/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./av1_rtcd.h" #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "aom_dsp/bitwriter.h" #include "aom_dsp/quantize.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encodemb.h" #if CONFIG_LV_MAP #include "av1/encoder/encodetxb.h" #endif #include "av1/encoder/hybrid_fwd_txfm.h" #if CONFIG_DAALA_TX #include "av1/common/daala_inv_txfm.h" #endif #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #if CONFIG_CFL #include "av1/common/cfl.h" #endif // Check if one needs to use c version subtraction. static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; } static void subtract_block(const MACROBLOCKD *xd, int rows, int cols, int16_t *diff, ptrdiff_t diff_stride, const uint8_t *src8, ptrdiff_t src_stride, const uint8_t *pred8, ptrdiff_t pred_stride) { if (check_subtract_block_size(rows, cols)) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); return; } if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride, xd->bd); return; } aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, pred_stride); } void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, int blk_col, int blk_row, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const int diff_stride = block_size_wide[plane_bsize]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_width = tx_size_wide[tx_size]; const int tx1d_height = tx_size_high[tx_size]; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; int16_t *src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src, src_stride, dst, dst_stride); } void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const MACROBLOCKD *xd = &x->e_mbd; subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } #if !CONFIG_LV_MAP // Shifting negative values is undefined behaviour in C99, // and could mislead the optimizer, who might assume the shifted is positive. // This also avoids ubsan warnings. // In practise, this gets inlined by the optimizer to a single instruction. static INLINE int signed_shift_right(int x, int shift) { if (x >= 0) return x >> shift; else return -((-x) >> shift); } // These numbers are empirically obtained. static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { { 10, 7 }, { 8, 5 }, }; static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int blk_row, int blk_col, int block, TX_SIZE tx_size, int ctx, int fast_mode) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const PLANE_TYPE plane_type = pd->plane_type; const int eob = p->eobs[block]; assert(mb->qindex > 0); assert((!plane_type && !plane) || (plane_type && plane)); assert(eob <= av1_get_max_eob(tx_size)); const int ref = is_inter_block(&xd->mi[0]->mbmi); const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int16_t *const dequant_ptr = p->dequant_QTX; const uint8_t *const band_translate = get_band_translate(tx_size); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, &xd->mi[0]->mbmi); const int16_t *const scan = scan_order->scan; const int16_t *const nb = scan_order->neighbors; #if CONFIG_DAALA_TX // This is one of the few places where RDO is done on coeffs; it // expects the coeffs to be in Q3/D11, so we need to scale them. int depth_shift = (TX_COEFF_DEPTH - 11) * 2; int depth_round = depth_shift > 1 ? (1 << depth_shift >> 1) : 0; #else const int shift = av1_get_tx_scale(tx_size); #endif #if CONFIG_AOM_QM int seg_id = xd->mi[0]->mbmi.segment_id; const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms const qm_val_t *iqmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_iqmatrix[seg_id][qm_tx_size] : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; #endif // CONFIG_AOM_QM #if CONFIG_NEW_QUANT int dq = get_dq_profile(cm->dq_type, mb->qindex, ref, plane_type); const dequant_val_type_nuq *dequant_val = p->dequant_val_nuq_QTX[dq]; #endif // CONFIG_NEW_QUANT int64_t rd_cost0, rd_cost1; int16_t t0, t1; int i, final_eob = 0; const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd); int(*head_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] = mb->token_head_costs[get_txsize_entropy_ctx(tx_size)][plane_type][ref]; int(*tail_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] = mb->token_tail_costs[get_txsize_entropy_ctx(tx_size)][plane_type][ref]; const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; int64_t rate0, rate1; int64_t eob_cost0, eob_cost1; tran_low_t before_best_eob_qc = 0; tran_low_t before_best_eob_dqc = 0; uint8_t token_cache[MAX_TX_SQUARE]; // TODO(debargha): Implement a fast mode. For now just skip. if (fast_mode) return eob; for (i = 0; i < eob; i++) { const int rc = scan[i]; token_cache[rc] = av1_pt_energy_class[av1_get_token(qcoeff[rc])]; } /* Record the r-d cost */ int64_t accu_rate = 0; // Initialized to the worst possible error for the largest transform size. // This ensures that it never goes negative. int64_t accu_error = ((int64_t)1) << 50; rate0 = head_token_costs[0][ctx][0]; int64_t best_block_rd_cost = RDCOST(rdmult, rate0, accu_error); // int64_t best_block_rd_cost_all0 = best_block_rd_cost; const int seg_eob = av1_get_tx_eob(&cm->seg, xd->mi[0]->mbmi.segment_id, tx_size); for (i = 0; i < eob; i++) { const int rc = scan[i]; const int x = qcoeff[rc]; const int sz = -(x < 0); const int band_cur = band_translate[i]; const int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i); const int8_t eob_val = (i + 1 == eob) ? (i + 1 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB; const int is_first = (i == 0); if (x == 0) { // no need to search when x == 0 accu_rate += av1_get_coeff_token_cost( ZERO_TOKEN, eob_val, is_first, head_token_costs[band_cur][ctx_cur], tail_token_costs[band_cur][ctx_cur]); // accu_error does not change when x==0 } else { /* Computing distortion */ // compute the distortion for the first candidate // and the distortion for quantizing to 0. #if CONFIG_DAALA_TX int dx0 = coeff[rc]; const int64_t d0 = ((int64_t)dx0 * dx0 + depth_round) >> depth_shift; #else int dx0 = abs(coeff[rc]) * (1 << shift); dx0 >>= xd->bd - 8; const int64_t d0 = (int64_t)dx0 * dx0; #endif const int x_a = x - 2 * sz - 1; int dqv = dequant_ptr[rc != 0]; #if CONFIG_AOM_QM if (iqmatrix != NULL) { const qm_val_t iwt = iqmatrix[rc]; dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; } #endif // CONFIG_AOM_QM #if CONFIG_DAALA_TX int dx = dqcoeff[rc] - coeff[rc]; const int64_t d2 = ((int64_t)dx * dx + depth_round) >> depth_shift; #else int dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); dx = signed_shift_right(dx, xd->bd - 8); const int64_t d2 = (int64_t)dx * dx; #endif /* compute the distortion for the second candidate * x_a = x - 2 * sz + 1; */ int64_t d2_a; if (x_a != 0) { #if CONFIG_DAALA_TX #if CONFIG_NEW_QUANT dx = av1_dequant_coeff_nuq(x_a, dqv, dequant_val[rc != 0], 0) - coeff[rc]; #else // CONFIG_NEW_QUANT dx -= (dqv + sz) ^ sz; #endif // CONFIG_NEW_QUANT d2_a = ((int64_t)dx * dx + depth_round) >> depth_shift; #else // CONFIG_DAALA_TX #if CONFIG_NEW_QUANT dx = av1_dequant_coeff_nuq(x_a, dqv, dequant_val[rc != 0], 0) - (coeff[rc] * (1 << shift)); dx >>= xd->bd - 8; #else // CONFIG_NEW_QUANT dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz; #endif // CONFIG_NEW_QUANT d2_a = (int64_t)dx * dx; #endif // CONFIG_DAALA_TX } else { d2_a = d0; } // Computing RD cost int64_t base_bits; // rate cost of x base_bits = av1_get_token_cost(x, &t0, cat6_bits); rate0 = base_bits + av1_get_coeff_token_cost(t0, eob_val, is_first, head_token_costs[band_cur][ctx_cur], tail_token_costs[band_cur][ctx_cur]); // rate cost of x_a base_bits = av1_get_token_cost(x_a, &t1, cat6_bits); if (t1 == ZERO_TOKEN && eob_val) { rate1 = base_bits; } else { rate1 = base_bits + av1_get_coeff_token_cost(t1, eob_val, is_first, head_token_costs[band_cur][ctx_cur], tail_token_costs[band_cur][ctx_cur]); } int64_t next_bits0 = 0, next_bits1 = 0; if (i < eob - 1) { int ctx_next; const int band_next = band_translate[i + 1]; const int token_next = av1_get_token(qcoeff[scan[i + 1]]); const int8_t eob_val_next = (i + 2 == eob) ? (i + 2 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB; token_cache[rc] = av1_pt_energy_class[t0]; ctx_next = get_coef_context(nb, token_cache, i + 1); next_bits0 = av1_get_coeff_token_cost( token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next], tail_token_costs[band_next][ctx_next]); token_cache[rc] = av1_pt_energy_class[t1]; ctx_next = get_coef_context(nb, token_cache, i + 1); next_bits1 = av1_get_coeff_token_cost( token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next], tail_token_costs[band_next][ctx_next]); } rd_cost0 = RDCOST(rdmult, (rate0 + next_bits0), d2); rd_cost1 = RDCOST(rdmult, (rate1 + next_bits1), d2_a); const int best_x = (rd_cost1 < rd_cost0); const int eob_v = (i + 1 == seg_eob) ? LAST_EOB : EARLY_EOB; int64_t next_eob_bits0, next_eob_bits1; int best_eob_x; next_eob_bits0 = av1_get_coeff_token_cost( t0, eob_v, is_first, head_token_costs[band_cur][ctx_cur], tail_token_costs[band_cur][ctx_cur]); eob_cost0 = RDCOST(rdmult, (accu_rate + next_eob_bits0), (accu_error + d2 - d0)); eob_cost1 = eob_cost0; if (x_a != 0) { next_eob_bits1 = av1_get_coeff_token_cost( t1, eob_v, is_first, head_token_costs[band_cur][ctx_cur], tail_token_costs[band_cur][ctx_cur]); eob_cost1 = RDCOST(rdmult, (accu_rate + next_eob_bits1), (accu_error + d2_a - d0)); best_eob_x = (eob_cost1 < eob_cost0); } else { best_eob_x = 0; } const int dqc = dqcoeff[rc]; int dqc_a = 0; if (best_x || best_eob_x) { if (x_a != 0) { #if CONFIG_DAALA_TX #if CONFIG_NEW_QUANT dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[rc != 0], 0); if (sz) dqc_a = -dqc_a; #else dqc_a = x_a * dqv; #endif // CONFIG_NEW_QUANT #else // CONFIG_DAALA_TX #if CONFIG_NEW_QUANT dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[rc != 0], shift); if (sz) dqc_a = -dqc_a; #else if (x_a < 0) dqc_a = -((-x_a * dqv) >> shift); else dqc_a = (x_a * dqv) >> shift; #endif // CONFIG_NEW_QUANT #endif // CONFIG_DAALA_TX } else { dqc_a = 0; } } // record the better quantized value if (best_x) { assert(d2_a <= d0); qcoeff[rc] = x_a; dqcoeff[rc] = dqc_a; accu_rate += rate1; accu_error += d2_a - d0; token_cache[rc] = av1_pt_energy_class[t1]; } else { assert(d2 <= d0); accu_rate += rate0; accu_error += d2 - d0; token_cache[rc] = av1_pt_energy_class[t0]; } assert(accu_error >= 0); // determine whether to move the eob position to i+1 const int use_a = (x_a != 0) && (best_eob_x); const int64_t best_eob_cost_i = use_a ? eob_cost1 : eob_cost0; if (best_eob_cost_i < best_block_rd_cost) { best_block_rd_cost = best_eob_cost_i; final_eob = i + 1; if (use_a) { before_best_eob_qc = x_a; before_best_eob_dqc = dqc_a; } else { before_best_eob_qc = x; before_best_eob_dqc = dqc; } } } // if (x==0) } // for (i) assert(final_eob <= eob); if (final_eob > 0) { assert(before_best_eob_qc != 0); i = final_eob - 1; int rc = scan[i]; qcoeff[rc] = before_best_eob_qc; dqcoeff[rc] = before_best_eob_dqc; } for (i = final_eob; i < eob; i++) { int rc = scan[i]; qcoeff[rc] = 0; dqcoeff[rc] = 0; } p->eobs[block] = final_eob; return final_eob; } #endif // !CONFIG_LV_MAP int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *mb, int plane, int blk_row, int blk_col, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l, int fast_mode) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; const int eob = p->eobs[block]; if (eob == 0 || !mb->optimize || xd->lossless[xd->mi[0]->mbmi.segment_id]) return eob; #if !CONFIG_LV_MAP (void)plane_bsize; (void)blk_row; (void)blk_col; int ctx = get_entropy_context(tx_size, a, l); const AV1_COMMON *const cm = &cpi->common; return optimize_b_greedy(cm, mb, plane, blk_row, blk_col, block, tx_size, ctx, fast_mode); #else // !CONFIG_LV_MAP TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); return av1_optimize_txb(cpi, mb, plane, blk_row, blk_col, block, tx_size, &txb_ctx, fast_mode); #endif // !CONFIG_LV_MAP } typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_HIGHBD = 1, QUANT_FUNC_TYPES = 2 } QUANT_FUNC; static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { #if !CONFIG_NEW_QUANT { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, #else // !CONFIG_NEW_QUANT { av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade }, { av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade }, { av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade }, #endif // !CONFIG_NEW_QUANT { NULL, NULL } }; void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, AV1_XFORM_QUANT xform_quant_idx) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = get_plane_type(plane); TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); #if CONFIG_NEW_QUANT const int is_inter = is_inter_block(mbmi); #endif const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = block_size_wide[plane_bsize]; #if CONFIG_AOM_QM int seg_id = mbmi->segment_id; const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms const qm_val_t *qmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_qmatrix[seg_id][qm_tx_size] : cm->gqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; const qm_val_t *iqmatrix = IS_2D_TRANSFORM(tx_type) ? pd->seg_iqmatrix[seg_id][qm_tx_size] : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; #endif // CONFIG_AOM_QM TxfmParam txfm_param; QUANT_PARAM qparam; const int16_t *src_diff; src_diff = &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; #if CONFIG_DAALA_TX qparam.log_scale = 0; #else qparam.log_scale = av1_get_tx_scale(tx_size); #endif qparam.tx_size = tx_size; #if CONFIG_NEW_QUANT qparam.dq = get_dq_profile(cm->dq_type, x->qindex, is_inter, plane_type); #endif // CONFIG_NEW_QUANT #if CONFIG_AOM_QM qparam.qmatrix = qmatrix; qparam.iqmatrix = iqmatrix; #endif // CONFIG_AOM_QM txfm_param.tx_type = tx_type; txfm_param.tx_size = tx_size; txfm_param.lossless = xd->lossless[mbmi->segment_id]; txfm_param.tx_set_type = get_ext_tx_set_type(txfm_param.tx_size, plane_bsize, is_inter_block(mbmi), cm->reduced_tx_set_used); txfm_param.bd = xd->bd; txfm_param.is_hbd = get_bitdepth_data_path_index(xd); av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &txfm_param); if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { const int n_coeffs = av1_get_max_eob(tx_size); if (LIKELY(!x->skip_block)) { #if CONFIG_DAALA_TX quant_func_list[xform_quant_idx][1](coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, &qparam); #else quant_func_list[xform_quant_idx][txfm_param.is_hbd]( coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, &qparam); #endif } else { av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob); } } #if CONFIG_LV_MAP p->txb_entropy_ctx[block] = (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); #endif // CONFIG_LV_MAP return; } static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, int mi_row, int mi_col, RUN_TYPE dry_run) { (void)mi_row; (void)mi_col; (void)dry_run; struct encode_b_args *const args = arg; const AV1_COMMON *const cm = &args->cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; ENTROPY_CONTEXT *a, *l; int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; a = &args->ta[blk_col]; l = &args->tl[blk_row]; // Assert not magic number (uninitialized). assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234); if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) { if (args->enable_optimize_b) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); av1_optimize_b(args->cpi, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a, l, CONFIG_LV_MAP); } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_B); } } else { p->eobs[block] = 0; #if CONFIG_LV_MAP p->txb_entropy_ctx[block] = 0; #endif } av1_set_txb_context(x, plane, block, tx_size, a, l); if (p->eobs[block]) { *(args->skip) = 0; TX_TYPE tx_type = av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, tx_size); av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, pd->dst.stride, p->eobs[block], cm->reduced_tx_set_used); } #if CONFIG_TXK_SEL if (plane == 0 && p->eobs[block] == 0) { if (args->enable_optimize_b) { xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] = DCT_DCT; } else { assert( xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] == DCT_DCT); } } #endif // CONFIG_TXK_SEL #if CONFIG_MISMATCH_DEBUG if (dry_run == OUTPUT_ENABLED) { int pixel_c, pixel_r; BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; int blk_w = block_size_wide[bsize]; int blk_h = block_size_high[bsize]; mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, pd->subsampling_x, pd->subsampling_y); mismatch_record_block_tx(dst, pd->dst.stride, plane, pixel_c, pixel_r, blk_w, blk_h); } #endif } static void encode_block_inter(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, int mi_row, int mi_col, RUN_TYPE dry_run) { (void)mi_row; (void)mi_col; struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; const TX_SIZE plane_tx_size = plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y) : mbmi->inter_tx_size[tx_row][tx_col]; if (tx_size == plane_tx_size || plane) { encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg, mi_row, mi_col, dry_run); } else { assert(tx_size < TX_SIZES_ALL); const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); // This is the square transform block partition entry point. const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; const int step = bsh * bsw; assert(bsw > 0 && bsh > 0); for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { const int offsetr = blk_row + row; const int offsetc = blk_col + col; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, arg, mi_row, mi_col, dry_run); block += step; } } } } typedef struct encode_block_pass1_args { AV1_COMMON *cm; MACROBLOCK *x; } encode_block_pass1_args; static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { encode_block_pass1_args *args = (encode_block_pass1_args *)arg; AV1_COMMON *cm = args->cm; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); TxfmParam txfm_param; uint8_t *dst; dst = &pd->dst .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_B); if (p->eobs[block] > 0) { txfm_param.bd = xd->bd; txfm_param.is_hbd = get_bitdepth_data_path_index(xd); txfm_param.tx_type = DCT_DCT; txfm_param.tx_size = tx_size; txfm_param.eob = p->eobs[block]; txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; txfm_param.tx_set_type = get_ext_tx_set_type( txfm_param.tx_size, plane_bsize, is_inter_block(&xd->mi[0]->mbmi), cm->reduced_tx_set_used); #if CONFIG_DAALA_TX daala_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); #else if (txfm_param.is_hbd) { av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, &txfm_param); return; } if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param); } else { av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param); } #endif } } void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { encode_block_pass1_args args = { cm, x }; av1_subtract_plane(x, bsize, 0); av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, &args); } void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, RUN_TYPE dry_run) { (void)dry_run; MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = { cpi, x, &ctx, &mbmi->skip, NULL, NULL, x->optimize }; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const int subsampling_x = xd->plane[plane].subsampling_x; const int subsampling_y = xd->plane[plane].subsampling_y; if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x, subsampling_y)) continue; const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, subsampling_x, subsampling_y); // TODO(jingning): Clean this up. const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd); const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; TX_SIZE max_tx_size = get_vartx_max_txsize( xd, plane_bsize, pd->subsampling_x || pd->subsampling_y); const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; int idx, idy; int block = 0; int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; av1_get_entropy_contexts(bsizec, 0, pd, ctx.ta[plane], ctx.tl[plane]); av1_subtract_plane(x, bsizec, plane); arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd); int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); for (idy = 0; idy < mi_height; idy += mu_blocks_high) { for (idx = 0; idx < mi_width; idx += mu_blocks_wide) { int blk_row, blk_col; const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); for (blk_row = idy; blk_row < unit_height; blk_row += bh) { for (blk_col = idx; blk_col < unit_width; blk_col += bw) { encode_block_inter(plane, block, blk_row, blk_col, plane_bsize, max_tx_size, &arg, mi_row, mi_col, dry_run); block += step; } } } } } } void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { (void)tx_size; struct macroblock_plane *p = &x->plane[plane]; #if !CONFIG_LV_MAP *a = *l = p->eobs[block] > 0; #else // !CONFIG_LV_MAP *a = *l = p->txb_entropy_ctx[block]; #endif // !CONFIG_LV_MAP int i; for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0]; for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0]; } static void encode_block_intra_and_set_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); struct encode_b_args *const args = arg; MACROBLOCK *x = args->x; ENTROPY_CONTEXT *a = &args->ta[blk_col]; ENTROPY_CONTEXT *l = &args->tl[blk_row]; av1_set_txb_context(x, plane, block, tx_size, a, l); } void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; const AV1_COMMON *const cm = &args->cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = get_plane_type(plane); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); uint16_t *eob = &p->eobs[block]; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); #if CONFIG_TXK_SEL const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; if (x->blk_skip[plane][blk_row * bw + blk_col] && plane == 0) { *eob = 0; p->txb_entropy_ctx[block] = 0; *(args->skip) = 0; assert(xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] == DCT_DCT); #if CONFIG_CFL if (plane == AOM_PLANE_Y && xd->cfl.store_y && is_cfl_allowed(&xd->mi[0]->mbmi)) { cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); } #endif // CONFIG_CFL return; } #endif av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); const ENTROPY_CONTEXT *a = &args->ta[blk_col]; const ENTROPY_CONTEXT *l = &args->tl[blk_row]; if (args->enable_optimize_b) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); av1_optimize_b(args->cpi, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a, l, CONFIG_LV_MAP); #if CONFIG_TXK_SEL if (plane == 0 && p->eobs[block] == 0) { assert( xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] == DCT_DCT); } #endif // CONFIG_TXK_SEL } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_B); } av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, dst_stride, *eob, cm->reduced_tx_set_used); if (*eob) *(args->skip) = 0; #if CONFIG_CFL if (plane == AOM_PLANE_Y && xd->cfl.store_y && is_cfl_allowed(&xd->mi[0]->mbmi)) { cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); } #endif // CONFIG_CFL } void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int plane, int enable_optimize_b, int mi_row, int mi_col) { const MACROBLOCKD *const xd = &x->e_mbd; ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 }; ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 }; struct encode_b_args arg = { cpi, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b }; if (!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y)) return; if (enable_optimize_b) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = av1_get_tx_size(plane, xd); av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl); } av1_foreach_transformed_block_in_plane( xd, bsize, plane, encode_block_intra_and_set_context, &arg); }