mv[NEARMV][refs[0]]; nearmv[1] = frame_mv[NEARMV][refs[1]]; } #else int i; int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) ? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) : INT_MAX; for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) { nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv; nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv; if (nearmv[0].as_int == best_mbmode.mv[0].as_int && nearmv[1].as_int == best_mbmode.mv[1].as_int) { best_mbmode.mode = NEARMV; best_mbmode.ref_mv_idx = i; } } #endif if (mbmi_ext->ref_mv_count[rf_type] >= 1) { nearestmv[0] = mbmi_ext->ref_mv_stack[rf_type][0].this_mv; nearestmv[1] = mbmi_ext->ref_mv_stack[rf_type][0].comp_mv; } else { nearestmv[0] = frame_mv[NEARESTMV][refs[0]]; nearestmv[1] = frame_mv[NEARESTMV][refs[1]]; } if (nearestmv[0].as_int == best_mbmode.mv[0].as_int && nearestmv[1].as_int == best_mbmode.mv[1].as_int) #if CONFIG_EXT_INTER best_mbmode.mode = NEAREST_NEARESTMV; else if (nearestmv[0].as_int == best_mbmode.mv[0].as_int && nearmv[1].as_int == best_mbmode.mv[1].as_int) best_mbmode.mode = NEAREST_NEARMV; else if (nearmv[0].as_int == best_mbmode.mv[0].as_int && nearestmv[1].as_int == best_mbmode.mv[1].as_int) best_mbmode.mode = NEAR_NEARESTMV; else if (nearmv[0].as_int == best_mbmode.mv[0].as_int && nearmv[1].as_int == best_mbmode.mv[1].as_int) best_mbmode.mode = NEAR_NEARMV; else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0) best_mbmode.mode = ZERO_ZEROMV; #else best_mbmode.mode = NEARESTMV; else if (best_mbmode.mv[0].as_int == zeromv[0].as_int && best_mbmode.mv[1].as_int == zeromv[1].as_int) best_mbmode.mode = ZEROMV; #endif // CONFIG_EXT_INTER } #else #if CONFIG_EXT_INTER if (!comp_pred_mode) { #endif // CONFIG_EXT_INTER if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && ((comp_pred_mode && frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || !comp_pred_mode)) best_mbmode.mode = NEARESTMV; else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && ((comp_pred_mode && frame_mv[NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || !comp_pred_mode)) best_mbmode.mode = NEARMV; else if (best_mbmode.mv[0].as_int == zeromv[0].as_int && ((comp_pred_mode && best_mbmode.mv[1].as_int == zeromv[1].as_int) || !comp_pred_mode)) best_mbmode.mode = ZEROMV; #if CONFIG_EXT_INTER } else { const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], best_mbmode.ref_frame[1] }; if (frame_mv[NEAREST_NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && frame_mv[NEAREST_NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) best_mbmode.mode = NEAREST_NEARESTMV; else if (frame_mv[NEAREST_NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && frame_mv[NEAREST_NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) best_mbmode.mode = NEAREST_NEARMV; else if (frame_mv[NEAR_NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && frame_mv[NEAR_NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) best_mbmode.mode = NEAR_NEARESTMV; else if (frame_mv[NEAR_NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && frame_mv[NEAR_NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) best_mbmode.mode = NEAR_NEARMV; else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0) best_mbmode.mode = ZERO_ZEROMV; } #endif // CONFIG_EXT_INTER #endif } #if CONFIG_REF_MV if (best_mbmode.ref_frame[0] > INTRA_FRAME && best_mbmode.mv[0].as_int == 0 && #if CONFIG_EXT_INTER (best_mbmode.ref_frame[1] <= INTRA_FRAME) #else (best_mbmode.ref_frame[1] == NONE || best_mbmode.mv[1].as_int == 0) #endif // CONFIG_EXT_INTER ) { int16_t mode_ctx = mbmi_ext->mode_context[best_mbmode.ref_frame[0]]; #if !CONFIG_EXT_INTER if (best_mbmode.ref_frame[1] > NONE) mode_ctx &= (mbmi_ext->mode_context[best_mbmode.ref_frame[1]] | 0x00ff); #endif // !CONFIG_EXT_INTER if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) best_mbmode.mode = ZEROMV; } #endif if (best_mode_index < 0 || best_rd >= best_rd_so_far) { rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; return; } // If we used an estimate for the uv intra rd in the loop above... if (sf->use_uv_intra_rd_estimate) { // Do Intra UV best rd mode selection if best mode choice above was intra. if (best_mbmode.ref_frame[0] == INTRA_FRAME) { TX_SIZE uv_tx_size; *mbmi = best_mbmode; uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]); rd_pick_intra_sbuv_mode( cpi, x, &rate_uv_intra[uv_tx_size], &rate_uv_tokenonly[uv_tx_size], &dist_uv[uv_tx_size], &skip_uv[uv_tx_size], bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, uv_tx_size); } } #if CONFIG_DUAL_FILTER assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter[0]) || !is_inter_block(&best_mbmode)); assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter[1]) || !is_inter_block(&best_mbmode)); if (best_mbmode.ref_frame[1] > INTRA_FRAME) { assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter[2]) || !is_inter_block(&best_mbmode)); assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter[3]) || !is_inter_block(&best_mbmode)); } #else assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter) || !is_inter_block(&best_mbmode)); #endif if (!cpi->rc.is_src_frame_alt_ref) av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, sf->adaptive_rd_thresh, bsize, best_mode_index); // macroblock modes *mbmi = best_mbmode; x->skip |= best_skip2; #if CONFIG_REF_MV for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { if (mbmi->mode != NEWMV) mbmi->pred_mv[i].as_int = mbmi->mv[i].as_int; else mbmi->pred_mv[i].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_int; } #endif for (i = 0; i < REFERENCE_MODES; ++i) { if (best_pred_rd[i] == INT64_MAX) best_pred_diff[i] = INT_MIN; else best_pred_diff[i] = best_rd - best_pred_rd[i]; } x->skip |= best_mode_skippable; assert(best_mode_index >= 0); store_coding_context(x, ctx, best_mode_index, best_pred_diff, best_mode_skippable); if (cm->allow_screen_content_tools && pmi->palette_size[1] > 0) { restore_uv_color_map(cpi, x); } } void av1_rd_pick_inter_mode_sb_seg_skip(AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; unsigned char segment_id = mbmi->segment_id; const int comp_pred = 0; int i; int64_t best_pred_diff[REFERENCE_MODES]; unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; aom_prob comp_mode_p; InterpFilter best_filter = SWITCHABLE; int64_t this_rd = INT64_MAX; int rate2 = 0; const int64_t distortion2 = 0; estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, &comp_mode_p); for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX; for (i = LAST_FRAME; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_mv_sad[i] = INT_MAX; rd_cost->rate = INT_MAX; assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; #endif // CONFIG_EXT_INTRA mbmi->mode = ZEROMV; mbmi->motion_variation = SIMPLE_TRANSLATION; mbmi->uv_mode = DC_PRED; mbmi->ref_frame[0] = LAST_FRAME; mbmi->ref_frame[1] = NONE; #if CONFIG_GLOBAL_MOTION mbmi->mv[0].as_int = cm->global_motion[mbmi->ref_frame[0]].motion_params.wmmat[0].as_int; #else // CONFIG_GLOBAL_MOTION mbmi->mv[0].as_int = 0; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_REF_MV mbmi->ref_mv_idx = 0; mbmi->pred_mv[0].as_int = 0; #endif x->skip = 1; if (cm->interp_filter != BILINEAR) { best_filter = EIGHTTAP_REGULAR; if (cm->interp_filter == SWITCHABLE && #if CONFIG_EXT_INTERP av1_is_interp_needed(xd) && #endif // CONFIG_EXT_INTERP x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { int rs; int best_rs = INT_MAX; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { #if CONFIG_DUAL_FILTER int k; for (k = 0; k < 4; ++k) mbmi->interp_filter[k] = i; #else mbmi->interp_filter = i; #endif rs = av1_get_switchable_rate(cpi, xd); if (rs < best_rs) { best_rs = rs; #if CONFIG_DUAL_FILTER best_filter = mbmi->interp_filter[0]; #else best_filter = mbmi->interp_filter; #endif } } } } // Set the appropriate filter if (cm->interp_filter == SWITCHABLE) { #if CONFIG_DUAL_FILTER for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = best_filter; #else mbmi->interp_filter = best_filter; #endif rate2 += av1_get_switchable_rate(cpi, xd); } else { #if CONFIG_DUAL_FILTER for (i = 0; i < 4; ++i) mbmi->interp_filter[0] = cm->interp_filter; #else mbmi->interp_filter = cm->interp_filter; #endif } if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += av1_cost_bit(comp_mode_p, comp_pred); // Estimate the reference frame signaling cost and add it // to the rolling cost variable. rate2 += ref_costs_single[LAST_FRAME]; this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); rd_cost->rate = rate2; rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; if (this_rd >= best_rd_so_far) { rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; return; } #if CONFIG_DUAL_FILTER assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == mbmi->interp_filter[0])); #else assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == mbmi->interp_filter)); #endif av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV); av1_zero(best_pred_diff); store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, 0); } void av1_rd_pick_inter_mode_sub8x8(struct AV1_COMP *cpi, TileDataEnc *tile_data, struct macroblock *x, int mi_row, int mi_col, struct RD_COST *rd_cost, #if CONFIG_SUPERTX int *returnrate_nocoef, #endif // CONFIG_SUPERTX BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { AV1_COMMON *const cm = &cpi->common; RD_OPT *const rd_opt = &cpi->rd; SPEED_FEATURES *const sf = &cpi->sf; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const struct segmentation *const seg = &cm->seg; MV_REFERENCE_FRAME ref_frame, second_ref_frame; unsigned char segment_id = mbmi->segment_id; int comp_pred, i; int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]; static const int flag_list[TOTAL_REFS_PER_FRAME] = { 0, AOM_LAST_FLAG, #if CONFIG_EXT_REFS AOM_LAST2_FLAG, AOM_LAST3_FLAG, #endif // CONFIG_EXT_REFS AOM_GOLD_FLAG, #if CONFIG_EXT_REFS AOM_BWD_FLAG, #endif // CONFIG_EXT_REFS AOM_ALT_FLAG }; int64_t best_rd = best_rd_so_far; int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise int64_t best_pred_diff[REFERENCE_MODES]; int64_t best_pred_rd[REFERENCE_MODES]; MB_MODE_INFO best_mbmode; int ref_index, best_ref_index = 0; unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; aom_prob comp_mode_p; #if CONFIG_DUAL_FILTER InterpFilter tmp_best_filter[4] = { 0 }; #else InterpFilter tmp_best_filter = SWITCHABLE; #endif int rate_uv_intra, rate_uv_tokenonly; int64_t dist_uv; int skip_uv; PREDICTION_MODE mode_uv = DC_PRED; const int intra_cost_penalty = av1_get_intra_cost_penalty( cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth); #if CONFIG_EXT_INTER int_mv seg_mvs[4][2][TOTAL_REFS_PER_FRAME]; #else int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME]; #endif // CONFIG_EXT_INTER b_mode_info best_bmodes[4]; int best_skip2 = 0; int ref_frame_skip_mask[2] = { 0 }; int internal_active_edge = av1_active_edge_sb(cpi, mi_row, mi_col) && av1_internal_image_edge(cpi); #if CONFIG_SUPERTX best_rd_so_far = INT64_MAX; best_rd = best_rd_so_far; best_yrd = best_rd_so_far; #endif // CONFIG_SUPERTX av1_zero(best_mbmode); #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; #endif // CONFIG_EXT_INTRA mbmi->motion_variation = SIMPLE_TRANSLATION; #if CONFIG_EXT_INTER mbmi->use_wedge_interinter = 0; mbmi->use_wedge_interintra = 0; #endif // CONFIG_EXT_INTER for (i = 0; i < 4; i++) { int j; #if CONFIG_EXT_INTER int k; for (k = 0; k < 2; k++) for (j = 0; j < TOTAL_REFS_PER_FRAME; j++) seg_mvs[i][k][j].as_int = INVALID_MV; #else for (j = 0; j < TOTAL_REFS_PER_FRAME; j++) seg_mvs[i][j].as_int = INVALID_MV; #endif // CONFIG_EXT_INTER } estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, &comp_mode_p); for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; rate_uv_intra = INT_MAX; rd_cost->rate = INT_MAX; #if CONFIG_SUPERTX *returnrate_nocoef = INT_MAX; #endif for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { x->mbmi_ext->mode_context[ref_frame] = 0; #if CONFIG_REF_MV && CONFIG_EXT_INTER x->mbmi_ext->compound_mode_context[ref_frame] = 0; #endif // CONFIG_REF_MV && CONFIG_EXT_INTER if (cpi->ref_frame_flags & flag_list[ref_frame]) { setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); } else { ref_frame_skip_mask[0] |= (1 << ref_frame); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; } frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; #if CONFIG_EXT_INTER frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV; #endif // CONFIG_EXT_INTER frame_mv[ZEROMV][ref_frame].as_int = 0; } mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) { int mode_excluded = 0; int64_t this_rd = INT64_MAX; int disable_skip = 0; int compmode_cost = 0; int rate2 = 0, rate_y = 0, rate_uv = 0; int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; int skippable = 0; int i; int this_skip2 = 0; int64_t total_sse = INT_MAX; int early_term = 0; ref_frame = av1_ref_order[ref_index].ref_frame[0]; second_ref_frame = av1_ref_order[ref_index].ref_frame[1]; #if CONFIG_REF_MV mbmi->ref_mv_idx = 0; #endif // Look at the reference frame of the best mode so far and set the // skip mask to look at a subset of the remaining modes. if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) { if (ref_index == 3) { switch (best_mbmode.ref_frame[0]) { case INTRA_FRAME: break; case LAST_FRAME: ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | #if CONFIG_EXT_REFS (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | #endif // CONFIG_EXT_REFS (1 << ALTREF_FRAME); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; #if CONFIG_EXT_REFS case LAST2_FRAME: ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; case LAST3_FRAME: ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; #endif // CONFIG_EXT_REFS case GOLDEN_FRAME: ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | #if CONFIG_EXT_REFS (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | #endif // CONFIG_EXT_REFS (1 << ALTREF_FRAME); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; #if CONFIG_EXT_REFS case BWDREF_FRAME: ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME); ref_frame_skip_mask[1] |= (1 << ALTREF_FRAME) | 0x01; break; #endif // CONFIG_EXT_REFS case ALTREF_FRAME: ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | #if CONFIG_EXT_REFS (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | #endif // CONFIG_EXT_REFS (1 << GOLDEN_FRAME); #if CONFIG_EXT_REFS ref_frame_skip_mask[1] |= (1 << BWDREF_FRAME) | 0x01; #endif // CONFIG_EXT_REFS break; case NONE: case TOTAL_REFS_PER_FRAME: assert(0 && "Invalid Reference frame"); break; } } } if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && (ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame)))) continue; // Test best rd so far against threshold for trying this mode. if (!internal_active_edge && rd_less_than_thresh(best_rd, rd_opt->threshes[segment_id][bsize][ref_index], tile_data->thresh_freq_fact[bsize][ref_index])) continue; comp_pred = second_ref_frame > INTRA_FRAME; if (comp_pred) { if (!cpi->allow_comp_inter_inter) continue; if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; // Do not allow compound prediction if the segment level reference frame // feature is in use as in this case there can only be one reference. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && best_mbmode.ref_frame[0] == INTRA_FRAME) continue; } // TODO(jingning, jkoleszar): scaling reference frame not supported for // sub8x8 blocks. if (ref_frame > INTRA_FRAME && av1_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) continue; if (second_ref_frame > INTRA_FRAME && av1_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf)) continue; if (comp_pred) mode_excluded = cm->reference_mode == SINGLE_REFERENCE; else if (ref_frame != INTRA_FRAME) mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; // If the segment reference frame feature is enabled.... // then do nothing if the current ref frame is not allowed.. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { continue; // Disable this drop out case if the ref frame // segment level feature is enabled for this segment. This is to // prevent the possibility that we end up unable to pick any mode. } else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative. We allow near/nearest as well // because they may result in zero-zero MVs but be cheaper. if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) continue; } mbmi->tx_size = TX_4X4; mbmi->uv_mode = DC_PRED; mbmi->ref_frame[0] = ref_frame; mbmi->ref_frame[1] = second_ref_frame; // Evaluate all sub-pel filters irrespective of whether we can use // them for this frame. #if CONFIG_DUAL_FILTER for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter; #else mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter; #endif x->skip = 0; set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); // Select prediction reference frames. for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; } #if CONFIG_VAR_TX mbmi->inter_tx_size[0][0] = mbmi->tx_size; #endif if (ref_frame == INTRA_FRAME) { int rate; if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y, NULL, best_rd) >= best_rd) continue; rate2 += rate; rate2 += intra_cost_penalty; distortion2 += distortion_y; if (rate_uv_intra == INT_MAX) { choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra, &rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv); } rate2 += rate_uv_intra; rate_uv = rate_uv_tokenonly; distortion2 += dist_uv; distortion_uv = dist_uv; mbmi->uv_mode = mode_uv; } else { int rate; int64_t distortion; int64_t this_rd_thresh; int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; int tmp_best_skippable = 0; int switchable_filter_index; int_mv *second_ref = comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL; b_mode_info tmp_best_bmodes[16]; // Should this be 4 ? MB_MODE_INFO tmp_best_mbmode; #if CONFIG_DUAL_FILTER #if CONFIG_EXT_INTERP BEST_SEG_INFO bsi[25]; #else BEST_SEG_INFO bsi[9]; #endif #else BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; #endif int pred_exists = 0; int uv_skippable; #if CONFIG_EXT_INTER int_mv compound_seg_newmvs[4][2]; for (i = 0; i < 4; i++) { compound_seg_newmvs[i][0].as_int = INVALID_MV; compound_seg_newmvs[i][1].as_int = INVALID_MV; } #endif // CONFIG_EXT_INTER this_rd_thresh = (ref_frame == LAST_FRAME) ? rd_opt->threshes[segment_id][bsize][THR_LAST] : rd_opt->threshes[segment_id][bsize][THR_ALTR]; #if CONFIG_EXT_REFS this_rd_thresh = (ref_frame == LAST2_FRAME) ? rd_opt->threshes[segment_id][bsize][THR_LAST2] : this_rd_thresh; this_rd_thresh = (ref_frame == LAST3_FRAME) ? rd_opt->threshes[segment_id][bsize][THR_LAST3] : this_rd_thresh; #endif // CONFIG_EXT_REFS this_rd_thresh = (ref_frame == GOLDEN_FRAME) ? rd_opt->threshes[segment_id][bsize][THR_GOLD] : this_rd_thresh; #if CONFIG_EXT_REFS // TODO(zoeliu): To explore whether this_rd_thresh should consider // BWDREF_FRAME and ALTREF_FRAME #endif // CONFIG_EXT_REFS // TODO(any): Add search of the tx_type to improve rd performance at the // expense of speed. mbmi->tx_type = DCT_DCT; if (cm->interp_filter != BILINEAR) { #if CONFIG_DUAL_FILTER tmp_best_filter[0] = EIGHTTAP_REGULAR; tmp_best_filter[1] = EIGHTTAP_REGULAR; tmp_best_filter[2] = EIGHTTAP_REGULAR; tmp_best_filter[3] = EIGHTTAP_REGULAR; #else tmp_best_filter = EIGHTTAP_REGULAR; #endif if (x->source_variance < sf->disable_filter_search_var_thresh) { #if CONFIG_DUAL_FILTER tmp_best_filter[0] = EIGHTTAP_REGULAR; #else tmp_best_filter = EIGHTTAP_REGULAR; #endif } else if (sf->adaptive_pred_interp_filter == 1 && ctx->pred_interp_filter < SWITCHABLE) { #if CONFIG_DUAL_FILTER tmp_best_filter[0] = ctx->pred_interp_filter; #else tmp_best_filter = ctx->pred_interp_filter; #endif } else if (sf->adaptive_pred_interp_filter == 2) { #if CONFIG_DUAL_FILTER tmp_best_filter[0] = ctx->pred_interp_filter < SWITCHABLE ? ctx->pred_interp_filter : 0; #else tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE ? ctx->pred_interp_filter : 0; #endif } else { #if CONFIG_DUAL_FILTER for (switchable_filter_index = 0; #if CONFIG_EXT_INTERP switchable_filter_index < 25; #else switchable_filter_index < 9; #endif ++switchable_filter_index) { #else for (switchable_filter_index = 0; switchable_filter_index < SWITCHABLE_FILTERS; ++switchable_filter_index) { #endif int newbest, rs; int64_t rs_rd; MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; #if CONFIG_DUAL_FILTER mbmi->interp_filter[0] = filter_sets[switchable_filter_index][0]; mbmi->interp_filter[1] = filter_sets[switchable_filter_index][1]; mbmi->interp_filter[2] = filter_sets[switchable_filter_index][0]; mbmi->interp_filter[3] = filter_sets[switchable_filter_index][1]; #else mbmi->interp_filter = switchable_filter_index; #endif tmp_rd = rd_pick_best_sub8x8_mode( cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, &rate, &rate_y, &distortion, &skippable, &total_sse, (int)this_rd_thresh, seg_mvs, #if CONFIG_EXT_INTER compound_seg_newmvs, #endif // CONFIG_EXT_INTER bsi, switchable_filter_index, mi_row, mi_col); #if CONFIG_EXT_INTERP #if CONFIG_DUAL_FILTER if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE && (mbmi->interp_filter[0] != EIGHTTAP_REGULAR || mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) // invalid config continue; #else if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE && mbmi->interp_filter != EIGHTTAP_REGULAR) // invalid config continue; #endif #endif // CONFIG_EXT_INTERP if (tmp_rd == INT64_MAX) continue; rs = av1_get_switchable_rate(cpi, xd); rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd; newbest = (tmp_rd < tmp_best_rd); if (newbest) { #if CONFIG_DUAL_FILTER tmp_best_filter[0] = mbmi->interp_filter[0]; tmp_best_filter[1] = mbmi->interp_filter[1]; tmp_best_filter[2] = mbmi->interp_filter[2]; tmp_best_filter[3] = mbmi->interp_filter[3]; #else tmp_best_filter = mbmi->interp_filter; #endif tmp_best_rd = tmp_rd; } if ((newbest && cm->interp_filter == SWITCHABLE) || ( #if CONFIG_DUAL_FILTER mbmi->interp_filter[0] == cm->interp_filter #else mbmi->interp_filter == cm->interp_filter #endif && cm->interp_filter != SWITCHABLE)) { tmp_best_rdu = tmp_rd; tmp_best_rate = rate; tmp_best_ratey = rate_y; tmp_best_distortion = distortion; tmp_best_sse = total_sse; tmp_best_skippable = skippable; tmp_best_mbmode = *mbmi; for (i = 0; i < 4; i++) { tmp_best_bmodes[i] = xd->mi[0]->bmi[i]; } pred_exists = 1; } } // switchable_filter_index loop } } if (tmp_best_rdu == INT64_MAX && pred_exists) continue; #if CONFIG_DUAL_FILTER mbmi->interp_filter[0] = (cm->interp_filter == SWITCHABLE ? tmp_best_filter[0] : cm->interp_filter); mbmi->interp_filter[1] = (cm->interp_filter == SWITCHABLE ? tmp_best_filter[1] : cm->interp_filter); mbmi->interp_filter[2] = (cm->interp_filter == SWITCHABLE ? tmp_best_filter[2] : cm->interp_filter); mbmi->interp_filter[3] = (cm->interp_filter == SWITCHABLE ? tmp_best_filter[3] : cm->interp_filter); #else mbmi->interp_filter = (cm->interp_filter == SWITCHABLE ? tmp_best_filter : cm->interp_filter); #endif if (!pred_exists) { // Handles the special case when a filter that is not in the // switchable list (bilinear) is indicated at the frame level tmp_rd = rd_pick_best_sub8x8_mode( cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, &rate, &rate_y, &distortion, &skippable, &total_sse, (int)this_rd_thresh, seg_mvs, #if CONFIG_EXT_INTER compound_seg_newmvs, #endif // CONFIG_EXT_INTER bsi, 0, mi_row, mi_col); #if CONFIG_EXT_INTERP #if CONFIG_DUAL_FILTER if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE && (mbmi->interp_filter[0] != EIGHTTAP_REGULAR || mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) { mbmi->interp_filter[0] = EIGHTTAP_REGULAR; mbmi->interp_filter[1] = EIGHTTAP_REGULAR; } #else if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE && mbmi->interp_filter != EIGHTTAP_REGULAR) mbmi->interp_filter = EIGHTTAP_REGULAR; #endif // CONFIG_DUAL_FILTER #endif // CONFIG_EXT_INTERP if (tmp_rd == INT64_MAX) continue; } else { total_sse = tmp_best_sse; rate = tmp_best_rate; rate_y = tmp_best_ratey; distortion = tmp_best_distortion; skippable = tmp_best_skippable; *mbmi = tmp_best_mbmode; for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i]; } // Add in the cost of the transform type if (!xd->lossless[mbmi->segment_id]) { int rate_tx_type = 0; #if CONFIG_EXT_TX if (get_ext_tx_types(mbmi->tx_size, bsize, 1) > 1) { const int eset = get_ext_tx_set(mbmi->tx_size, bsize, 1); rate_tx_type = cpi->inter_tx_type_costs[eset][mbmi->tx_size][mbmi->tx_type]; } #else if (mbmi->tx_size < TX_32X32) { rate_tx_type = cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type]; } #endif rate += rate_tx_type; rate_y += rate_tx_type; } rate2 += rate; distortion2 += distortion; if (cm->interp_filter == SWITCHABLE) rate2 += av1_get_switchable_rate(cpi, xd); if (!mode_excluded) mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE : cm->reference_mode == COMPOUND_REFERENCE; compmode_cost = av1_cost_bit(comp_mode_p, comp_pred); tmp_best_rdu = best_rd - AOMMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), RDCOST(x->rdmult, x->rddiv, 0, total_sse)); if (tmp_best_rdu > 0) { // If even the 'Y' rd value of split is higher than best so far // then dont bother looking at UV av1_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8); #if CONFIG_VAR_TX if (!inter_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable, &uv_sse, BLOCK_8X8, tmp_best_rdu)) continue; #else if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable, &uv_sse, BLOCK_8X8, tmp_best_rdu)) continue; #endif rate2 += rate_uv; distortion2 += distortion_uv; skippable = skippable && uv_skippable; total_sse += uv_sse; } else { continue; } } if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; // Estimate the reference frame signaling cost and add it // to the rolling cost variable. if (second_ref_frame > INTRA_FRAME) { rate2 += ref_costs_comp[ref_frame]; #if CONFIG_EXT_REFS rate2 += ref_costs_comp[second_ref_frame]; #endif // CONFIG_EXT_REFS } else { rate2 += ref_costs_single[ref_frame]; } if (!disable_skip) { // Skip is never coded at the segment level for sub8x8 blocks and instead // always coded in the bitstream at the mode info level. if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) { if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { // Add in the cost of the no skip flag. rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); } else { // FIXME(rbultje) make this work for splitmv also rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); distortion2 = total_sse; assert(total_sse >= 0); rate2 -= (rate_y + rate_uv); rate_y = 0; rate_uv = 0; this_skip2 = 1; } } else { // Add in the cost of the no skip flag. rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); } // Calculate the final RD estimate for this mode. this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); } if (!disable_skip && ref_frame == INTRA_FRAME) { for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd); } // Did this mode help.. i.e. is it the new best mode if (this_rd < best_rd || x->skip) { if (!mode_excluded) { // Note index of best mode so far best_ref_index = ref_index; if (ref_frame == INTRA_FRAME) { /* required for left and above block mv */ mbmi->mv[0].as_int = 0; } rd_cost->rate = rate2; #if CONFIG_SUPERTX *returnrate_nocoef = rate2 - rate_y - rate_uv; if (!disable_skip) *returnrate_nocoef -= av1_cost_bit(av1_get_skip_prob(cm, xd), this_skip2); *returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd), mbmi->ref_frame[0] != INTRA_FRAME); assert(*returnrate_nocoef > 0); #endif // CONFIG_SUPERTX rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; best_rd = this_rd; best_yrd = best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); best_mbmode = *mbmi; best_skip2 = this_skip2; #if CONFIG_VAR_TX for (i = 0; i < MAX_MB_PLANE; ++i) memset(ctx->blk_skip[i], 0, sizeof(uint8_t) * ctx->num_4x4_blk); #endif for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i]; // TODO(debargha): enhance this test with a better distortion prediction // based on qp, activity mask and history if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) && (ref_index > MIN_EARLY_TERM_INDEX)) { int qstep = xd->plane[0].dequant[1]; // TODO(debargha): Enhance this by specializing for each mode_index int scale = 4; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { qstep >>= (xd->bd - 8); } #endif // CONFIG_AOM_HIGHBITDEPTH if (x->source_variance < UINT_MAX) { const int var_adjust = (x->source_variance < 16); scale -= var_adjust; } if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { early_term = 1; } } } } /* keep record of best compound/single-only prediction */ if (!disable_skip && ref_frame != INTRA_FRAME) { int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; if (cm->reference_mode == REFERENCE_MODE_SELECT) { single_rate = rate2 - compmode_cost; hybrid_rate = rate2; } else { single_rate = rate2; hybrid_rate = rate2 + compmode_cost; } single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE]) best_pred_rd[SINGLE_REFERENCE] = single_rd; else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE]) best_pred_rd[COMPOUND_REFERENCE] = single_rd; if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; } if (early_term) break; if (x->skip && !comp_pred) break; } if (best_rd >= best_rd_so_far) { rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; #if CONFIG_SUPERTX *returnrate_nocoef = INT_MAX; #endif // CONFIG_SUPERTX return; } // If we used an estimate for the uv intra rd in the loop above... if (sf->use_uv_intra_rd_estimate) { // Do Intra UV best rd mode selection if best mode choice above was intra. if (best_mbmode.ref_frame[0] == INTRA_FRAME) { *mbmi = best_mbmode; rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra, &rate_uv_tokenonly, &dist_uv, &skip_uv, BLOCK_8X8, TX_4X4); } } if (best_rd == INT64_MAX) { rd_cost->rate = INT_MAX; rd_cost->dist = INT64_MAX; rd_cost->rdcost = INT64_MAX; #if CONFIG_SUPERTX *returnrate_nocoef = INT_MAX; #endif // CONFIG_SUPERTX return; } #if CONFIG_DUAL_FILTER assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter[0]) || !is_inter_block(&best_mbmode)); #else assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter) || !is_inter_block(&best_mbmode)); #endif av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, sf->adaptive_rd_thresh, bsize, best_ref_index); // macroblock modes *mbmi = best_mbmode; #if CONFIG_VAR_TX && CONFIG_EXT_TX && CONFIG_RECT_TX mbmi->inter_tx_size[0][0] = mbmi->tx_size; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX x->skip |= best_skip2; if (!is_inter_block(&best_mbmode)) { for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode; } else { for (i = 0; i < 4; ++i) memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info)); #if CONFIG_REF_MV mbmi->pred_mv[0].as_int = xd->mi[0]->bmi[3].pred_mv[0].as_int; mbmi->pred_mv[1].as_int = xd->mi[0]->bmi[3].pred_mv[1].as_int; #endif mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int; } for (i = 0; i < REFERENCE_MODES; ++i) { if (best_pred_rd[i] == INT64_MAX) best_pred_diff[i] = INT_MIN; else best_pred_diff[i] = best_rd - best_pred_rd[i]; } store_coding_context(x, ctx, best_ref_index, best_pred_diff, 0); } #if CONFIG_OBMC // This function has a structure similar to av1_build_obmc_inter_prediction // // The OBMC predictor is computed as: // // PObmc(x,y) = // AOM_BLEND_A64(Mh(x), // AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)), // PLeft(x, y)) // // Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate // rounding, this can be written as: // // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) = // Mh(x) * Mv(y) * P(x,y) + // Mh(x) * Cv(y) * Pabove(x,y) + // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) // // Where : // // Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y) // Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y) // // This function computes 'wsrc' and 'mask' as: // // wsrc(x, y) = // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) - // Mh(x) * Cv(y) * Pabove(x,y) + // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) // // mask(x, y) = Mh(x) * Mv(y) // // These can then be used to efficiently approximate the error for any // predictor P in the context of the provided neighbouring predictors by // computing: // // error(x, y) = // wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2) // static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd, int mi_row, int mi_col, const uint8_t *above, int above_stride, const uint8_t *left, int left_stride, int32_t *mask_buf, int32_t *wsrc_buf) { const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int row, col, i; const int bw = 8 * xd->n8_w; const int bh = 8 * xd->n8_h; const int wsrc_stride = bw; const int mask_stride = bw; const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA; #if CONFIG_AOM_HIGHBITDEPTH const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #else const int is_hbd = 0; #endif // CONFIG_AOM_HIGHBITDEPTH // plane 0 should not be subsampled assert(xd->plane[0].subsampling_x == 0); assert(xd->plane[0].subsampling_y == 0); av1_zero_array(wsrc_buf, bw * bh); for (i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA; // handle above row if (xd->up_available) { const int overlap = num_4x4_blocks_high_lookup[bsize] * 2; const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); const int mi_row_offset = -1; const uint8_t *const mask1d = av1_get_obmc_mask(overlap); assert(miw > 0); i = 0; do { // for each mi in the above row const int mi_col_offset = i; const MB_MODE_INFO *const above_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; const int mi_step = AOMMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]); const int neighbor_bw = mi_step * MI_SIZE; if (is_neighbor_overlappable(above_mbmi)) { const int tmp_stride = above_stride; int32_t *wsrc = wsrc_buf + (i * MI_SIZE); int32_t *mask = mask_buf + (i * MI_SIZE); if (!is_hbd) { const uint8_t *tmp = above; for (row = 0; row < overlap; ++row) { const uint8_t m0 = mask1d[row]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; for (col = 0; col < neighbor_bw; ++col) { wsrc[col] = m1 * tmp[col]; mask[col] = m0; } wsrc += wsrc_stride; mask += mask_stride; tmp += tmp_stride; } #if CONFIG_AOM_HIGHBITDEPTH } else { const uint16_t *tmp = CONVERT_TO_SHORTPTR(above); for (row = 0; row < overlap; ++row) { const uint8_t m0 = mask1d[row]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; for (col = 0; col < neighbor_bw; ++col) { wsrc[col] = m1 * tmp[col]; mask[col] = m0; } wsrc += wsrc_stride; mask += mask_stride; tmp += tmp_stride; } #endif // CONFIG_AOM_HIGHBITDEPTH } } above += neighbor_bw; i += mi_step; } while (i < miw); } for (i = 0; i < bw * bh; ++i) { wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; } // handle left column if (xd->left_available) { const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2; const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); const int mi_col_offset = -1; const uint8_t *const mask1d = av1_get_obmc_mask(overlap); assert(mih > 0); i = 0; do { // for each mi in the left column const int mi_row_offset = i; const MB_MODE_INFO *const left_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; const int mi_step = AOMMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]); const int neighbor_bh = mi_step * MI_SIZE; if (is_neighbor_overlappable(left_mbmi)) { const int tmp_stride = left_stride; int32_t *wsrc = wsrc_buf + (i * MI_SIZE * wsrc_stride); int32_t *mask = mask_buf + (i * MI_SIZE * mask_stride); if (!is_hbd) { const uint8_t *tmp = left; for (row = 0; row < neighbor_bh; ++row) { for (col = 0; col < overlap; ++col) { const uint8_t m0 = mask1d[col]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; } wsrc += wsrc_stride; mask += mask_stride; tmp += tmp_stride; } #if CONFIG_AOM_HIGHBITDEPTH } else { const uint16_t *tmp = CONVERT_TO_SHORTPTR(left); for (row = 0; row < neighbor_bh; ++row) { for (col = 0; col < overlap; ++col) { const uint8_t m0 = mask1d[col]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; } wsrc += wsrc_stride; mask += mask_stride; tmp += tmp_stride; } #endif // CONFIG_AOM_HIGHBITDEPTH } } left += neighbor_bh * left_stride; i += mi_step; } while (i < mih); } if (!is_hbd) { const uint8_t *src = x->plane[0].src.buf; for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) { wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; } wsrc_buf += wsrc_stride; src += x->plane[0].src.stride; } #if CONFIG_AOM_HIGHBITDEPTH } else { const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) { wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; } wsrc_buf += wsrc_stride; src += x->plane[0].src.stride; } #endif // CONFIG_AOM_HIGHBITDEPTH } } #endif // CONFIG_OBMC