/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "aom_ports/mem.h" #include "av1/common/scan.h" #include "av1/common/blockd.h" #include "av1/common/idct.h" #include "av1/common/pred_common.h" #include "av1/encoder/bitstream.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/cost.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/hash.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/tokenize.h" #define TEST_OPTIMIZE_TXB 0 static int hbt_hash_needs_init = 1; static CRC_CALCULATOR crc_calculator; static CRC_CALCULATOR crc_calculator2; static const int HBT_HASH_EOB = 16; // also the length in opt_qcoeff typedef struct OptTxbQcoeff { uint32_t hbt_hash_match; double hits; tran_low_t opt_qcoeff[16]; } OptTxbQcoeff; OptTxbQcoeff hbt_hash_table[65536][16]; typedef struct LevelDownStats { int update; tran_low_t low_qc; tran_low_t low_dqc; int64_t dist0; int rate; int rate_low; int64_t dist; int64_t dist_low; int64_t rd; int64_t rd_low; int64_t nz_rd; int64_t rd_diff; int cost_diff; int64_t dist_diff; int new_eob; } LevelDownStats; void av1_alloc_txb_buf(AV1_COMP *cpi) { #if 0 AV1_COMMON *cm = &cpi->common; int mi_block_size = 1 << MI_SIZE_LOG2; // TODO(angiebird): Make sure cm->subsampling_x/y is set correctly, and then // use precise buffer size according to cm->subsampling_x/y int pixel_stride = mi_block_size * cm->mi_cols; int pixel_height = mi_block_size * cm->mi_rows; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { CHECK_MEM_ERROR( cm, cpi->tcoeff_buf[i], aom_malloc(sizeof(*cpi->tcoeff_buf[i]) * pixel_stride * pixel_height)); } #else AV1_COMMON *cm = &cpi->common; int size = ((cm->mi_rows >> cm->mib_size_log2) + 1) * ((cm->mi_cols >> cm->mib_size_log2) + 1); av1_free_txb_buf(cpi); // TODO(jingning): This should be further reduced. CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base, aom_malloc(sizeof(*cpi->coeff_buffer_base) * size)); #endif } void av1_free_txb_buf(AV1_COMP *cpi) { #if 0 int i; for (i = 0; i < MAX_MB_PLANE; ++i) { aom_free(cpi->tcoeff_buf[i]); } #else aom_free(cpi->coeff_buffer_base); #endif } void av1_set_coeff_buffer(const AV1_COMP *const cpi, MACROBLOCK *const x, int mi_row, int mi_col) { int mib_size_log2 = cpi->common.mib_size_log2; int stride = (cpi->common.mi_cols >> mib_size_log2) + 1; int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); CB_COEFF_BUFFER *coeff_buf = &cpi->coeff_buffer_base[offset]; const int txb_offset = x->cb_offset / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { x->mbmi_ext->tcoeff[plane] = coeff_buf->tcoeff[plane] + x->cb_offset; x->mbmi_ext->eobs[plane] = coeff_buf->eobs[plane] + txb_offset; x->mbmi_ext->txb_skip_ctx[plane] = coeff_buf->txb_skip_ctx[plane] + txb_offset; x->mbmi_ext->dc_sign_ctx[plane] = coeff_buf->dc_sign_ctx[plane] + txb_offset; } } static void write_golomb(aom_writer *w, int level) { int x = level + 1; int i = x; int length = 0; while (i) { i >>= 1; ++length; } assert(length > 0); for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0); for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01); } static INLINE tran_low_t get_lower_coeff(tran_low_t qc) { if (qc == 0) { return 0; } return qc > 0 ? qc - 1 : qc + 1; } static INLINE tran_low_t qcoeff_to_dqcoeff(tran_low_t qc, #if CONFIG_NEW_QUANT const tran_low_t *nq_dq, #endif // CONFIG_NEW_QUANT int dqv, int shift) { int sgn = qc < 0 ? -1 : 1; #if CONFIG_NEW_QUANT int dqcoeff = av1_dequant_coeff_nuq(abs(qc), dqv, nq_dq, shift); return sgn * dqcoeff; #endif // CONFIG_NEW_QUANT return sgn * ((abs(qc) * dqv) >> shift); } static INLINE int64_t get_coeff_dist(tran_low_t tcoeff, tran_low_t dqcoeff, int shift) { #if CONFIG_DAALA_TX int depth_shift = (TX_COEFF_DEPTH - 11) * 2; int depth_round = depth_shift > 1 ? (1 << (depth_shift - 1)) : 0; const int64_t diff = tcoeff - dqcoeff; const int64_t error = (diff * diff + depth_round) >> depth_shift; (void)shift; #else const int64_t diff = (tcoeff - dqcoeff) * (1 << shift); const int64_t error = diff * diff; #endif return error; } void av1_update_eob_context(int eob, int seg_eob, TX_SIZE tx_size, TX_TYPE tx_type, PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts, uint8_t allow_update_cdf) { int eob_extra, dummy; const int eob_pt = get_eob_pos_token(eob, &eob_extra); const int max_eob_pt = get_eob_pos_token(seg_eob, &dummy); TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); (void)max_eob_pt; const int eob_multi_size = txsize_log2_minus4[tx_size]; const int eob_multi_ctx = (tx_type_to_class[tx_type] == TX_CLASS_2D) ? 0 : 1; switch (eob_multi_size) { case 0: ++counts->eob_multi16[plane][eob_multi_ctx][eob_pt - 1]; if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf16[plane][eob_multi_ctx], eob_pt - 1, 5); break; case 1: ++counts->eob_multi32[plane][eob_multi_ctx][eob_pt - 1]; if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf32[plane][eob_multi_ctx], eob_pt - 1, 6); break; case 2: ++counts->eob_multi64[plane][eob_multi_ctx][eob_pt - 1]; if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf64[plane][eob_multi_ctx], eob_pt - 1, 7); break; case 3: ++counts->eob_multi128[plane][eob_multi_ctx][eob_pt - 1]; if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf128[plane][eob_multi_ctx], eob_pt - 1, 8); break; case 4: ++counts->eob_multi256[plane][eob_multi_ctx][eob_pt - 1]; if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf256[plane][eob_multi_ctx], eob_pt - 1, 9); break; case 5: ++counts->eob_multi512[plane][eob_multi_ctx][eob_pt - 1]; if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf512[plane][eob_multi_ctx], eob_pt - 1, 10); break; case 6: default: ++counts->eob_multi1024[plane][eob_multi_ctx][eob_pt - 1]; if (allow_update_cdf) update_cdf(ec_ctx->eob_flag_cdf1024[plane][eob_multi_ctx], eob_pt - 1, 11); break; } if (k_eob_offset_bits[eob_pt] > 0) { int eob_shift = k_eob_offset_bits[eob_pt] - 1; int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; counts->eob_extra[txs_ctx][plane][eob_pt][bit]++; if (allow_update_cdf) update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_pt], bit, 2); } } static int get_eob_cost(int eob, int seg_eob, const LV_MAP_EOB_COST *txb_eob_costs, const LV_MAP_COEFF_COST *txb_costs, TX_TYPE tx_type) { int eob_extra, dummy; const int eob_pt = get_eob_pos_token(eob, &eob_extra); const int max_eob_pt = get_eob_pos_token(seg_eob, &dummy); int eob_cost = 0; (void)max_eob_pt; const int eob_multi_ctx = (tx_type_to_class[tx_type] == TX_CLASS_2D) ? 0 : 1; eob_cost = txb_eob_costs->eob_cost[eob_multi_ctx][eob_pt - 1]; if (k_eob_offset_bits[eob_pt] > 0) { int eob_shift = k_eob_offset_bits[eob_pt] - 1; int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; eob_cost += txb_costs->eob_extra_cost[eob_pt][bit]; for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) { eob_shift = k_eob_offset_bits[eob_pt] - 1 - i; bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; eob_cost += av1_cost_bit(128, bit); } } return eob_cost; } static int get_coeff_cost(const tran_low_t qc, const int scan_idx, const int is_eob, const TxbInfo *const txb_info, const LV_MAP_COEFF_COST *const txb_costs, const int coeff_ctx); static void get_dist_cost_stats(LevelDownStats *const stats, const int scan_idx, const int is_eob, const LV_MAP_COEFF_COST *const txb_costs, const TxbInfo *const txb_info, int has_nz_tail) { const int16_t *const scan = txb_info->scan_order->scan; const int coeff_idx = scan[scan_idx]; const tran_low_t qc = txb_info->qcoeff[coeff_idx]; const uint8_t *const levels = txb_info->levels; stats->new_eob = -1; stats->update = 0; stats->rd_low = 0; stats->rd = 0; // TODO(mfo): explore if there's a better way to prevent compiler init // warnings stats->nz_rd = 0; stats->dist_low = 0; stats->rate_low = 0; stats->low_qc = 0; const tran_low_t tqc = txb_info->tcoeff[coeff_idx]; const int dqv = txb_info->dequant[coeff_idx != 0]; #if CONFIG_NEW_QUANT const tran_low_t *nq_dequant_val = txb_info->nq_dequant_vals[coeff_idx != 0]; #endif // CONFIG_NEW_QUANT const int coeff_ctx = get_nz_map_ctx(levels, coeff_idx, txb_info->bwl, txb_info->height, scan_idx, is_eob, txb_info->tx_size, txb_info->tx_type); const int qc_cost = get_coeff_cost(qc, scan_idx, is_eob, txb_info, txb_costs, coeff_ctx); if (qc == 0) { stats->dist = 0; stats->rate = qc_cost; return; } else { const tran_low_t dqc = qcoeff_to_dqcoeff(qc, #if CONFIG_NEW_QUANT nq_dequant_val, #endif // CONFIG_NEW_QUANT dqv, txb_info->shift); const int64_t dqc_dist = get_coeff_dist(tqc, dqc, txb_info->shift); // distortion difference when coefficient is quantized to 0 const tran_low_t dqc0 = qcoeff_to_dqcoeff(0, #if CONFIG_NEW_QUANT nq_dequant_val, #endif // CONFIG_NEW_QUANT dqv, txb_info->shift); stats->dist0 = get_coeff_dist(tqc, dqc0, txb_info->shift); stats->dist = dqc_dist - stats->dist0; stats->rate = qc_cost; } stats->rd = RDCOST(txb_info->rdmult, stats->rate, stats->dist); stats->low_qc = get_lower_coeff(qc); if (is_eob && stats->low_qc == 0) { stats->rd_low = stats->rd; // disable selection of low_qc in this case. } else { if (stats->low_qc == 0) { stats->dist_low = 0; } else { stats->low_dqc = qcoeff_to_dqcoeff(stats->low_qc, #if CONFIG_NEW_QUANT nq_dequant_val, #endif // CONFIG_NEW_QUANT dqv, txb_info->shift); const int64_t low_dqc_dist = get_coeff_dist(tqc, stats->low_dqc, txb_info->shift); stats->dist_low = low_dqc_dist - stats->dist0; } const int low_qc_cost = get_coeff_cost(stats->low_qc, scan_idx, is_eob, txb_info, txb_costs, coeff_ctx); stats->rate_low = low_qc_cost; stats->rd_low = RDCOST(txb_info->rdmult, stats->rate_low, stats->dist_low); } if ((has_nz_tail < 2) && ((scan_idx == txb_info->eob - 1) || !is_eob)) { (void)levels; const int coeff_ctx_temp = get_nz_map_ctx(levels, coeff_idx, txb_info->bwl, txb_info->height, scan_idx, 1, txb_info->tx_size, txb_info->tx_type); const int qc_eob_cost = get_coeff_cost(qc, scan_idx, 1, txb_info, txb_costs, coeff_ctx_temp); int64_t rd_eob = RDCOST(txb_info->rdmult, qc_eob_cost, stats->dist); if (stats->low_qc != 0) { const int low_qc_eob_cost = get_coeff_cost( stats->low_qc, scan_idx, 1, txb_info, txb_costs, coeff_ctx_temp); int64_t rd_eob_low = RDCOST(txb_info->rdmult, low_qc_eob_cost, stats->dist_low); rd_eob = (rd_eob > rd_eob_low) ? rd_eob_low : rd_eob; } stats->nz_rd = AOMMIN(stats->rd_low, stats->rd) - rd_eob; } } static INLINE void update_qcoeff(const int coeff_idx, const tran_low_t qc, const TxbInfo *const txb_info) { txb_info->qcoeff[coeff_idx] = qc; txb_info->levels[get_padded_idx(coeff_idx, txb_info->bwl)] = (uint8_t)clamp(abs(qc), 0, INT8_MAX); } static INLINE void update_coeff(const int coeff_idx, const tran_low_t qc, const TxbInfo *const txb_info) { update_qcoeff(coeff_idx, qc, txb_info); const int dqv = txb_info->dequant[coeff_idx != 0]; #if CONFIG_NEW_QUANT const tran_low_t *nq_dequant_val = txb_info->nq_dequant_vals[coeff_idx != 0]; #endif // CONFIG_NEW_QUANT txb_info->dqcoeff[coeff_idx] = qcoeff_to_dqcoeff(qc, #if CONFIG_NEW_QUANT nq_dequant_val, #endif // CONFIG_NEW_QUANT dqv, txb_info->shift); } static INLINE void av1_txb_init_levels(const tran_low_t *const coeff, const int width, const int height, uint8_t *const levels) { const int stride = width + TX_PAD_HOR; uint8_t *ls = levels; memset(levels - TX_PAD_TOP * stride, 0, sizeof(*levels) * TX_PAD_TOP * stride); memset(levels + stride * height, 0, sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END)); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { *ls++ = (uint8_t)clamp(abs(coeff[i * width + j]), 0, INT8_MAX); } for (int j = 0; j < TX_PAD_HOR; j++) { *ls++ = 0; } } } void av1_get_nz_map_contexts_c(const uint8_t *const levels, const int16_t *const scan, const uint16_t eob, const TX_SIZE tx_size, const TX_TYPE tx_type, int8_t *const coeff_contexts) { const int bwl = get_txb_bwl(tx_size); const int height = get_txb_high(tx_size); for (int i = 0; i < eob; ++i) { const int pos = scan[i]; coeff_contexts[pos] = get_nz_map_ctx(levels, pos, bwl, height, i, i == eob - 1, tx_size, tx_type); } } void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_writer *w, int blk_row, int blk_col, int plane, TX_SIZE tx_size, const tran_low_t *tcoeff, uint16_t eob, TXB_CTX *txb_ctx) { MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const PLANE_TYPE plane_type = get_plane_type(plane); const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); const int16_t *const scan = scan_order->scan; const int seg_eob = av1_get_max_eob(tx_size); int c; const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); int update_eob = -1; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]); DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); aom_write_bin(w, eob == 0, ec_ctx->txb_skip_cdf[txs_ctx][txb_ctx->txb_skip_ctx], 2); #if CONFIG_TXK_SEL if (plane == 0 && eob == 0) { assert(tx_type == DCT_DCT); } #endif if (eob == 0) return; av1_txb_init_levels(tcoeff, width, height, levels); #if CONFIG_TXK_SEL av1_write_tx_type(cm, xd, blk_row, blk_col, plane, tx_size, w); #endif int eob_extra, dummy; const int eob_pt = get_eob_pos_token(eob, &eob_extra); const int max_eob_pt = get_eob_pos_token(seg_eob, &dummy); (void)max_eob_pt; const int eob_multi_size = txsize_log2_minus4[tx_size]; const int eob_multi_ctx = (tx_type_to_class[tx_type] == TX_CLASS_2D) ? 0 : 1; switch (eob_multi_size) { case 0: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], 5); break; case 1: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], 6); break; case 2: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], 7); break; case 3: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], 8); break; case 4: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], 9); break; case 5: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], 10); break; default: aom_write_symbol(w, eob_pt - 1, ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11); break; } if (k_eob_offset_bits[eob_pt] > 0) { int eob_shift = k_eob_offset_bits[eob_pt] - 1; int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; aom_write_bin(w, bit, ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_pt], 2); for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) { eob_shift = k_eob_offset_bits[eob_pt] - 1 - i; bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; aom_write_bit(w, bit); } } av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_type, coeff_contexts); for (c = eob - 1; c >= 0; --c) { const int pos = scan[c]; const int coeff_ctx = coeff_contexts[pos]; const tran_low_t v = tcoeff[pos]; if (c == eob - 1) { aom_write_symbol( w, AOMMIN(abs(v), 3) - 1, ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx], 3); } else { aom_write_symbol(w, AOMMIN(abs(v), 3), ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx], 4); } } update_eob = eob - 1; // Loop to code all signs in the transform block, // starting with the sign of DC (if applicable) for (c = 0; c < eob; ++c) { const tran_low_t v = tcoeff[scan[c]]; const tran_low_t level = abs(v); const int sign = (v < 0) ? 1 : 0; if (level == 0) continue; if (c == 0) { aom_write_bin(w, sign, ec_ctx->dc_sign_cdf[plane_type][txb_ctx->dc_sign_ctx], 2); } else { aom_write_bit(w, sign); } } if (update_eob >= 0) { for (c = update_eob; c >= 0; --c) { const int pos = scan[c]; const tran_low_t level = abs(tcoeff[pos]); int idx; int ctx; if (level <= NUM_BASE_LEVELS) continue; // level is above 1. const int base_range = level - 1 - NUM_BASE_LEVELS; #if USE_CAUSAL_BR_CTX ctx = get_br_ctx(levels, pos, bwl, level_counts[pos], tx_type); #else ctx = get_br_ctx(levels, pos, bwl, level_counts[pos]); #endif for (idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); aom_write_symbol(w, k, #if 0 ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_16X16)][plane_type][ctx], #else ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)] [plane_type][ctx], #endif BR_CDF_SIZE); if (k < BR_CDF_SIZE - 1) break; } if (base_range < COEFF_BASE_RANGE) continue; // use 0-th order Golomb code to handle the residual level. write_golomb(w, abs(tcoeff[pos]) - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS); } } } typedef struct encode_txb_args { const AV1_COMMON *cm; MACROBLOCK *x; aom_writer *w; } ENCODE_TXB_ARGS; static void write_coeffs_txb_wrap(const AV1_COMMON *cm, MACROBLOCK *x, aom_writer *w, int plane, int block, int blk_row, int blk_col, TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); uint16_t eob = x->mbmi_ext->eobs[plane][block]; TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], x->mbmi_ext->dc_sign_ctx[plane][block] }; av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, eob, &txb_ctx); } void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row, int mi_col, aom_writer *w, int plane, BLOCK_SIZE bsize) { MACROBLOCKD *xd = &x->e_mbd; const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = av1_get_tx_size(plane, xd); const int stepr = tx_size_high_unit[tx_size]; const int stepc = tx_size_wide_unit[tx_size]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); int row, col; const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) return; int blk_row, blk_col; int block = 0; const int step = stepr * stepc; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd); int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); for (row = 0; row < max_blocks_high; row += mu_blocks_high) { const int unit_height = AOMMIN(mu_blocks_high + row, max_blocks_high); for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { const int unit_width = AOMMIN(mu_blocks_wide + col, max_blocks_wide); for (blk_row = row; blk_row < unit_height; blk_row += stepr) { for (blk_col = col; blk_col < unit_width; blk_col += stepc) { write_coeffs_txb_wrap(cm, x, w, plane, block, blk_row, blk_col, tx_size); block += step; } } } } } static INLINE int get_br_cost(tran_low_t abs_qc, int ctx, const int *coeff_lps) { const tran_low_t min_level = 1 + NUM_BASE_LEVELS; const tran_low_t max_level = 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE; (void)ctx; if (abs_qc >= min_level) { if (abs_qc >= max_level) return coeff_lps[COEFF_BASE_RANGE]; // COEFF_BASE_RANGE * cost0; else return coeff_lps[(abs_qc - min_level)]; // * cost0 + cost1; } else { return 0; } } // Note: don't call this function when eob is 0. int av1_cost_coeffs_txb(const AV1_COMMON *const cm, const MACROBLOCK *x, const int plane, const int blk_row, const int blk_col, const int block, const TX_SIZE tx_size, const TXB_CTX *const txb_ctx) { const MACROBLOCKD *const xd = &x->e_mbd; const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const PLANE_TYPE plane_type = get_plane_type(plane); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const struct macroblock_plane *p = &x->plane[plane]; const int eob = p->eobs[block]; const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); int c, cost; const int txb_skip_ctx = txb_ctx->txb_skip_ctx; const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); const int16_t *const scan = scan_order->scan; uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]); DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); const LV_MAP_COEFF_COST *const coeff_costs = &x->coeff_costs[txs_ctx][plane_type]; const int eob_multi_size = txsize_log2_minus4[tx_size]; const LV_MAP_EOB_COST *const eob_costs = &x->eob_costs[eob_multi_size][plane_type]; // eob must be greater than 0 here. assert(eob > 0); cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0]; av1_txb_init_levels(qcoeff, width, height, levels); #if CONFIG_TXK_SEL cost += av1_tx_type_cost(cm, x, xd, mbmi->sb_type, plane, tx_size, tx_type); #endif const int seg_eob = av1_get_max_eob(tx_size); int eob_cost = get_eob_cost(eob, seg_eob, eob_costs, coeff_costs, tx_type); cost += eob_cost; av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_type, coeff_contexts); for (c = eob - 1; c >= 0; --c) { const int pos = scan[c]; const tran_low_t v = qcoeff[pos]; const int is_nz = (v != 0); const int level = abs(v); const int coeff_ctx = coeff_contexts[pos]; if (c == eob - 1) { cost += coeff_costs->base_eob_cost[coeff_ctx][AOMMIN(level, 3) - 1]; } else { cost += coeff_costs->base_cost[coeff_ctx][AOMMIN(level, 3)]; } if (is_nz) { int sign = (v < 0) ? 1 : 0; // sign bit cost if (c == 0) { int dc_sign_ctx = txb_ctx->dc_sign_ctx; cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign]; } else { cost += av1_cost_bit(128, sign); } if (level > NUM_BASE_LEVELS) { int ctx; #if USE_CAUSAL_BR_CTX ctx = get_br_ctx(levels, pos, bwl, level_counts[pos], tx_type); #else ctx = get_br_ctx(levels, pos, bwl, level_counts[pos]); #endif const int base_range = level - 1 - NUM_BASE_LEVELS; if (base_range < COEFF_BASE_RANGE) { cost += coeff_costs->lps_cost[ctx][base_range]; } else { cost += coeff_costs->lps_cost[ctx][COEFF_BASE_RANGE]; } if (level >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { // residual cost int r = level - COEFF_BASE_RANGE - NUM_BASE_LEVELS; int ri = r; int length = 0; while (ri) { ri >>= 1; ++length; } for (ri = 0; ri < length - 1; ++ri) cost += av1_cost_bit(128, 0); for (ri = length - 1; ri >= 0; --ri) cost += av1_cost_bit(128, (r >> ri) & 0x01); } } } } return cost; } static INLINE int has_base(tran_low_t qc, int base_idx) { const int level = base_idx + 1; return abs(qc) >= level; } static INLINE int has_br(tran_low_t qc) { return abs(qc) >= 1 + NUM_BASE_LEVELS; } static INLINE int get_sign_bit_cost(tran_low_t qc, int coeff_idx, const int (*dc_sign_cost)[2], int dc_sign_ctx) { const int sign = (qc < 0) ? 1 : 0; // sign bit cost if (coeff_idx == 0) { return dc_sign_cost[dc_sign_ctx][sign]; } else { return av1_cost_bit(128, sign); } } static INLINE int get_golomb_cost(int abs_qc) { if (abs_qc >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { // residual cost int r = abs_qc - COEFF_BASE_RANGE - NUM_BASE_LEVELS; int ri = r; int length = 0; while (ri) { ri >>= 1; ++length; } return av1_cost_literal(2 * length - 1); } else { return 0; } } void gen_txb_cache(TxbCache *txb_cache, TxbInfo *txb_info) { // gen_nz_count_arr const int16_t *const scan = txb_info->scan_order->scan; const int bwl = txb_info->bwl; const int height = txb_info->height; const tran_low_t *const qcoeff = txb_info->qcoeff; const uint8_t *const levels = txb_info->levels; const BASE_CTX_TABLE *base_ctx_table = txb_info->coeff_ctx_table->base_ctx_table; for (int c = 0; c < txb_info->eob; ++c) { const int coeff_idx = scan[c]; // raster order const int row = coeff_idx >> bwl; const int col = coeff_idx - (row << bwl); txb_cache->nz_count_arr[coeff_idx] = get_nz_count(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_type_to_class[txb_info->tx_type]); txb_cache->nz_ctx_arr[coeff_idx] = get_nz_map_ctx_from_stats(0, coeff_idx, bwl, txb_info->tx_size, tx_type_to_class[txb_info->tx_type]); // gen_base_count_mag_arr if (!has_base(qcoeff[coeff_idx], 0)) continue; int *base_mag = txb_cache->base_mag_arr[coeff_idx]; int count[NUM_BASE_LEVELS]; get_base_count_mag(base_mag, count, qcoeff, bwl, height, row, col); for (int i = 0; i < NUM_BASE_LEVELS; ++i) { if (!has_base(qcoeff[coeff_idx], i)) break; txb_cache->base_count_arr[i][coeff_idx] = count[i]; const int level = i + 1; txb_cache->base_ctx_arr[i][coeff_idx] = base_ctx_table[row != 0][col != 0][base_mag[0] > level][count[i]]; } // gen_br_count_mag_arr if (!has_br(qcoeff[coeff_idx])) continue; int *br_count = txb_cache->br_count_arr + coeff_idx; int *br_mag = txb_cache->br_mag_arr[coeff_idx]; *br_count = get_br_count_mag(br_mag, qcoeff, bwl, height, row, col, NUM_BASE_LEVELS); txb_cache->br_ctx_arr[coeff_idx] = get_br_ctx_from_count_mag(row, col, *br_count, br_mag[0]); } } static INLINE const int *get_level_prob(int level, int coeff_idx, const TxbCache *txb_cache, const LV_MAP_COEFF_COST *txb_costs) { if (level < 1 + NUM_BASE_LEVELS) { const int ctx = txb_cache->nz_ctx_arr[coeff_idx]; return &txb_costs->base_cost[ctx][level]; } else if (level >= 1 + NUM_BASE_LEVELS && level < 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { const int ctx = txb_cache->br_ctx_arr[coeff_idx]; return txb_costs->lps_cost[ctx]; } else if (level >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { // printf("get_level_prob does not support golomb\n"); assert(0); return 0; } else { assert(0); return 0; } } static INLINE void update_mag_arr(int *mag_arr, int abs_qc) { if (mag_arr[0] == abs_qc) { mag_arr[1] -= 1; assert(mag_arr[1] >= 0); } } static INLINE int get_mag_from_mag_arr(const int *mag_arr) { int mag; if (mag_arr[1] > 0) { mag = mag_arr[0]; } else if (mag_arr[0] > 0) { mag = mag_arr[0] - 1; } else { // no neighbor assert(mag_arr[0] == 0 && mag_arr[1] == 0); mag = 0; } return mag; } static int neighbor_level_down_update(int *new_count, int *new_mag, int count, const int *mag, int coeff_idx, tran_low_t abs_nb_coeff, int nb_coeff_idx, int level, const TxbInfo *txb_info) { *new_count = count; *new_mag = get_mag_from_mag_arr(mag); int update = 0; // check if br_count changes if (abs_nb_coeff == level) { update = 1; *new_count -= 1; assert(*new_count >= 0); } const int row = coeff_idx >> txb_info->bwl; const int col = coeff_idx - (row << txb_info->bwl); const int nb_row = nb_coeff_idx >> txb_info->bwl; const int nb_col = nb_coeff_idx - (nb_row << txb_info->bwl); // check if mag changes if (nb_row >= row && nb_col >= col) { if (abs_nb_coeff == mag[0]) { assert(mag[1] > 0); if (mag[1] == 1) { // the nb is the only qc with max mag *new_mag -= 1; assert(*new_mag >= 0); update = 1; } } } return update; } static int try_neighbor_level_down_br(int coeff_idx, int nb_coeff_idx, const TxbCache *txb_cache, const LV_MAP_COEFF_COST *txb_costs, const TxbInfo *txb_info) { const tran_low_t qc = txb_info->qcoeff[coeff_idx]; const tran_low_t abs_qc = abs(qc); const int level = NUM_BASE_LEVELS + 1; if (abs_qc < level) return 0; const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx]; const tran_low_t abs_nb_coeff = abs(nb_coeff); const int count = txb_cache->br_count_arr[coeff_idx]; const int *mag = txb_cache->br_mag_arr[coeff_idx]; int new_count; int new_mag; const int update = neighbor_level_down_update(&new_count, &new_mag, count, mag, coeff_idx, abs_nb_coeff, nb_coeff_idx, level, txb_info); if (update) { const int row = coeff_idx >> txb_info->bwl; const int col = coeff_idx - (row << txb_info->bwl); const int ctx = txb_cache->br_ctx_arr[coeff_idx]; const int org_cost = get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]); const int new_ctx = get_br_ctx_from_count_mag(row, col, new_count, new_mag); const int new_cost = get_br_cost(abs_qc, new_ctx, txb_costs->lps_cost[new_ctx]); const int cost_diff = -org_cost + new_cost; return cost_diff; } else { return 0; } } static int try_neighbor_level_down_base(int coeff_idx, int nb_coeff_idx, const TxbCache *txb_cache, const LV_MAP_COEFF_COST *txb_costs, const TxbInfo *txb_info) { // TODO(olah): not implemented yet (void)coeff_idx; (void)nb_coeff_idx; (void)txb_cache; (void)txb_costs; (void)txb_info; return 0; } static int try_neighbor_level_down_nz(int coeff_idx, int nb_coeff_idx, const TxbCache *txb_cache, const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info) { // assume eob doesn't change const tran_low_t qc = txb_info->qcoeff[coeff_idx]; const tran_low_t abs_qc = abs(qc); const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx]; const tran_low_t abs_nb_coeff = abs(nb_coeff); if (abs_nb_coeff != 1) return 0; const int16_t *const iscan = txb_info->scan_order->iscan; const int scan_idx = iscan[coeff_idx]; if (scan_idx == txb_info->seg_eob) return 0; const int nb_scan_idx = iscan[nb_coeff_idx]; if (nb_scan_idx < scan_idx) { const int count = txb_cache->nz_count_arr[coeff_idx]; (void)count; assert(count > 0); update_qcoeff(nb_coeff_idx, get_lower_coeff(nb_coeff), txb_info); const int new_ctx = get_nz_map_ctx_from_stats( 0, coeff_idx, txb_info->bwl, txb_info->tx_size, tx_type_to_class[txb_info->tx_type]); update_qcoeff(nb_coeff_idx, nb_coeff, txb_info); const int ctx = txb_cache->nz_ctx_arr[coeff_idx]; const int org_cost = txb_costs->base_cost[ctx][AOMMIN(abs_qc, 3)]; const int new_cost = txb_costs->base_cost[new_ctx][AOMMIN(abs_qc, 3)]; const int cost_diff = new_cost - org_cost; return cost_diff; } else { return 0; } } static int try_self_level_down(tran_low_t *low_coeff, int coeff_idx, const TxbCache *txb_cache, const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info) { const tran_low_t qc = txb_info->qcoeff[coeff_idx]; if (qc == 0) { *low_coeff = 0; return 0; } const tran_low_t abs_qc = abs(qc); *low_coeff = get_lower_coeff(qc); int cost_diff; if (*low_coeff == 0) { const int scan_idx = txb_info->scan_order->iscan[coeff_idx]; const int *level_cost = get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs); const int *low_level_cost = get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs); if (scan_idx < txb_info->eob - 1) { // When level-0, we code the binary of abs_qc > level // but when level-k k > 0 we code the binary of abs_qc == level // That's why wee need this special treatment for level-0 map // TODO(angiebird): make leve-0 consistent to other levels cost_diff = -level_cost[1] + low_level_cost[0] - low_level_cost[1]; } else { cost_diff = -level_cost[1]; } const int sign_cost = get_sign_bit_cost( qc, coeff_idx, txb_costs->dc_sign_cost, txb_info->txb_ctx->dc_sign_ctx); cost_diff -= sign_cost; } else if (abs_qc <= NUM_BASE_LEVELS) { const int *level_cost = get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs); const int *low_level_cost = get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs); cost_diff = -level_cost[1] + low_level_cost[1] - low_level_cost[0]; } else if (abs_qc == NUM_BASE_LEVELS + 1) { const int *level_cost = get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs); const int *low_level_cost = get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs); cost_diff = -level_cost[0] + low_level_cost[1] - low_level_cost[0]; } else if (abs_qc < 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { const int *level_cost = get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs); const int *low_level_cost = get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs); cost_diff = -level_cost[abs_qc - 1 - NUM_BASE_LEVELS] + low_level_cost[abs(*low_coeff) - 1 - NUM_BASE_LEVELS]; } else if (abs_qc == 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { const int *low_level_cost = get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs); cost_diff = -get_golomb_cost(abs_qc) - low_level_cost[COEFF_BASE_RANGE] + low_level_cost[COEFF_BASE_RANGE - 1]; } else { assert(abs_qc > 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE); const tran_low_t abs_low_coeff = abs(*low_coeff); cost_diff = -get_golomb_cost(abs_qc) + get_golomb_cost(abs_low_coeff); } return cost_diff; } #define COST_MAP_SIZE 5 #define COST_MAP_OFFSET 2 static INLINE int check_nz_neighbor(tran_low_t qc) { return abs(qc) == 1; } static INLINE int check_base_neighbor(tran_low_t qc) { return abs(qc) <= 1 + NUM_BASE_LEVELS; } static INLINE int check_br_neighbor(tran_low_t qc) { return abs(qc) > BR_MAG_OFFSET; } #define FAST_OPTIMIZE_TXB 1 #if FAST_OPTIMIZE_TXB #define ALNB_REF_OFFSET_NUM 2 static const int alnb_ref_offset[ALNB_REF_OFFSET_NUM][2] = { { -1, 0 }, { 0, -1 }, }; #define NB_REF_OFFSET_NUM 4 static const int nb_ref_offset[NB_REF_OFFSET_NUM][2] = { { -1, 0 }, { 0, -1 }, { 1, 0 }, { 0, 1 }, }; #endif // FAST_OPTIMIZE_TXB // TODO(angiebird): add static to this function once it's called int try_level_down(int coeff_idx, const TxbCache *txb_cache, const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info, int (*cost_map)[COST_MAP_SIZE], int fast_mode) { #if !FAST_OPTIMIZE_TXB (void)fast_mode; #endif if (cost_map) { for (int i = 0; i < COST_MAP_SIZE; ++i) av1_zero(cost_map[i]); } tran_low_t qc = txb_info->qcoeff[coeff_idx]; tran_low_t low_coeff; if (qc == 0) return 0; int accu_cost_diff = 0; const int16_t *const iscan = txb_info->scan_order->iscan; const int eob = txb_info->eob; const int scan_idx = iscan[coeff_idx]; if (scan_idx < eob) { const int cost_diff = try_self_level_down(&low_coeff, coeff_idx, txb_cache, txb_costs, txb_info); if (cost_map) cost_map[0 + COST_MAP_OFFSET][0 + COST_MAP_OFFSET] = cost_diff; accu_cost_diff += cost_diff; } const int row = coeff_idx >> txb_info->bwl; const int col = coeff_idx - (row << txb_info->bwl); if (check_nz_neighbor(qc)) { #if FAST_OPTIMIZE_TXB const int(*ref_offset)[2]; int ref_num; if (fast_mode) { ref_offset = alnb_ref_offset; ref_num = ALNB_REF_OFFSET_NUM; } else { ref_offset = sig_ref_offset; ref_num = SIG_REF_OFFSET_NUM; } #else const int(*ref_offset)[2] = sig_ref_offset; const int ref_num = SIG_REF_OFFSET_NUM; #endif for (int i = 0; i < ref_num; ++i) { const int nb_row = row - ref_offset[i][0]; const int nb_col = col - ref_offset[i][1]; const int nb_coeff_idx = nb_row * txb_info->width + nb_col; if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height || nb_col >= txb_info->width) continue; const int nb_scan_idx = iscan[nb_coeff_idx]; if (nb_scan_idx < eob) { const int cost_diff = try_neighbor_level_down_nz( nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info); if (cost_map) cost_map[nb_row - row + COST_MAP_OFFSET] [nb_col - col + COST_MAP_OFFSET] += cost_diff; accu_cost_diff += cost_diff; } } } if (check_base_neighbor(qc)) { #if FAST_OPTIMIZE_TXB const int(*ref_offset)[2]; int ref_num; if (fast_mode) { ref_offset = nb_ref_offset; ref_num = NB_REF_OFFSET_NUM; } else { ref_offset = base_ref_offset; ref_num = BASE_CONTEXT_POSITION_NUM; } #else const int(*ref_offset)[2] = base_ref_offset; int ref_num = BASE_CONTEXT_POSITION_NUM; #endif for (int i = 0; i < ref_num; ++i) { const int nb_row = row - ref_offset[i][0]; const int nb_col = col - ref_offset[i][1]; const int nb_coeff_idx = nb_row * txb_info->width + nb_col; if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height || nb_col >= txb_info->width) continue; const int nb_scan_idx = iscan[nb_coeff_idx]; if (nb_scan_idx < eob) { const int cost_diff = try_neighbor_level_down_base( nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info); if (cost_map) cost_map[nb_row - row + COST_MAP_OFFSET] [nb_col - col + COST_MAP_OFFSET] += cost_diff; accu_cost_diff += cost_diff; } } } if (check_br_neighbor(qc)) { #if FAST_OPTIMIZE_TXB const int(*ref_offset)[2]; int ref_num; if (fast_mode) { ref_offset = nb_ref_offset; ref_num = NB_REF_OFFSET_NUM; } else { ref_offset = br_ref_offset; ref_num = BR_CONTEXT_POSITION_NUM; } #else const int(*ref_offset)[2] = br_ref_offset; const int ref_num = BR_CONTEXT_POSITION_NUM; #endif for (int i = 0; i < ref_num; ++i) { const int nb_row = row - ref_offset[i][0]; const int nb_col = col - ref_offset[i][1]; const int nb_coeff_idx = nb_row * txb_info->width + nb_col; if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height || nb_col >= txb_info->width) continue; const int nb_scan_idx = iscan[nb_coeff_idx]; if (nb_scan_idx < eob) { const int cost_diff = try_neighbor_level_down_br( nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info); if (cost_map) cost_map[nb_row - row + COST_MAP_OFFSET] [nb_col - col + COST_MAP_OFFSET] += cost_diff; accu_cost_diff += cost_diff; } } } return accu_cost_diff; } static INLINE void set_eob(TxbInfo *txb_info, int eob) { txb_info->eob = eob; txb_info->seg_eob = av1_get_max_eob(txb_info->tx_size); } // TODO(angiebird): add static to this function it's called void update_level_down(const int coeff_idx, TxbCache *const txb_cache, TxbInfo *const txb_info) { const tran_low_t qc = txb_info->qcoeff[coeff_idx]; const int abs_qc = abs(qc); if (qc == 0) return; const tran_low_t low_coeff = get_lower_coeff(qc); update_coeff(coeff_idx, low_coeff, txb_info); const int row = coeff_idx >> txb_info->bwl; const int col = coeff_idx - (row << txb_info->bwl); const int eob = txb_info->eob; const int16_t *const iscan = txb_info->scan_order->iscan; for (int i = 0; i < SIG_REF_OFFSET_NUM; ++i) { const int nb_row = row - sig_ref_offset[i][0]; const int nb_col = col - sig_ref_offset[i][1]; if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height && nb_col < txb_info->width)) continue; const int nb_coeff_idx = nb_row * txb_info->width + nb_col; const int nb_scan_idx = iscan[nb_coeff_idx]; if (nb_scan_idx < eob) { const int scan_idx = iscan[coeff_idx]; if (scan_idx < nb_scan_idx) { const int level = 1; if (abs_qc == level) { txb_cache->nz_count_arr[nb_coeff_idx] -= 1; assert(txb_cache->nz_count_arr[nb_coeff_idx] >= 0); } txb_cache->nz_ctx_arr[nb_coeff_idx] = get_nz_map_ctx_from_stats( 0, nb_coeff_idx, txb_info->bwl, txb_info->tx_size, tx_type_to_class[txb_info->tx_type]); } } } const BASE_CTX_TABLE *base_ctx_table = txb_info->coeff_ctx_table->base_ctx_table; for (int i = 0; i < BASE_CONTEXT_POSITION_NUM; ++i) { const int nb_row = row - base_ref_offset[i][0]; const int nb_col = col - base_ref_offset[i][1]; const int nb_coeff_idx = nb_row * txb_info->width + nb_col; if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height && nb_col < txb_info->width)) continue; const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx]; if (!has_base(nb_coeff, 0)) continue; const int nb_scan_idx = iscan[nb_coeff_idx]; if (nb_scan_idx < eob) { if (row >= nb_row && col >= nb_col) update_mag_arr(txb_cache->base_mag_arr[nb_coeff_idx], abs_qc); const int mag = get_mag_from_mag_arr(txb_cache->base_mag_arr[nb_coeff_idx]); for (int base_idx = 0; base_idx < NUM_BASE_LEVELS; ++base_idx) { if (!has_base(nb_coeff, base_idx)) continue; const int level = base_idx + 1; if (abs_qc == level) { txb_cache->base_count_arr[base_idx][nb_coeff_idx] -= 1; assert(txb_cache->base_count_arr[base_idx][nb_coeff_idx] >= 0); } const int count = txb_cache->base_count_arr[base_idx][nb_coeff_idx]; txb_cache->base_ctx_arr[base_idx][nb_coeff_idx] = base_ctx_table[nb_row != 0][nb_col != 0][mag > level][count]; } } } for (int i = 0; i < BR_CONTEXT_POSITION_NUM; ++i) { const int nb_row = row - br_ref_offset[i][0]; const int nb_col = col - br_ref_offset[i][1]; const int nb_coeff_idx = nb_row * txb_info->width + nb_col; if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height && nb_col < txb_info->width)) continue; const int nb_scan_idx = iscan[nb_coeff_idx]; const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx]; if (!has_br(nb_coeff)) continue; if (nb_scan_idx < eob) { const int level = 1 + NUM_BASE_LEVELS; if (abs_qc == level) { txb_cache->br_count_arr[nb_coeff_idx] -= 1; assert(txb_cache->br_count_arr[nb_coeff_idx] >= 0); } if (row >= nb_row && col >= nb_col) update_mag_arr(txb_cache->br_mag_arr[nb_coeff_idx], abs_qc); const int count = txb_cache->br_count_arr[nb_coeff_idx]; const int mag = get_mag_from_mag_arr(txb_cache->br_mag_arr[nb_coeff_idx]); txb_cache->br_ctx_arr[nb_coeff_idx] = get_br_ctx_from_count_mag(nb_row, nb_col, count, mag); } } } static int get_coeff_cost(const tran_low_t qc, const int scan_idx, const int is_eob, const TxbInfo *const txb_info, const LV_MAP_COEFF_COST *const txb_costs, const int coeff_ctx) { const TXB_CTX *txb_ctx = txb_info->txb_ctx; const int is_nz = (qc != 0); const tran_low_t abs_qc = abs(qc); int cost = 0; const int16_t *const scan = txb_info->scan_order->scan; const int pos = scan[scan_idx]; if (is_eob) { cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1]; } else { cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)]; } if (is_nz) { cost += get_sign_bit_cost(qc, scan_idx, txb_costs->dc_sign_cost, txb_ctx->dc_sign_ctx); if (abs_qc > NUM_BASE_LEVELS) { const int row = pos >> txb_info->bwl; const int col = pos - (row << txb_info->bwl); #if USE_CAUSAL_BR_CTX (void)col; const int count = 0; const int ctx = get_br_ctx(txb_info->levels, pos, txb_info->bwl, count, txb_info->tx_type); #else const int count = get_level_count( txb_info->levels, (1 << txb_info->bwl) + TX_PAD_HOR, row, col, NUM_BASE_LEVELS, br_ref_offset, BR_CONTEXT_POSITION_NUM); const int ctx = get_br_ctx(txb_info->levels, pos, txb_info->bwl, count); #endif cost += get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]); cost += get_golomb_cost(abs_qc); } } return cost; } #if TEST_OPTIMIZE_TXB #define ALL_REF_OFFSET_NUM 17 static const int all_ref_offset[ALL_REF_OFFSET_NUM][2] = { { 0, 0 }, { -2, -1 }, { -2, 0 }, { -2, 1 }, { -1, -2 }, { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -2 }, { 0, -1 }, { 1, -2 }, { 1, -1 }, { 1, 0 }, { 2, 0 }, { 0, 1 }, { 0, 2 }, { 1, 1 }, }; static int try_level_down_ref(int coeff_idx, const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info, int (*cost_map)[COST_MAP_SIZE]) { if (cost_map) { for (int i = 0; i < COST_MAP_SIZE; ++i) av1_zero(cost_map[i]); } tran_low_t qc = txb_info->qcoeff[coeff_idx]; if (qc == 0) return 0; int row = coeff_idx >> txb_info->bwl; int col = coeff_idx - (row << txb_info->bwl); int org_cost = 0; for (int i = 0; i < ALL_REF_OFFSET_NUM; ++i) { int nb_row = row - all_ref_offset[i][0]; int nb_col = col - all_ref_offset[i][1]; int nb_coeff_idx = nb_row * txb_info->width + nb_col; int nb_scan_idx = txb_info->scan_order->iscan[nb_coeff_idx]; if (nb_scan_idx < txb_info->eob && nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height && nb_col < txb_info->width) { const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx]; const int coeff_ctx = get_nz_map_ctx( txb_info->levels, nb_coeff_idx, txb_info->bwl, txb_info->height, nb_scan_idx, is_eob, txb_info->tx_size, txb_info->tx_type); const int cost = get_coeff_cost(nb_coeff, nb_scan_idx, is_eob, txb_info, txb_costs, coeff_ctx); if (cost_map) cost_map[nb_row - row + COST_MAP_OFFSET] [nb_col - col + COST_MAP_OFFSET] -= cost; org_cost += cost; } } update_qcoeff(coeff_idx, get_lower_coeff(qc), txb_info); int new_cost = 0; for (int i = 0; i < ALL_REF_OFFSET_NUM; ++i) { int nb_row = row - all_ref_offset[i][0]; int nb_col = col - all_ref_offset[i][1]; int nb_coeff_idx = nb_row * txb_info->width + nb_col; int nb_scan_idx = txb_info->scan_order->iscan[nb_coeff_idx]; if (nb_scan_idx < txb_info->eob && nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height && nb_col < txb_info->width) { const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx]; const int coeff_ctx = get_nz_map_ctx( txb_info->levels, nb_coeff_idx, txb_info->bwl, txb_info->height, nb_scan_idx, is_eob, txb_info->tx_size, txb_info->tx_type); const int cost = get_coeff_cost(nb_coeff, nb_scan_idx, is_eob, txb_info, txb_costs, coeff_ctx); if (cost_map) cost_map[nb_row - row + COST_MAP_OFFSET] [nb_col - col + COST_MAP_OFFSET] += cost; new_cost += cost; } } update_qcoeff(coeff_idx, qc, txb_info); return new_cost - org_cost; } static void test_level_down(int coeff_idx, const TxbCache *txb_cache, const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info) { int cost_map[COST_MAP_SIZE][COST_MAP_SIZE]; int ref_cost_map[COST_MAP_SIZE][COST_MAP_SIZE]; const int cost_diff = try_level_down(coeff_idx, txb_cache, txb_costs, txb_info, cost_map, 0); const int cost_diff_ref = try_level_down_ref(coeff_idx, txb_costs, txb_info, ref_cost_map); if (cost_diff != cost_diff_ref) { printf("qc %d cost_diff %d cost_diff_ref %d\n", txb_info->qcoeff[coeff_idx], cost_diff, cost_diff_ref); for (int r = 0; r < COST_MAP_SIZE; ++r) { for (int c = 0; c < COST_MAP_SIZE; ++c) { printf("%d:%d ", cost_map[r][c], ref_cost_map[r][c]); } printf("\n"); } } } #endif // TODO(angiebird): make this static once it's called int get_txb_cost(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs) { int cost = 0; const int txb_skip_ctx = txb_info->txb_ctx->txb_skip_ctx; const int16_t *const scan = txb_info->scan_order->scan; if (txb_info->eob == 0) { cost = txb_costs->txb_skip_cost[txb_skip_ctx][1]; return cost; } cost = txb_costs->txb_skip_cost[txb_skip_ctx][0]; for (int c = 0; c < txb_info->eob; ++c) { const int pos = scan[c]; const tran_low_t qc = txb_info->qcoeff[pos]; const int coeff_ctx = get_nz_map_ctx( txb_info->levels, pos, txb_info->bwl, txb_info->height, c, c == txb_info->eob - 1, txb_info->tx_size, txb_info->tx_type); const int coeff_cost = get_coeff_cost(qc, c, c == txb_info->eob - 1, txb_info, txb_costs, coeff_ctx); cost += coeff_cost; } return cost; } #if TEST_OPTIMIZE_TXB void test_try_change_eob(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, TxbCache *txb_cache) { const int eob = txb_info->eob; const int16_t *const scan = txb_info->scan_order->scan; if (eob > 0) { int last_si = eob - 1; int last_ci = scan[last_si]; int last_coeff = txb_info->qcoeff[last_ci]; if (abs(last_coeff) == 1) { int new_eob; int cost_diff = try_change_eob(&new_eob, last_ci, txb_cache, txb_costs, txb_info, 0); int org_eob = txb_info->eob; int cost = get_txb_cost(txb_info, txb_costs); update_qcoeff(last_ci, get_lower_coeff(last_coeff), txb_info); set_eob(txb_info, new_eob); int new_cost = get_txb_cost(txb_info, txb_costs); set_eob(txb_info, org_eob); update_qcoeff(last_ci, last_coeff, txb_info); int ref_cost_diff = -cost + new_cost; if (cost_diff != ref_cost_diff) printf("org_eob %d new_eob %d cost_diff %d ref_cost_diff %d\n", org_eob, new_eob, cost_diff, ref_cost_diff); } } } #endif #if 1 static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, TxbCache *txb_cache, int dry_run, int fast_mode) { (void)fast_mode; (void)txb_cache; int update = 0; // return update; // TODO(DKHE): training only. if (txb_info->eob == 0) return update; const int max_eob = av1_get_max_eob(txb_info->tx_size); #if TEST_OPTIMIZE_TXB int64_t sse; int64_t org_dist = av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) * (1 << (2 * txb_info->shift)); int org_cost = get_txb_cost(txb_info, txb_probs); #endif tran_low_t *org_qcoeff = txb_info->qcoeff; tran_low_t *org_dqcoeff = txb_info->dqcoeff; uint8_t *const org_levels = txb_info->levels; tran_low_t tmp_qcoeff[MAX_TX_SQUARE]; tran_low_t tmp_dqcoeff[MAX_TX_SQUARE]; uint8_t tmp_levels_buf[TX_PAD_2D]; uint8_t *const tmp_levels = set_levels(tmp_levels_buf, txb_info->width); const int org_eob = txb_info->eob; if (dry_run) { const int stride = txb_info->width + TX_PAD_HOR; const int levels_size = (stride * (txb_info->height + TX_PAD_VER) + TX_PAD_END); memcpy(tmp_qcoeff, org_qcoeff, sizeof(org_qcoeff[0]) * max_eob); memcpy(tmp_dqcoeff, org_dqcoeff, sizeof(org_dqcoeff[0]) * max_eob); memcpy(tmp_levels, org_levels - TX_PAD_TOP * stride, sizeof(org_levels[0]) * levels_size); txb_info->qcoeff = tmp_qcoeff; txb_info->dqcoeff = tmp_dqcoeff; txb_info->levels = tmp_levels; } const int16_t *const scan = txb_info->scan_order->scan; // forward optimize the nz_map` const int init_eob = txb_info->eob; const int seg_eob = txb_info->seg_eob; const int eob_cost = get_eob_cost(init_eob, seg_eob, txb_eob_costs, txb_costs, txb_info->tx_type); // backward optimize the level-k map int64_t accu_rate = eob_cost; int64_t accu_dist = 0; int64_t prev_eob_rd_cost = INT64_MAX; int64_t cur_eob_rd_cost = 0; int8_t has_nz_tail = 0; for (int si = init_eob - 1; si >= 0; --si) { const int coeff_idx = scan[si]; tran_low_t qc = txb_info->qcoeff[coeff_idx]; LevelDownStats stats; get_dist_cost_stats(&stats, si, si == init_eob - 1, txb_costs, txb_info, has_nz_tail); if (qc == 0) { accu_rate += stats.rate; } else { if (has_nz_tail < 2) { // check if it is better to make this the last significant coefficient int cur_eob_rate = get_eob_cost(si + 1, seg_eob, txb_eob_costs, txb_costs, txb_info->tx_type); cur_eob_rd_cost = RDCOST(txb_info->rdmult, cur_eob_rate, 0); prev_eob_rd_cost = RDCOST(txb_info->rdmult, accu_rate, accu_dist) + stats.nz_rd; if (cur_eob_rd_cost <= prev_eob_rd_cost) { update = 1; for (int j = si + 1; j < txb_info->eob; j++) { const int coeff_pos_j = scan[j]; update_coeff(coeff_pos_j, 0, txb_info); } txb_info->eob = si + 1; // rerun cost calculation due to change of eob accu_rate = cur_eob_rate; accu_dist = 0; get_dist_cost_stats(&stats, si, 1, txb_costs, txb_info, has_nz_tail); if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) { update = 1; update_coeff(coeff_idx, stats.low_qc, txb_info); accu_rate += stats.rate_low; accu_dist += stats.dist_low; } else { accu_rate += stats.rate; accu_dist += stats.dist; } continue; } } int bUpdCoeff = 0; if (stats.rd_low < stats.rd) { if ((si < txb_info->eob - 1)) { bUpdCoeff = 1; update = 1; } } else { ++has_nz_tail; } if (bUpdCoeff) { update_coeff(coeff_idx, stats.low_qc, txb_info); accu_rate += stats.rate_low; accu_dist += stats.dist_low; } else { accu_rate += stats.rate; accu_dist += stats.dist; } } } // for (si) int non_zero_blk_rate = txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][0]; prev_eob_rd_cost = RDCOST(txb_info->rdmult, accu_rate + non_zero_blk_rate, accu_dist); int zero_blk_rate = txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][1]; int64_t zero_blk_rd_cost = RDCOST(txb_info->rdmult, zero_blk_rate, 0); if (zero_blk_rd_cost <= prev_eob_rd_cost) { update = 1; for (int j = 0; j < txb_info->eob; j++) { const int coeff_pos_j = scan[j]; update_coeff(coeff_pos_j, 0, txb_info); } txb_info->eob = 0; } #if TEST_OPTIMIZE_TXB int cost_diff = 0; int64_t dist_diff = 0; int64_t rd_diff = 0; int64_t new_dist = av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) * (1 << (2 * txb_info->shift)); int new_cost = get_txb_cost(txb_info, txb_probs); int64_t ref_dist_diff = new_dist - org_dist; int ref_cost_diff = new_cost - org_cost; if (cost_diff != ref_cost_diff || dist_diff != ref_dist_diff) printf( "overall rd_diff %ld\ncost_diff %d ref_cost_diff%d\ndist_diff %ld " "ref_dist_diff %ld\neob %d new_eob %d\n\n", rd_diff, cost_diff, ref_cost_diff, dist_diff, ref_dist_diff, org_eob, txb_info->eob); #endif if (dry_run) { txb_info->qcoeff = org_qcoeff; txb_info->dqcoeff = org_dqcoeff; txb_info->levels = org_levels; set_eob(txb_info, org_eob); } return update; } #else static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, TxbCache *txb_cache, int dry_run, int fast_mode) { int update = 0; if (txb_info->eob == 0) return update; int cost_diff = 0; int64_t dist_diff = 0; int64_t rd_diff = 0; const int max_eob = av1_get_max_eob(txb_info->tx_size); #if TEST_OPTIMIZE_TXB int64_t sse; int64_t org_dist = av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) * (1 << (2 * txb_info->shift)); int org_cost = get_txb_cost(txb_info, txb_costs); #endif tran_low_t *org_qcoeff = txb_info->qcoeff; tran_low_t *org_dqcoeff = txb_info->dqcoeff; uint8_t *const org_levels = txb_info->levels; tran_low_t tmp_qcoeff[MAX_TX_SQUARE]; tran_low_t tmp_dqcoeff[MAX_TX_SQUARE]; uint8_t tmp_levels_buf[TX_PAD_2D]; uint8_t *const tmp_levels = set_levels(tmp_levels_buf, txb_info->width); const int org_eob = txb_info->eob; if (dry_run) { const int stride = txb_info->width + TX_PAD_HOR; const int levels_size = (stride * (txb_info->height + TX_PAD_VER) + TX_PAD_END); memcpy(tmp_qcoeff, org_qcoeff, sizeof(org_qcoeff[0]) * max_eob); memcpy(tmp_dqcoeff, org_dqcoeff, sizeof(org_dqcoeff[0]) * max_eob); memcpy(tmp_levels, org_levels - TX_PAD_TOP * stride, sizeof(org_levels[0]) * levels_size); txb_info->qcoeff = tmp_qcoeff; txb_info->dqcoeff = tmp_dqcoeff; txb_info->levels = tmp_levels; } const int16_t *const scan = txb_info->scan_order->scan; // forward optimize the nz_map const int cur_eob = txb_info->eob; for (int si = 0; si < cur_eob; ++si) { const int coeff_idx = scan[si]; tran_low_t qc = txb_info->qcoeff[coeff_idx]; if (abs(qc) == 1) { LevelDownStats stats; try_level_down_facade(&stats, si, txb_cache, txb_costs, txb_info, fast_mode); if (stats.update) { update = 1; cost_diff += stats.cost_diff; dist_diff += stats.dist_diff; rd_diff += stats.rd_diff; update_level_down(coeff_idx, txb_cache, txb_info); set_eob(txb_info, stats.new_eob); } } } // backward optimize the level-k map int eob_fix = 0; for (int si = txb_info->eob - 1; si >= 0; --si) { const int coeff_idx = scan[si]; if (eob_fix == 1 && txb_info->qcoeff[coeff_idx] == 1) { // when eob is fixed, there is not need to optimize again when // abs(qc) == 1 continue; } LevelDownStats stats; try_level_down_facade(&stats, si, txb_cache, txb_costs, txb_info, fast_mode); if (stats.update) { #if TEST_OPTIMIZE_TXB // printf("si %d low_qc %d cost_diff %d dist_diff %ld rd_diff %ld eob %d new_eob // %d\n", si, stats.low_qc, stats.cost_diff, stats.dist_diff, stats.rd_diff, // txb_info->eob, stats.new_eob); #endif update = 1; cost_diff += stats.cost_diff; dist_diff += stats.dist_diff; rd_diff += stats.rd_diff; update_level_down(coeff_idx, txb_cache, txb_info); set_eob(txb_info, stats.new_eob); } if (eob_fix == 0 && txb_info->qcoeff[coeff_idx] != 0) eob_fix = 1; if (si > txb_info->eob) si = txb_info->eob; } #if TEST_OPTIMIZE_TXB int64_t new_dist = av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) * (1 << (2 * txb_info->shift)); int new_cost = get_txb_cost(txb_info, txb_costs); int64_t ref_dist_diff = new_dist - org_dist; int ref_cost_diff = new_cost - org_cost; if (cost_diff != ref_cost_diff || dist_diff != ref_dist_diff) printf( "overall rd_diff %ld\ncost_diff %d ref_cost_diff%d\ndist_diff %ld " "ref_dist_diff %ld\neob %d new_eob %d\n\n", rd_diff, cost_diff, ref_cost_diff, dist_diff, ref_dist_diff, org_eob, txb_info->eob); #endif if (dry_run) { txb_info->qcoeff = org_qcoeff; txb_info->dqcoeff = org_dqcoeff; txb_info->levels = org_levels; set_eob(txb_info, org_eob); } return update; } #endif // These numbers are empirically obtained. static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { { 17, 13 }, { 16, 10 }, }; void hbt_hash_init() { av1_crc_calculator_init(&crc_calculator, 16, 0x5D6DCB); // ctx 16 bit hash av1_crc_calculator_init(&crc_calculator2, 16, 0x5D6DCB); // qc 16 bit hash memset(hbt_hash_table, 0, sizeof(hbt_hash_table[0][0]) * 65536 * 16); hbt_hash_needs_init = 0; } int hbt_hash_miss(int found_index, uint16_t hbt_hash_index, uint32_t hbt_hash_match, TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, const struct macroblock_plane *p, int block, int fast_mode) { const int16_t *scan = txb_info->scan_order->scan; av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height, txb_info->levels); // The hash_based_trellis speed feature requires lv_map_multi, so always true. const int update = optimize_txb(txb_info, txb_costs, txb_eob_costs, NULL, 0, fast_mode); if (update) { // Overwrite old lowest entry hbt_hash_table[hbt_hash_index][found_index].hbt_hash_match = hbt_hash_match; hbt_hash_table[hbt_hash_index][found_index].hits = 1.0; for (int i = 0; i < txb_info->eob; i++) { hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i] = txb_info->qcoeff[scan[i]]; } for (int i = txb_info->eob; i < HBT_HASH_EOB; i++) { hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i] = 0; } p->eobs[block] = txb_info->eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( txb_info->qcoeff, txb_info->scan_order, txb_info->eob); } return txb_info->eob; } int hbt_hash_hit(uint16_t hbt_hash_index, int found_index, TxbInfo *txb_info, const struct macroblock_plane *p, int block) { const int16_t *scan = txb_info->scan_order->scan; int new_eob = 0; int update = 0; for (int i = 0; i < txb_info->eob; i++) { if (txb_info->qcoeff[scan[i]] != hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i]) { txb_info->qcoeff[scan[i]] = hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i]; update = 1; update_coeff(scan[i], txb_info->qcoeff[scan[i]], txb_info); } if (txb_info->qcoeff[scan[i]]) new_eob = i + 1; } if (update) { txb_info->eob = new_eob; p->eobs[block] = txb_info->eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( txb_info->qcoeff, txb_info->scan_order, txb_info->eob); } return txb_info->eob; } int search_hbt_hash_match(uint16_t hbt_hash_index, uint32_t hbt_hash_match, TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, const struct macroblock_plane *p, int block, int fast_mode) { // Decay all hits double lowest_hits = 1.0; int lowest_index = 0; for (int i = 0; i < 16; i++) { hbt_hash_table[hbt_hash_index][i].hits *= 31.0; hbt_hash_table[hbt_hash_index][i].hits /= 32.0; if (hbt_hash_table[hbt_hash_index][i].hits < lowest_hits) { lowest_hits = hbt_hash_table[hbt_hash_index][i].hits; lowest_index = i; } } // Search soft hash vector for qcoeff match int found_index = -1; for (int i = 0; i < 16; i++) { // OptTxbQcoeff array has fixed size of 16. if (hbt_hash_table[hbt_hash_index][i].hbt_hash_match == hbt_hash_match) { found_index = i; hbt_hash_table[hbt_hash_index][i].hits += 1.0; break; // Found a match and it's at found_index } } if (found_index == -1) { // Add new OptTxbQcoeff into array. return hbt_hash_miss(lowest_index, hbt_hash_index, hbt_hash_match, txb_info, txb_costs, txb_eob_costs, p, block, fast_mode); } else { // Retrieve data from array. return hbt_hash_hit(hbt_hash_index, found_index, txb_info, p, block); } } int hash_based_trellis_mode(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, const LV_MAP_EOB_COST *txb_eob_costs, const struct macroblock_plane *p, int block, int fast_mode, TXB_CTX *txb_ctx) { // Initialize hash table if needed. if (hbt_hash_needs_init) { hbt_hash_init(); } //// Hash creation // TODO(mfo): use exact length once input finalized uint8_t txb_hash_data[256]; const int16_t *scan = txb_info->scan_order->scan; uint8_t chunk = 0; uint16_t ctx_hash = 0; uint32_t qc_hash = 0; int hash_data_index = 0; for (int i = 0; i < txb_info->eob; i++) { // Data softening: data from -3 -> 3 is left alone, // while 'large' data is put into buckets of 16s // Consider bucketing less than 16 down to 4 instead of 0 // if(txb_info->qcoeff[scan[i]] < 4 && txb_info->qcoeff[scan[i]] > -4) chunk = (txb_info->qcoeff[scan[i]]) & 0xff; /*else if(txb_info->qcoeff[scan[i]] < 16 && txb_info->qcoeff[scan[i]] > -16) chunk = (txb_info->qcoeff[scan[i]]) & 0xfc; // else chunk = (txb_info->qcoeff[scan[i]]) & 0xf0; // greater than 16*/ txb_hash_data[hash_data_index++] = chunk; chunk = ((txb_info->qcoeff[scan[i]]) & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; } assert(hash_data_index <= 256); // 16 bit qc_hash = av1_get_crc_value(&crc_calculator2, txb_hash_data, hash_data_index); hash_data_index = 0; // tcoeff for (int i = 0; i < txb_info->eob; i++) { chunk = (txb_info->tcoeff[scan[i]] - txb_info->dqcoeff[scan[i]]) & 0xff; txb_hash_data[hash_data_index++] = chunk; } // txb_ctx chunk = txb_ctx->txb_skip_ctx & 0xff; txb_hash_data[hash_data_index++] = chunk; chunk = txb_ctx->dc_sign_ctx & 0xff; txb_hash_data[hash_data_index++] = chunk; // dequant chunk = txb_info->dequant[0] & 0xff; txb_hash_data[hash_data_index++] = chunk; chunk = (txb_info->dequant[0] & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; chunk = txb_info->dequant[1] & 0xff; txb_hash_data[hash_data_index++] = chunk; chunk = (txb_info->dequant[1] & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; // txb_skip_cost /*for (int i = 0; i < 2; i++) { for (int j = 0; j < TXB_SKIP_CONTEXTS; j++) { chunk = (txb_costs->txb_skip_cost[j][i] & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; } } // base_eob_cost for (int i = 1; i < 3; i++) { // i = 0 are softened away for (int j = 0; j < SIG_COEF_CONTEXTS_EOB; j++) { chunk = (txb_costs->base_eob_cost[j][i] & 0xff00) >> 8; txb_hash_data[hash_data_index++] = chunk; } }*/ assert(hash_data_index <= 256); // Gives 16 bit hash for ctx ctx_hash = av1_get_crc_value(&crc_calculator, txb_hash_data, hash_data_index); uint16_t hbt_hash_index = ctx_hash; // 16 bit ctx_hash: index to table uint32_t hbt_hash_match = qc_hash; // 16 bit qc_hash: matched in array //// End hash creation return search_hbt_hash_match(hbt_hash_index, hbt_hash_match, txb_info, txb_costs, txb_eob_costs, p, block, fast_mode); } int av1_optimize_txb(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, int blk_row, int blk_col, int block, TX_SIZE tx_size, TXB_CTX *txb_ctx, int fast_mode) { const AV1_COMMON *cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const PLANE_TYPE plane_type = get_plane_type(plane); const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const int eob = p->eobs[block]; tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block); const int16_t *dequant = p->dequant_QTX; const int seg_eob = av1_get_max_eob(tx_size); const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); const int is_inter = is_inter_block(mbmi); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); const LV_MAP_COEFF_COST txb_costs = x->coeff_costs[txs_ctx][plane_type]; #if CONFIG_NEW_QUANT int dq = get_dq_profile(cm->dq_type, x->qindex, is_inter, plane_type); const dequant_val_type_nuq *dequant_val = p->dequant_val_nuq_QTX[dq]; #endif // CONFIG_NEW_QUANT const int eob_multi_size = txsize_log2_minus4[tx_size]; const LV_MAP_EOB_COST txb_eob_costs = x->eob_costs[eob_multi_size][plane_type]; #if CONFIG_DAALA_TX const int shift = 0; #else const int shift = av1_get_tx_scale(tx_size); #endif const int64_t rdmult = ((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) + 2) >> 2; uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); assert(width == (1 << bwl)); TxbInfo txb_info = { qcoeff, levels, dqcoeff, tcoeff, dequant, #if CONFIG_NEW_QUANT dequant_val, #endif // CONFIG_NEW_QUANT shift, tx_size, txs_ctx, tx_type, bwl, width, height, eob, seg_eob, scan_order, txb_ctx, rdmult, &cm->coeff_ctx_table }; // Hash based trellis (hbt) speed feature: avoid expensive optimize_txb calls // by storing the optimized coefficients in a hash table. // Currently disabled in speedfeatures.c if (eob <= HBT_HASH_EOB && eob > 0 && cpi->sf.use_hash_based_trellis) { return hash_based_trellis_mode(&txb_info, &txb_costs, &txb_eob_costs, p, block, fast_mode, txb_ctx); } av1_txb_init_levels(qcoeff, width, height, levels); const int update = optimize_txb(&txb_info, &txb_costs, &txb_eob_costs, NULL, 0, fast_mode); if (update) { p->eobs[block] = txb_info.eob; p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(qcoeff, scan_order, txb_info.eob); } return txb_info.eob; } int av1_get_txb_entropy_context(const tran_low_t *qcoeff, const SCAN_ORDER *scan_order, int eob) { const int16_t *const scan = scan_order->scan; int cul_level = 0; int c; if (eob == 0) return 0; for (c = 0; c < eob; ++c) { cul_level += abs(qcoeff[scan[c]]); } cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level); set_dc_sign(&cul_level, qcoeff[0]); return cul_level; } void av1_update_txb_context_b(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const uint16_t eob = p->eobs[block]; const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); const PLANE_TYPE plane_type = pd->plane_type; const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); (void)plane_bsize; int cul_level = av1_get_txb_entropy_context(qcoeff, scan_order, eob); av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row); } void av1_update_and_record_txb_context(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args *const args = arg; const AV1_COMP *cpi = args->cpi; const AV1_COMMON *cm = &cpi->common; ThreadData *const td = args->td; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; int eob = p->eobs[block], update_eob = -1; const PLANE_TYPE plane_type = pd->plane_type; const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); const int segment_id = mbmi->segment_id; const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); const int16_t *const scan = scan_order->scan; const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size); int c; TXB_CTX txb_ctx; get_txb_ctx(plane_bsize, tx_size, plane, pd->above_context + blk_col, pd->left_context + blk_row, &txb_ctx); const int bwl = get_txb_bwl(tx_size); const int width = get_txb_wide(tx_size); const int height = get_txb_high(tx_size); uint8_t levels_buf[TX_PAD_2D]; uint8_t *const levels = set_levels(levels_buf, width); DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]); const uint8_t allow_update_cdf = args->allow_update_cdf; TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob); ++td->counts->txb_skip[txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0]; if (allow_update_cdf) update_bin(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx], eob == 0, 2); x->mbmi_ext->txb_skip_ctx[plane][block] = txb_ctx.txb_skip_ctx; x->mbmi_ext->eobs[plane][block] = eob; if (eob == 0) { av1_set_contexts(xd, pd, plane, tx_size, 0, blk_col, blk_row); return; } av1_txb_init_levels(tcoeff, width, height, levels); #if CONFIG_TXK_SEL av1_update_tx_type_count(cm, xd, blk_row, blk_col, plane, mbmi->sb_type, tx_size, td->counts, allow_update_cdf); #endif av1_update_eob_context(eob, seg_eob, tx_size, tx_type, plane_type, ec_ctx, td->counts, allow_update_cdf); av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_type, coeff_contexts); update_eob = eob - 1; for (c = eob - 1; c >= 0; --c) { const int pos = scan[c]; const int coeff_ctx = coeff_contexts[pos]; const tran_low_t v = qcoeff[pos]; const int is_nz = (v != 0); (void)is_nz; if (allow_update_cdf) { if (c == eob - 1) { assert(coeff_ctx < 4); update_cdf( ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type][coeff_ctx], AOMMIN(abs(v), 3) - 1, 3); } else { update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx], AOMMIN(abs(v), 3), 4); } } { if (c == eob - 1) { assert(coeff_ctx < 4); ++td->counts->coeff_base_eob_multi[txsize_ctx][plane_type][coeff_ctx] [AOMMIN(abs(v), 3) - 1]; } else { ++td->counts->coeff_base_multi[txsize_ctx][plane_type][coeff_ctx] [AOMMIN(abs(v), 3)]; } } } // Update the context needed to code the DC sign (if applicable) const int sign = (tcoeff[0] < 0) ? 1 : 0; if (tcoeff[0] != 0) { int dc_sign_ctx = txb_ctx.dc_sign_ctx; ++td->counts->dc_sign[plane_type][dc_sign_ctx][sign]; if (allow_update_cdf) update_bin(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], sign, 2); x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx; } if (update_eob >= 0) { for (c = update_eob; c >= 0; --c) { const int pos = scan[c]; const tran_low_t level = abs(tcoeff[pos]); int idx; int ctx; if (level <= NUM_BASE_LEVELS) continue; // level is above 1. const int base_range = level - 1 - NUM_BASE_LEVELS; #if USE_CAUSAL_BR_CTX ctx = get_br_ctx(levels, pos, bwl, level_counts[pos], tx_type); #else ctx = get_br_ctx(levels, pos, bwl, level_counts[pos]); #endif for (idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); if (allow_update_cdf) { update_cdf( #if 0 ec_ctx->coeff_br_cdf[AOMMIN(txsize_ctx, TX_16X16)][plane_type][ctx], #else ec_ctx ->coeff_br_cdf[AOMMIN(txsize_ctx, TX_32X32)][plane_type][ctx], #endif k, BR_CDF_SIZE); } for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) { #if 0 ++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_16X16)][plane_type][lps] [ctx][lps == k]; #else ++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type][lps] [ctx][lps == k]; #endif if (lps == k) break; } ++td->counts->coeff_lps_multi[AOMMIN(txsize_ctx, TX_32X32)][plane_type] [ctx][k]; if (k < BR_CDF_SIZE - 1) break; } // use 0-th order Golomb code to handle the residual level. } } int cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob); av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row); } void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td, RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate, int mi_row, int mi_col, uint8_t allow_update_cdf) { MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; struct tokenize_b_args arg = { cpi, td, NULL, 0, allow_update_cdf }; (void)rate; (void)mi_row; (void)mi_col; if (mbmi->skip) { av1_reset_skip_context(xd, mi_row, mi_col, bsize); return; } if (!dry_run) { av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, av1_update_and_record_txb_context, &arg); } else if (dry_run == DRY_RUN_NORMAL) { av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, av1_update_txb_context_b, &arg); } else { printf("DRY_RUN_COSTCOEFFS is not supported yet\n"); assert(0); } } #if CONFIG_TXK_SEL int64_t av1_search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l, int use_fast_coef_costing, RD_STATS *rd_stats) { const AV1_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; TX_TYPE txk_start = DCT_DCT; TX_TYPE txk_end = TX_TYPES - 1; TX_TYPE best_tx_type = txk_start; int64_t best_rd = INT64_MAX; uint8_t best_txb_ctx = 0; uint16_t best_eob = 0; RD_STATS best_rd_stats; TX_TYPE tx_type; av1_invalid_rd_stats(&best_rd_stats); for (tx_type = txk_start; tx_type <= txk_end; ++tx_type) { if (plane == 0) mbmi->txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] = tx_type; TX_TYPE ref_tx_type = av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size); if (tx_type != ref_tx_type) { // use av1_get_tx_type() to check if the tx_type is valid for the current // mode if it's not, we skip it here. continue; } const int is_inter = is_inter_block(mbmi); const TxSetType tx_set_type = get_ext_tx_set_type( tx_size, mbmi->sb_type, is_inter, cm->reduced_tx_set_used); if (!av1_ext_tx_used[tx_set_type][tx_type]) continue; RD_STATS this_rd_stats; av1_invalid_rd_stats(&this_rd_stats); if (cpi->sf.optimize_coefficients != FULL_TRELLIS_OPT) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_B); } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); av1_optimize_b(cpi, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a, l, 1); } av1_dist_block(cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size, &this_rd_stats.dist, &this_rd_stats.sse, OUTPUT_HAS_PREDICTED_PIXELS); const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, mbmi); this_rd_stats.rate = av1_cost_coeffs(cpi, x, plane, blk_row, blk_col, block, tx_size, scan_order, a, l, use_fast_coef_costing); int64_t rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); if (rd < best_rd) { best_rd = rd; best_rd_stats = this_rd_stats; best_tx_type = tx_type; best_txb_ctx = x->plane[plane].txb_entropy_ctx[block]; best_eob = x->plane[plane].eobs[block]; } } av1_merge_rd_stats(rd_stats, &best_rd_stats); if (best_eob == 0) best_tx_type = DCT_DCT; if (plane == 0) mbmi->txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] = best_tx_type; x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx; x->plane[plane].eobs[block] = best_eob; if (!is_inter_block(mbmi)) { // intra mode needs decoded result such that the next transform block // can use it for prediction. if (cpi->sf.optimize_coefficients != FULL_TRELLIS_OPT) { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_B); } else { av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, AV1_XFORM_QUANT_FP); av1_optimize_b(cpi, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a, l, 1); } av1_inverse_transform_block_facade(xd, plane, block, blk_row, blk_col, x->plane[plane].eobs[block], cm->reduced_tx_set_used); } return best_rd; } #endif // CONFIG_TXK_SEL