/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp10/common/common.h" #include "vp10/common/entropy.h" #include "vp10/common/entropymode.h" #include "vp10/common/entropymv.h" #include "vp10/common/mvref_common.h" #include "vp10/common/pred_common.h" #include "vp10/common/reconinter.h" #include "vp10/common/seg_common.h" #include "vp10/decoder/decodemv.h" #include "vp10/decoder/decodeframe.h" #include "vpx_dsp/vpx_dsp_common.h" static INLINE int read_uniform(vpx_reader *r, int n) { int l = get_unsigned_bits(n); int m = (1 << l) - n; int v = vpx_read_literal(r, l-1); assert(l != 0); if (v < m) return v; else return (v << 1) - m + vpx_read_literal(r, 1); } static PREDICTION_MODE read_intra_mode(vpx_reader *r, const vpx_prob *p) { return (PREDICTION_MODE)vpx_read_tree(r, vp10_intra_mode_tree, p); } static PREDICTION_MODE read_intra_mode_y(VP10_COMMON *cm, MACROBLOCKD *xd, vpx_reader *r, int size_group) { const PREDICTION_MODE y_mode = read_intra_mode(r, cm->fc->y_mode_prob[size_group]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->y_mode[size_group][y_mode]; return y_mode; } static PREDICTION_MODE read_intra_mode_uv(VP10_COMMON *cm, MACROBLOCKD *xd, vpx_reader *r, PREDICTION_MODE y_mode) { const PREDICTION_MODE uv_mode = read_intra_mode(r, cm->fc->uv_mode_prob[y_mode]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->uv_mode[y_mode][uv_mode]; return uv_mode; } static PREDICTION_MODE read_inter_mode(VP10_COMMON *cm, MACROBLOCKD *xd, #if CONFIG_REF_MV && CONFIG_EXT_INTER MB_MODE_INFO *mbmi, #endif vpx_reader *r, int16_t ctx) { #if CONFIG_REF_MV FRAME_COUNTS *counts = xd->counts; int16_t mode_ctx = ctx & NEWMV_CTX_MASK; vpx_prob mode_prob = cm->fc->newmv_prob[mode_ctx]; if (vpx_read(r, mode_prob) == 0) { if (counts) ++counts->newmv_mode[mode_ctx][0]; #if CONFIG_EXT_INTER if (has_second_ref(mbmi)) { #endif // CONFIG_EXT_INTER return NEWMV; #if CONFIG_EXT_INTER } else { mode_prob = cm->fc->new2mv_prob; if (vpx_read(r, mode_prob) == 0) { if (counts) ++counts->new2mv_mode[0]; return NEWMV; } else { if (counts) ++counts->new2mv_mode[1]; return NEWFROMNEARMV; } } #endif // CONFIG_EXT_INTER } if (counts) ++counts->newmv_mode[mode_ctx][1]; if (ctx & (1 << ALL_ZERO_FLAG_OFFSET)) return ZEROMV; mode_ctx = (ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; mode_prob = cm->fc->zeromv_prob[mode_ctx]; if (vpx_read(r, mode_prob) == 0) { if (counts) ++counts->zeromv_mode[mode_ctx][0]; return ZEROMV; } if (counts) ++counts->zeromv_mode[mode_ctx][1]; mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; if (ctx & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6; if (ctx & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7; if (ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8; mode_prob = cm->fc->refmv_prob[mode_ctx]; if (vpx_read(r, mode_prob) == 0) { if (counts) ++counts->refmv_mode[mode_ctx][0]; return NEARESTMV; } else { if (counts) ++counts->refmv_mode[mode_ctx][1]; return NEARMV; } // Invalid prediction mode. assert(0); #else const int mode = vpx_read_tree(r, vp10_inter_mode_tree, cm->fc->inter_mode_probs[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->inter_mode[ctx][mode]; return NEARESTMV + mode; #endif } #if CONFIG_REF_MV static void read_drl_idx(const VP10_COMMON *cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, vpx_reader *r) { uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame); mbmi->ref_mv_idx = 0; if (xd->ref_mv_count[ref_frame_type] > 2) { uint8_t drl0_ctx = vp10_drl_ctx(xd->ref_mv_stack[ref_frame_type], 1); vpx_prob drl0_prob = cm->fc->drl_prob0[drl0_ctx]; if (vpx_read(r, drl0_prob)) { mbmi->ref_mv_idx = 1; if (xd->counts) ++xd->counts->drl_mode0[drl0_ctx][1]; if (xd->ref_mv_count[ref_frame_type] > 3) { uint8_t drl1_ctx = vp10_drl_ctx(xd->ref_mv_stack[ref_frame_type], 2); vpx_prob drl1_prob = cm->fc->drl_prob1[drl1_ctx]; if (vpx_read(r, drl1_prob)) { mbmi->ref_mv_idx = 2; if (xd->counts) ++xd->counts->drl_mode1[drl1_ctx][1]; return; } if (xd->counts) ++xd->counts->drl_mode1[drl1_ctx][0]; } return; } if (xd->counts) ++xd->counts->drl_mode0[drl0_ctx][0]; } } #endif #if CONFIG_EXT_INTER static PREDICTION_MODE read_inter_compound_mode(VP10_COMMON *cm, MACROBLOCKD *xd, vpx_reader *r, int16_t ctx) { const int mode = vpx_read_tree(r, vp10_inter_compound_mode_tree, cm->fc->inter_compound_mode_probs[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->inter_compound_mode[ctx][mode]; assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode)); return NEAREST_NEARESTMV + mode; } #endif // CONFIG_EXT_INTER static int read_segment_id(vpx_reader *r, const struct segmentation_probs *segp) { return vpx_read_tree(r, vp10_segment_tree, segp->tree_probs); } #if CONFIG_VAR_TX static void read_tx_size_inter(VP10_COMMON *cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, FRAME_COUNTS *counts, TX_SIZE tx_size, int blk_row, int blk_col, vpx_reader *r) { int is_split = 0; const int tx_idx = (blk_row >> 1) * 8 + (blk_col >> 1); int max_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; int max_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; int ctx = txfm_partition_context(xd->above_txfm_context + (blk_col >> 1), xd->left_txfm_context + (blk_row >> 1), tx_size); if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> 5; if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> 5; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; is_split = vpx_read(r, cm->fc->txfm_partition_prob[ctx]); if (is_split) { BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; int bsl = b_width_log2_lookup[bsize]; int i; if (counts) ++counts->txfm_partition[ctx][1]; if (tx_size == TX_8X8) { mbmi->inter_tx_size[tx_idx] = TX_4X4; mbmi->tx_size = mbmi->inter_tx_size[tx_idx]; txfm_partition_update(xd->above_txfm_context + (blk_col >> 1), xd->left_txfm_context + (blk_row >> 1), TX_4X4); return; } assert(bsl > 0); --bsl; for (i = 0; i < 4; ++i) { int offsetr = blk_row + ((i >> 1) << bsl); int offsetc = blk_col + ((i & 0x01) << bsl); read_tx_size_inter(cm, xd, mbmi, counts, tx_size - 1, offsetr, offsetc, r); } } else { int idx, idy; mbmi->inter_tx_size[tx_idx] = tx_size; for (idy = 0; idy < (1 << tx_size) / 2; ++idy) for (idx = 0; idx < (1 << tx_size) / 2; ++idx) mbmi->inter_tx_size[tx_idx + (idy << 3) + idx] = tx_size; mbmi->tx_size = mbmi->inter_tx_size[tx_idx]; if (counts) ++counts->txfm_partition[ctx][0]; txfm_partition_update(xd->above_txfm_context + (blk_col >> 1), xd->left_txfm_context + (blk_row >> 1), tx_size); } } #endif static TX_SIZE read_selected_tx_size(VP10_COMMON *cm, MACROBLOCKD *xd, TX_SIZE max_tx_size, vpx_reader *r) { FRAME_COUNTS *counts = xd->counts; const int ctx = get_tx_size_context(xd); const int tx_size_cat = max_tx_size - TX_8X8; int tx_size = vpx_read_tree(r, vp10_tx_size_tree[tx_size_cat], cm->fc->tx_size_probs[tx_size_cat][ctx]); if (counts) ++counts->tx_size[tx_size_cat][ctx][tx_size]; return (TX_SIZE)tx_size; } static TX_SIZE read_tx_size(VP10_COMMON *cm, MACROBLOCKD *xd, int allow_select, vpx_reader *r) { TX_MODE tx_mode = cm->tx_mode; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return TX_4X4; if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8) return read_selected_tx_size(cm, xd, max_tx_size, r); else return VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]); } static int dec_get_segment_id(const VP10_COMMON *cm, const uint8_t *segment_ids, int mi_offset, int x_mis, int y_mis) { int x, y, segment_id = INT_MAX; for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) segment_id = VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; } static void set_segment_id(VP10_COMMON *cm, int mi_offset, int x_mis, int y_mis, int segment_id) { int x, y; assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; } static int read_intra_segment_id(VP10_COMMON *const cm, MACROBLOCKD *const xd, int mi_offset, int x_mis, int y_mis, vpx_reader *r) { struct segmentation *const seg = &cm->seg; FRAME_COUNTS *counts = xd->counts; struct segmentation_probs *const segp = &cm->fc->seg; int segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation assert(seg->update_map && !seg->temporal_update); segment_id = read_segment_id(r, segp); if (counts) ++counts->seg.tree_total[segment_id]; set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static void copy_segment_id(const VP10_COMMON *cm, const uint8_t *last_segment_ids, uint8_t *current_segment_ids, int mi_offset, int x_mis, int y_mis) { int x, y; for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) current_segment_ids[mi_offset + y * cm->mi_cols + x] = last_segment_ids ? last_segment_ids[mi_offset + y * cm->mi_cols + x] : 0; } static int read_inter_segment_id(VP10_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, vpx_reader *r) { struct segmentation *const seg = &cm->seg; FRAME_COUNTS *counts = xd->counts; struct segmentation_probs *const segp = &cm->fc->seg; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int predicted_segment_id, segment_id; const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = xd->plane[0].n4_w >> 1; const int bh = xd->plane[0].n4_h >> 1; // TODO(slavarnway): move x_mis, y_mis into xd ????? const int x_mis = VPXMIN(cm->mi_cols - mi_col, bw); const int y_mis = VPXMIN(cm->mi_rows - mi_row, bh); if (!seg->enabled) return 0; // Default for disabled segmentation predicted_segment_id = cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map, mi_offset, x_mis, y_mis) : 0; if (!seg->update_map) { copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map, mi_offset, x_mis, y_mis); return predicted_segment_id; } if (seg->temporal_update) { const int ctx = vp10_get_pred_context_seg_id(xd); const vpx_prob pred_prob = segp->pred_probs[ctx]; mbmi->seg_id_predicted = vpx_read(r, pred_prob); if (counts) ++counts->seg.pred[ctx][mbmi->seg_id_predicted]; if (mbmi->seg_id_predicted) { segment_id = predicted_segment_id; } else { segment_id = read_segment_id(r, segp); if (counts) ++counts->seg.tree_mispred[segment_id]; } } else { segment_id = read_segment_id(r, segp); if (counts) ++counts->seg.tree_total[segment_id]; } set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static int read_skip(VP10_COMMON *cm, const MACROBLOCKD *xd, int segment_id, vpx_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int ctx = vp10_get_skip_context(xd); const int skip = vpx_read(r, cm->fc->skip_probs[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->skip[ctx][skip]; return skip; } } static void read_palette_mode_info(VP10_COMMON *const cm, MACROBLOCKD *const xd, vpx_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const BLOCK_SIZE bsize = mbmi->sb_type; int i, n, palette_ctx = 0; PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; if (mbmi->mode == DC_PRED) { if (above_mi) palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); if (left_mi) palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); if (vpx_read(r, vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8] [palette_ctx])) { pmi->palette_size[0] = vpx_read_tree(r, vp10_palette_size_tree, vp10_default_palette_y_size_prob[bsize - BLOCK_8X8]) + 2; n = pmi->palette_size[0]; for (i = 0; i < n; ++i) pmi->palette_colors[i] = vpx_read_literal(r, cm->bit_depth); xd->plane[0].color_index_map[0] = read_uniform(r, n); assert(xd->plane[0].color_index_map[0] < n); } } if (mbmi->uv_mode == DC_PRED) { if (vpx_read(r, vp10_default_palette_uv_mode_prob[pmi->palette_size[0] > 0])) { pmi->palette_size[1] = vpx_read_tree(r, vp10_palette_size_tree, vp10_default_palette_uv_size_prob[bsize - BLOCK_8X8]) + 2; n = pmi->palette_size[1]; for (i = 0; i < n; ++i) { pmi->palette_colors[PALETTE_MAX_SIZE + i] = vpx_read_literal(r, cm->bit_depth); pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = vpx_read_literal(r, cm->bit_depth); } xd->plane[1].color_index_map[0] = read_uniform(r, n); assert(xd->plane[1].color_index_map[0] < n); } } } #if CONFIG_EXT_INTRA static void read_ext_intra_mode_info(VP10_COMMON *const cm, MACROBLOCKD *const xd, vpx_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; FRAME_COUNTS *counts = xd->counts; #if !ALLOW_FILTER_INTRA_MODES return; #endif if (mbmi->mode == DC_PRED && mbmi->palette_mode_info.palette_size[0] == 0) { mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = vpx_read(r, cm->fc->ext_intra_probs[0]); if (mbmi->ext_intra_mode_info.use_ext_intra_mode[0]) { mbmi->ext_intra_mode_info.ext_intra_mode[0] = read_uniform(r, FILTER_INTRA_MODES); } if (counts) ++counts->ext_intra[0][mbmi->ext_intra_mode_info.use_ext_intra_mode[0]]; } if (mbmi->uv_mode == DC_PRED && mbmi->palette_mode_info.palette_size[1] == 0) { mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = vpx_read(r, cm->fc->ext_intra_probs[1]); if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1]) { mbmi->ext_intra_mode_info.ext_intra_mode[1] = read_uniform(r, FILTER_INTRA_MODES); } if (counts) ++counts->ext_intra[1][mbmi->ext_intra_mode_info.use_ext_intra_mode[1]]; } } #endif // CONFIG_EXT_INTRA static void read_intra_frame_mode_info(VP10_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, vpx_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; const BLOCK_SIZE bsize = mbmi->sb_type; int i; const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = xd->plane[0].n4_w >> 1; const int bh = xd->plane[0].n4_h >> 1; // TODO(slavarnway): move x_mis, y_mis into xd ????? const int x_mis = VPXMIN(cm->mi_cols - mi_col, bw); const int y_mis = VPXMIN(cm->mi_rows - mi_row, bh); mbmi->segment_id = read_intra_segment_id(cm, xd, mi_offset, x_mis, y_mis, r); mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); mbmi->tx_size = read_tx_size(cm, xd, 1, r); mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, i)); mbmi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 0)); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 1)); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 0)); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 2)); break; default: mbmi->mode = read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 0)); #if CONFIG_EXT_INTRA if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) { int p_angle; const int ctx = vp10_get_pred_context_intra_interp(xd); mbmi->angle_delta[0] = read_uniform(r, 2 * MAX_ANGLE_DELTAS + 1) - MAX_ANGLE_DELTAS; p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (pick_intra_filter(p_angle)) { FRAME_COUNTS *counts = xd->counts; mbmi->intra_filter = vpx_read_tree(r, vp10_intra_filter_tree, cm->fc->intra_filter_probs[ctx]); if (counts) ++counts->intra_filter[ctx][mbmi->intra_filter]; } else { mbmi->intra_filter = INTRA_FILTER_LINEAR; } } #endif // CONFIG_EXT_INTRA } mbmi->uv_mode = read_intra_mode_uv(cm, xd, r, mbmi->mode); #if CONFIG_EXT_INTRA if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED && bsize >= BLOCK_8X8) mbmi->angle_delta[1] = read_uniform(r, 2 * MAX_ANGLE_DELTAS + 1) - MAX_ANGLE_DELTAS; #endif mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools) read_palette_mode_info(cm, xd, r); if (!FIXED_TX_TYPE) { #if CONFIG_EXT_TX if (get_ext_tx_types(mbmi->tx_size, mbmi->sb_type, 0) > 1 && cm->base_qindex > 0 && !mbmi->skip && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) && ALLOW_INTRA_EXT_TX) { FRAME_COUNTS *counts = xd->counts; int eset = get_ext_tx_set(mbmi->tx_size, mbmi->sb_type, 0); if (eset > 0) { mbmi->tx_type = vpx_read_tree( r, vp10_ext_tx_intra_tree[eset], cm->fc->intra_ext_tx_prob[eset][mbmi->tx_size][mbmi->mode]); if (counts) ++counts->intra_ext_tx[eset][mbmi->tx_size][mbmi->mode] [mbmi->tx_type]; } } else { mbmi->tx_type = DCT_DCT; } #else if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { FRAME_COUNTS *counts = xd->counts; TX_TYPE tx_type_nom = intra_mode_to_tx_type_context[mbmi->mode]; mbmi->tx_type = vpx_read_tree( r, vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[mbmi->tx_size][tx_type_nom]); if (counts) ++counts->intra_ext_tx[mbmi->tx_size][tx_type_nom][mbmi->tx_type]; } else { mbmi->tx_type = DCT_DCT; } #endif // CONFIG_EXT_TX } #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; if (bsize >= BLOCK_8X8) read_ext_intra_mode_info(cm, xd, r); #endif // CONFIG_EXT_INTRA } static int read_mv_component(vpx_reader *r, const nmv_component *mvcomp, int usehp) { int mag, d, fr, hp; const int sign = vpx_read(r, mvcomp->sign); const int mv_class = vpx_read_tree(r, vp10_mv_class_tree, mvcomp->classes); const int class0 = mv_class == MV_CLASS_0; // Integer part if (class0) { d = vpx_read_tree(r, vp10_mv_class0_tree, mvcomp->class0); mag = 0; } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vpx_read(r, mvcomp->bits[i]) << i; mag = CLASS0_SIZE << (mv_class + 2); } // Fractional part fr = vpx_read_tree(r, vp10_mv_fp_tree, class0 ? mvcomp->class0_fp[d] : mvcomp->fp); // High precision part (if hp is not used, the default value of the hp is 1) hp = usehp ? vpx_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp) : 1; // Result mag += ((d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static INLINE void read_mv(vpx_reader *r, MV *mv, const MV *ref, const nmv_context *ctx, nmv_context_counts *counts, int allow_hp) { const MV_JOINT_TYPE joint_type = (MV_JOINT_TYPE)vpx_read_tree(r, vp10_mv_joint_tree, ctx->joints); const int use_hp = allow_hp && vp10_use_mv_hp(ref); MV diff = {0, 0}; if (mv_joint_vertical(joint_type)) diff.row = read_mv_component(r, &ctx->comps[0], use_hp); if (mv_joint_horizontal(joint_type)) diff.col = read_mv_component(r, &ctx->comps[1], use_hp); vp10_inc_mv(&diff, counts, use_hp); mv->row = ref->row + diff.row; mv->col = ref->col + diff.col; } static REFERENCE_MODE read_block_reference_mode(VP10_COMMON *cm, const MACROBLOCKD *xd, vpx_reader *r) { if (cm->reference_mode == REFERENCE_MODE_SELECT) { const int ctx = vp10_get_reference_mode_context(cm, xd); const REFERENCE_MODE mode = (REFERENCE_MODE)vpx_read(r, cm->fc->comp_inter_prob[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->comp_inter[ctx][mode]; return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE } else { return cm->reference_mode; } } // Read the referncence frame static void read_ref_frames(VP10_COMMON *const cm, MACROBLOCKD *const xd, vpx_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { FRAME_CONTEXT *const fc = cm->fc; FRAME_COUNTS *counts = xd->counts; if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE; } else { const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r); // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding if (mode == COMPOUND_REFERENCE) { const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int ctx = vp10_get_pred_context_comp_ref_p(cm, xd); const int bit = vpx_read(r, fc->comp_ref_prob[ctx][0]); if (counts) ++counts->comp_ref[ctx][0][bit]; ref_frame[idx] = cm->comp_fixed_ref; #if CONFIG_EXT_REFS if (!bit) { const int ctx1 = vp10_get_pred_context_comp_ref_p1(cm, xd); const int bit1 = vpx_read(r, fc->comp_ref_prob[ctx1][1]); if (counts) ++counts->comp_ref[ctx1][1][bit1]; ref_frame[!idx] = cm->comp_var_ref[bit1 ? 0 : 1]; } else { const int ctx2 = vp10_get_pred_context_comp_ref_p2(cm, xd); const int bit2 = vpx_read(r, fc->comp_ref_prob[ctx2][2]); if (counts) ++counts->comp_ref[ctx2][2][bit2]; if (!bit2) { const int ctx3 = vp10_get_pred_context_comp_ref_p3(cm, xd); const int bit3 = vpx_read(r, fc->comp_ref_prob[ctx3][3]); if (counts) ++counts->comp_ref[ctx3][3][bit3]; ref_frame[!idx] = cm->comp_var_ref[bit3 ? 2 : 3]; } else { ref_frame[!idx] = cm->comp_var_ref[4]; } } #else ref_frame[!idx] = cm->comp_var_ref[bit]; #endif // CONFIG_EXT_REFS } else if (mode == SINGLE_REFERENCE) { #if CONFIG_EXT_REFS const int ctx0 = vp10_get_pred_context_single_ref_p1(xd); const int bit0 = vpx_read(r, fc->single_ref_prob[ctx0][0]); if (counts) ++counts->single_ref[ctx0][0][bit0]; if (bit0) { const int ctx1 = vp10_get_pred_context_single_ref_p2(xd); const int bit1 = vpx_read(r, fc->single_ref_prob[ctx1][1]); if (counts) ++counts->single_ref[ctx1][1][bit1]; ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME; } else { const int ctx2 = vp10_get_pred_context_single_ref_p3(xd); const int bit2 = vpx_read(r, fc->single_ref_prob[ctx2][2]); if (counts) ++counts->single_ref[ctx2][2][bit2]; if (bit2) { const int ctx4 = vp10_get_pred_context_single_ref_p5(xd); const int bit4 = vpx_read(r, fc->single_ref_prob[ctx4][4]); if (counts) ++counts->single_ref[ctx4][4][bit4]; ref_frame[0] = bit4 ? LAST4_FRAME : LAST3_FRAME; } else { const int ctx3 = vp10_get_pred_context_single_ref_p4(xd); const int bit3 = vpx_read(r, fc->single_ref_prob[ctx3][3]); if (counts) ++counts->single_ref[ctx3][3][bit3]; ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME; } } #else const int ctx0 = vp10_get_pred_context_single_ref_p1(xd); const int bit0 = vpx_read(r, fc->single_ref_prob[ctx0][0]); if (counts) ++counts->single_ref[ctx0][0][bit0]; if (bit0) { const int ctx1 = vp10_get_pred_context_single_ref_p2(xd); const int bit1 = vpx_read(r, fc->single_ref_prob[ctx1][1]); if (counts) ++counts->single_ref[ctx1][1][bit1]; ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME; } else { ref_frame[0] = LAST_FRAME; } #endif // CONFIG_EXT_REFS ref_frame[1] = NONE; } else { assert(0 && "Invalid prediction mode."); } } } #if CONFIG_OBMC static int read_is_obmc_block(VP10_COMMON *const cm, MACROBLOCKD *const xd, vpx_reader *r) { BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; FRAME_COUNTS *counts = xd->counts; int is_obmc; if (is_obmc_allowed(&xd->mi[0]->mbmi)) { is_obmc = vpx_read(r, cm->fc->obmc_prob[bsize]); if (counts) ++counts->obmc[bsize][is_obmc]; return is_obmc; } else { return 0; } } #endif // CONFIG_OBMC static INLINE INTERP_FILTER read_switchable_interp_filter( VP10_COMMON *const cm, MACROBLOCKD *const xd, vpx_reader *r) { const int ctx = vp10_get_pred_context_switchable_interp(xd); FRAME_COUNTS *counts = xd->counts; INTERP_FILTER type; #if CONFIG_EXT_INTERP if (!vp10_is_interp_needed(xd)) return EIGHTTAP_REGULAR; #endif type = (INTERP_FILTER)vpx_read_tree(r, vp10_switchable_interp_tree, cm->fc->switchable_interp_prob[ctx]); if (counts) ++counts->switchable_interp[ctx][type]; return type; } static void read_intra_block_mode_info(VP10_COMMON *const cm, MACROBLOCKD *const xd, MODE_INFO *mi, vpx_reader *r) { MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mi->mbmi.sb_type; int i; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode_y(cm, xd, r, 0); mbmi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, xd, r, 0); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode_y(cm, xd, r, 0); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, xd, r, 0); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode_y(cm, xd, r, 0); break; default: mbmi->mode = read_intra_mode_y(cm, xd, r, size_group_lookup[bsize]); #if CONFIG_EXT_INTRA mbmi->angle_delta[0] = 0; if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) { int p_angle; mbmi->angle_delta[0] = read_uniform(r, 2 * MAX_ANGLE_DELTAS + 1) - MAX_ANGLE_DELTAS; p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (pick_intra_filter(p_angle)) { FRAME_COUNTS *counts = xd->counts; const int ctx = vp10_get_pred_context_intra_interp(xd); mbmi->intra_filter = vpx_read_tree(r, vp10_intra_filter_tree, cm->fc->intra_filter_probs[ctx]); if (counts) ++counts->intra_filter[ctx][mbmi->intra_filter]; } else { mbmi->intra_filter = INTRA_FILTER_LINEAR; } } #endif // CONFIG_EXT_INTRA } mbmi->uv_mode = read_intra_mode_uv(cm, xd, r, mbmi->mode); #if CONFIG_EXT_INTRA if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED && bsize >= BLOCK_8X8) mbmi->angle_delta[1] = read_uniform(r, 2 * MAX_ANGLE_DELTAS + 1) - MAX_ANGLE_DELTAS; #endif // CONFIG_EXT_INTRA mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools) read_palette_mode_info(cm, xd, r); #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; if (bsize >= BLOCK_8X8) read_ext_intra_mode_info(cm, xd, r); #endif // CONFIG_EXT_INTRA } static INLINE int is_mv_valid(const MV *mv) { return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW && mv->col < MV_UPP; } static INLINE int assign_mv(VP10_COMMON *cm, MACROBLOCKD *xd, PREDICTION_MODE mode, #if CONFIG_REF_MV int block, #endif int_mv mv[2], int_mv ref_mv[2], int_mv nearest_mv[2], int_mv near_mv[2], int is_compound, int allow_hp, vpx_reader *r) { int i; int ret = 1; #if CONFIG_REF_MV MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; BLOCK_SIZE bsize = mbmi->sb_type; int_mv *pred_mv = (bsize >= BLOCK_8X8) ? mbmi->pred_mv : xd->mi[0]->bmi[block].pred_mv; #endif switch (mode) { #if CONFIG_EXT_INTER case NEWFROMNEARMV: #endif // CONFIG_EXT_INTER case NEWMV: { FRAME_COUNTS *counts = xd->counts; #if !CONFIG_REF_MV nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; #endif for (i = 0; i < 1 + is_compound; ++i) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(xd->ref_mv_count[mbmi->ref_frame[i]], xd->ref_mv_stack[mbmi->ref_frame[i]]); nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc[nmv_ctx], mv_counts, allow_hp); #else read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc, mv_counts, allow_hp); #endif ret = ret && is_mv_valid(&mv[i].as_mv); #if CONFIG_REF_MV pred_mv[i].as_int = ref_mv[i].as_int; #endif } break; } case NEARESTMV: { mv[0].as_int = nearest_mv[0].as_int; if (is_compound) mv[1].as_int = nearest_mv[1].as_int; #if CONFIG_REF_MV pred_mv[0].as_int = nearest_mv[0].as_int; if (is_compound) pred_mv[1].as_int = nearest_mv[1].as_int; #endif break; } case NEARMV: { mv[0].as_int = near_mv[0].as_int; if (is_compound) mv[1].as_int = near_mv[1].as_int; #if CONFIG_REF_MV pred_mv[0].as_int = near_mv[0].as_int; if (is_compound) pred_mv[1].as_int = near_mv[1].as_int; #endif break; } case ZEROMV: { mv[0].as_int = 0; if (is_compound) mv[1].as_int = 0; #if CONFIG_REF_MV pred_mv[0].as_int = 0; if (is_compound) pred_mv[1].as_int = 0; #endif break; } #if CONFIG_EXT_INTER case NEW_NEWMV: { FRAME_COUNTS *counts = xd->counts; #if !CONFIG_REF_MV nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; #endif assert(is_compound); for (i = 0; i < 2; ++i) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(xd->ref_mv_count[mbmi->ref_frame[i]], xd->ref_mv_stack[mbmi->ref_frame[i]]); nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc[nmv_ctx], mv_counts, allow_hp); #else read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc, mv_counts, allow_hp); #endif ret = ret && is_mv_valid(&mv[i].as_mv); } break; } case NEAREST_NEARESTMV: { assert(is_compound); mv[0].as_int = nearest_mv[0].as_int; mv[1].as_int = nearest_mv[1].as_int; break; } case NEAREST_NEARMV: { assert(is_compound); mv[0].as_int = nearest_mv[0].as_int; mv[1].as_int = near_mv[1].as_int; break; } case NEAR_NEARESTMV: { assert(is_compound); mv[0].as_int = near_mv[0].as_int; mv[1].as_int = nearest_mv[1].as_int; break; } case NEW_NEARESTMV: { FRAME_COUNTS *counts = xd->counts; #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(xd->ref_mv_count[mbmi->ref_frame[0]], xd->ref_mv_stack[mbmi->ref_frame[0]]); nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc[nmv_ctx], mv_counts, allow_hp); #else nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc, mv_counts, allow_hp); #endif assert(is_compound); ret = ret && is_mv_valid(&mv[0].as_mv); mv[1].as_int = nearest_mv[1].as_int; break; } case NEAREST_NEWMV: { FRAME_COUNTS *counts = xd->counts; #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(xd->ref_mv_count[mbmi->ref_frame[1]], xd->ref_mv_stack[mbmi->ref_frame[1]]); nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; mv[0].as_int = nearest_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc[nmv_ctx], mv_counts, allow_hp); #else nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; mv[0].as_int = nearest_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc, mv_counts, allow_hp); #endif assert(is_compound); ret = ret && is_mv_valid(&mv[1].as_mv); break; } case NEAR_NEWMV: { FRAME_COUNTS *counts = xd->counts; #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(xd->ref_mv_count[mbmi->ref_frame[1]], xd->ref_mv_stack[mbmi->ref_frame[1]]); nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; mv[0].as_int = near_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc[nmv_ctx], mv_counts, allow_hp); #else nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; mv[0].as_int = near_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc, mv_counts, allow_hp); #endif assert(is_compound); ret = ret && is_mv_valid(&mv[1].as_mv); break; } case NEW_NEARMV: { FRAME_COUNTS *counts = xd->counts; #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(xd->ref_mv_count[mbmi->ref_frame[0]], xd->ref_mv_stack[mbmi->ref_frame[0]]); nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc[nmv_ctx], mv_counts, allow_hp); #else nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc, mv_counts, allow_hp); #endif assert(is_compound); ret = ret && is_mv_valid(&mv[0].as_mv); mv[1].as_int = near_mv[1].as_int; break; } case ZERO_ZEROMV: { assert(is_compound); mv[0].as_int = 0; mv[1].as_int = 0; break; } #endif // CONFIG_EXT_INTER default: { return 0; } } return ret; } static int read_is_inter_block(VP10_COMMON *const cm, MACROBLOCKD *const xd, int segment_id, vpx_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { return get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; } else { const int ctx = vp10_get_intra_inter_context(xd); const int is_inter = vpx_read(r, cm->fc->intra_inter_prob[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->intra_inter[ctx][is_inter]; return is_inter; } } static void fpm_sync(void *const data, int mi_row) { VP10Decoder *const pbi = (VP10Decoder *)data; vp10_frameworker_wait(pbi->frame_worker_owner, pbi->common.prev_frame, mi_row << MI_BLOCK_SIZE_LOG2); } static void read_inter_block_mode_info(VP10Decoder *const pbi, MACROBLOCKD *const xd, MODE_INFO *const mi, #if (CONFIG_OBMC || CONFIG_EXT_INTER) && CONFIG_SUPERTX int mi_row, int mi_col, vpx_reader *r, int supertx_enabled) { #else int mi_row, int mi_col, vpx_reader *r) { #endif // CONFIG_OBMC && CONFIG_SUPERTX VP10_COMMON *const cm = &pbi->common; MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; const int allow_hp = cm->allow_high_precision_mv; int_mv nearestmv[2], nearmv[2]; int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES]; #if CONFIG_EXT_INTER int mv_idx; #endif // CONFIG_EXT_INTER int ref, is_compound; int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES]; #if CONFIG_REF_MV && CONFIG_EXT_INTER int16_t compound_inter_mode_ctx[MODE_CTX_REF_FRAMES]; #endif // CONFIG_REF_MV && CONFIG_EXT_INTER int16_t mode_ctx = 0; MV_REFERENCE_FRAME ref_frame; mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame); is_compound = has_second_ref(mbmi); for (ref = 0; ref < 1 + is_compound; ++ref) { MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!vp10_is_valid_scale(&ref_buf->sf))) vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); vp10_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf); } for (ref_frame = LAST_FRAME; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { vp10_find_mv_refs(cm, xd, mi, ref_frame, #if CONFIG_REF_MV &xd->ref_mv_count[ref_frame], xd->ref_mv_stack[ref_frame], #if CONFIG_EXT_INTER compound_inter_mode_ctx, #endif // CONFIG_EXT_INTER #endif ref_mvs[ref_frame], mi_row, mi_col, fpm_sync, (void *)pbi, inter_mode_ctx); } #if CONFIG_OBMC mbmi->obmc = 0; #if CONFIG_SUPERTX if (!supertx_enabled) #endif // CONFIG_SUPERTX mbmi->obmc = read_is_obmc_block(cm, xd, r); #endif // CONFIG_OBMC #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (is_compound) mode_ctx = compound_inter_mode_ctx[mbmi->ref_frame[0]]; else #endif // CONFIG_EXT_INTER mode_ctx = vp10_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame, bsize, -1); mbmi->ref_mv_idx = 0; #else mode_ctx = inter_mode_ctx[mbmi->ref_frame[0]]; #endif if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { mbmi->mode = ZEROMV; if (bsize < BLOCK_8X8) { vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Invalid usage of segement feature on small blocks"); return; } } else { if (bsize >= BLOCK_8X8) { #if CONFIG_EXT_INTER if (is_compound) mbmi->mode = read_inter_compound_mode(cm, xd, r, mode_ctx); else #endif // CONFIG_EXT_INTER mbmi->mode = read_inter_mode(cm, xd, #if CONFIG_REF_MV && CONFIG_EXT_INTER mbmi, #endif // CONFIG_REF_MV && CONFIG_EXT_INTER r, mode_ctx); #if CONFIG_REF_MV if (mbmi->mode == NEARMV) read_drl_idx(cm, xd, mbmi, r); #endif } } #if CONFIG_EXT_INTER if (bsize < BLOCK_8X8 || (mbmi->mode != ZEROMV && mbmi->mode != ZERO_ZEROMV)) { #else if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) { #endif // CONFIG_EXT_INTER for (ref = 0; ref < 1 + is_compound; ++ref) { vp10_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[ref]], &nearestmv[ref], &nearmv[ref]); } } #if CONFIG_REF_MV if (mbmi->ref_mv_idx > 0) { int_mv cur_mv = xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv; lower_mv_precision(&cur_mv.as_mv, cm->allow_high_precision_mv); nearmv[0] = cur_mv; } #if CONFIG_EXT_INTER if (is_compound && bsize >= BLOCK_8X8 && mbmi->mode != ZERO_ZEROMV) { #else if (is_compound && bsize >= BLOCK_8X8 && mbmi->mode != NEWMV && mbmi->mode != ZEROMV) { #endif // CONFIG_EXT_INTER uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame); #if CONFIG_EXT_INTER if (xd->ref_mv_count[ref_frame_type] > 0) { #else if (xd->ref_mv_count[ref_frame_type] == 1 && mbmi->mode == NEARESTMV) { #endif // CONFIG_EXT_INTER int i; #if CONFIG_EXT_INTER if (mbmi->mode == NEAREST_NEARESTMV) { #endif // CONFIG_EXT_INTER nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv; nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv; for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) lower_mv_precision(&nearestmv[i].as_mv, allow_hp); #if CONFIG_EXT_INTER } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAREST_NEARMV) { nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv; lower_mv_precision(&nearestmv[0].as_mv, allow_hp); } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEAR_NEARESTMV) { nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv; lower_mv_precision(&nearestmv[1].as_mv, allow_hp); } #endif // CONFIG_EXT_INTER } #if CONFIG_EXT_INTER if (xd->ref_mv_count[ref_frame_type] > 1) { if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEAR_NEARESTMV) { nearmv[0] = xd->ref_mv_stack[ref_frame_type][1].this_mv; lower_mv_precision(&nearmv[0].as_mv, allow_hp); } if (mbmi->mode == NEW_NEARMV || mbmi->mode == NEAREST_NEARMV) { nearmv[1] = xd->ref_mv_stack[ref_frame_type][1].comp_mv; lower_mv_precision(&nearmv[1].as_mv, allow_hp); } } #else if (xd->ref_mv_count[ref_frame_type] > 1) { int i; int ref_mv_idx = 1 + mbmi->ref_mv_idx; nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv; nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv; nearmv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; nearmv[1] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { lower_mv_precision(&nearestmv[i].as_mv, allow_hp); lower_mv_precision(&nearmv[i].as_mv, allow_hp); } } #endif // CONFIG_EXT_INTER } #endif #if !CONFIG_EXT_INTERP mbmi->interp_filter = (cm->interp_filter == SWITCHABLE) ? read_switchable_interp_filter(cm, xd, r) : cm->interp_filter; #endif // !CONFIG_EXT_INTERP if (bsize < BLOCK_8X8) { const int num_4x4_w = 1 << xd->bmode_blocks_wl; const int num_4x4_h = 1 << xd->bmode_blocks_hl; int idx, idy; PREDICTION_MODE b_mode; int_mv nearest_sub8x8[2], near_sub8x8[2]; #if CONFIG_EXT_INTER int_mv ref_mv[2][2]; #endif // CONFIG_EXT_INTER for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { int_mv block[2]; const int j = idy * 2 + idx; #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (!is_compound) #endif // CONFIG_EXT_INTER mode_ctx = vp10_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame, bsize, j); #endif #if CONFIG_EXT_INTER if (is_compound) b_mode = read_inter_compound_mode(cm, xd, r, mode_ctx); else #endif // CONFIG_EXT_INTER b_mode = read_inter_mode(cm, xd, #if CONFIG_REF_MV && CONFIG_EXT_INTER mbmi, #endif // CONFIG_REF_MV && CONFIG_EXT_INTER r, mode_ctx); #if CONFIG_EXT_INTER mv_idx = (b_mode == NEWFROMNEARMV) ? 1 : 0; if (b_mode != ZEROMV && b_mode != ZERO_ZEROMV) { #else if (b_mode == NEARESTMV || b_mode == NEARMV) { #endif // CONFIG_EXT_INTER for (ref = 0; ref < 1 + is_compound; ++ref) #if CONFIG_EXT_INTER { int_mv mv_ref_list[MAX_MV_REF_CANDIDATES]; vp10_update_mv_context(cm, xd, mi, mbmi->ref_frame[ref], mv_ref_list, j, mi_row, mi_col, NULL); #endif // CONFIG_EXT_INTER vp10_append_sub8x8_mvs_for_idx(cm, xd, j, ref, mi_row, mi_col, #if CONFIG_EXT_INTER mv_ref_list, #endif // CONFIG_EXT_INTER &nearest_sub8x8[ref], &near_sub8x8[ref]); #if CONFIG_EXT_INTER if (have_newmv_in_inter_mode(b_mode)) { mv_ref_list[0].as_int = nearest_sub8x8[ref].as_int; mv_ref_list[1].as_int = near_sub8x8[ref].as_int; vp10_find_best_ref_mvs(allow_hp, mv_ref_list, &ref_mv[0][ref], &ref_mv[1][ref]); } } #endif // CONFIG_EXT_INTER } if (!assign_mv(cm, xd, b_mode, #if CONFIG_REF_MV j, #endif block, #if CONFIG_EXT_INTER ref_mv[mv_idx], #else nearestmv, #endif // CONFIG_EXT_INTER nearest_sub8x8, near_sub8x8, is_compound, allow_hp, r)) { xd->corrupted |= 1; break; }; mi->bmi[j].as_mv[0].as_int = block[0].as_int; if (is_compound) mi->bmi[j].as_mv[1].as_int = block[1].as_int; if (num_4x4_h == 2) mi->bmi[j + 2] = mi->bmi[j]; if (num_4x4_w == 2) mi->bmi[j + 1] = mi->bmi[j]; } } #if CONFIG_REF_MV mbmi->pred_mv[0].as_int = mi->bmi[3].pred_mv[0].as_int; mbmi->pred_mv[1].as_int = mi->bmi[3].pred_mv[1].as_int; #endif mi->mbmi.mode = b_mode; mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } else { xd->corrupted |= !assign_mv(cm, xd, mbmi->mode, #if CONFIG_REF_MV 0, #endif mbmi->mv, #if CONFIG_EXT_INTER mbmi->mode == NEWFROMNEARMV ? nearmv : nearestmv, #else nearestmv, #endif // CONFIG_EXT_INTER nearestmv, nearmv, is_compound, allow_hp, r); } #if CONFIG_EXT_INTER mbmi->use_wedge_interintra = 0; mbmi->use_wedge_interinter = 0; if (cm->reference_mode != COMPOUND_REFERENCE && #if CONFIG_OBMC !(is_obmc_allowed(mbmi) && mbmi->obmc) && #endif // CONFIG_OBMC #if CONFIG_SUPERTX !supertx_enabled && #endif is_interintra_allowed(mbmi)) { const int interintra = vpx_read(r, cm->fc->interintra_prob[bsize]); if (xd->counts) xd->counts->interintra[bsize][interintra]++; assert(mbmi->ref_frame[1] == NONE); if (interintra) { const PREDICTION_MODE interintra_mode = read_intra_mode_y(cm, xd, r, size_group_lookup[bsize]); mbmi->ref_frame[1] = INTRA_FRAME; mbmi->interintra_mode = interintra_mode; mbmi->interintra_uv_mode = interintra_mode; #if CONFIG_EXT_INTRA mbmi->ext_intra_mode_info.use_ext_intra_mode[0] = 0; mbmi->ext_intra_mode_info.use_ext_intra_mode[1] = 0; mbmi->angle_delta[0] = 0; mbmi->angle_delta[1] = 0; mbmi->intra_filter = INTRA_FILTER_LINEAR; #endif // CONFIG_EXT_INTRA if (get_wedge_bits(bsize)) { mbmi->use_wedge_interintra = vpx_read(r, cm->fc->wedge_interintra_prob[bsize]); if (xd->counts) xd->counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; if (mbmi->use_wedge_interintra) { mbmi->interintra_wedge_index = mbmi->interintra_uv_wedge_index = vpx_read_literal(r, get_wedge_bits(bsize)); } } } } if (cm->reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) && #if CONFIG_OBMC !(is_obmc_allowed(mbmi) && mbmi->obmc) && #endif // CONFIG_OBMC get_wedge_bits(bsize)) { mbmi->use_wedge_interinter = vpx_read(r, cm->fc->wedge_interinter_prob[bsize]); if (xd->counts) xd->counts->wedge_interinter[bsize][mbmi->use_wedge_interinter]++; if (mbmi->use_wedge_interinter) { mbmi->interinter_wedge_index = vpx_read_literal(r, get_wedge_bits(bsize)); } } #endif // CONFIG_EXT_INTER #if CONFIG_EXT_INTERP mbmi->interp_filter = (cm->interp_filter == SWITCHABLE) ? read_switchable_interp_filter(cm, xd, r) : cm->interp_filter; #endif // CONFIG_EXT_INTERP } static void read_inter_frame_mode_info(VP10Decoder *const pbi, MACROBLOCKD *const xd, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX int mi_row, int mi_col, vpx_reader *r) { VP10_COMMON *const cm = &pbi->common; MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; int inter_block = 1; #if CONFIG_VAR_TX BLOCK_SIZE bsize = mbmi->sb_type; #endif // CONFIG_VAR_TX mbmi->mv[0].as_int = 0; mbmi->mv[1].as_int = 0; mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r); #if CONFIG_SUPERTX if (!supertx_enabled) { #endif // CONFIG_SUPERTX mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r); #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MI_MASK); if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && !mbmi->skip && inter_block) { const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bs = num_4x4_blocks_wide_lookup[txb_size]; const int width = num_4x4_blocks_wide_lookup[bsize]; const int height = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < height; idy += bs) for (idx = 0; idx < width; idx += bs) read_tx_size_inter(cm, xd, mbmi, xd->counts, max_tx_size, idy, idx, r); if (xd->counts) { const int ctx = get_tx_size_context(xd); ++xd->counts->tx_size[max_tx_size - TX_8X8][ctx][mbmi->tx_size]; } } else { mbmi->tx_size = read_tx_size(cm, xd, !mbmi->skip || !inter_block, r); if (inter_block) { const int width = num_4x4_blocks_wide_lookup[bsize]; const int height = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < height; ++idy) for (idx = 0; idx < width; ++idx) mbmi->inter_tx_size[(idy >> 1) * 8 + (idx >> 1)] = mbmi->tx_size; } set_txfm_ctx(xd->left_txfm_context, mbmi->tx_size, xd->n8_h); set_txfm_ctx(xd->above_txfm_context, mbmi->tx_size, xd->n8_w); } #else mbmi->tx_size = read_tx_size(cm, xd, !mbmi->skip || !inter_block, r); #endif // CONFIG_VAR_TX #if CONFIG_SUPERTX } #if CONFIG_VAR_TX else if (inter_block) { const int width = num_4x4_blocks_wide_lookup[bsize]; const int height = num_4x4_blocks_high_lookup[bsize]; int idx, idy; xd->mi[0]->mbmi.tx_size = xd->supertx_size; for (idy = 0; idy < height; ++idy) for (idx = 0; idx < width; ++idx) xd->mi[0]->mbmi.inter_tx_size[(idy >> 1) * 8 + (idx >> 1)] = xd->supertx_size; } #endif // CONFIG_VAR_TX #endif // CONFIG_SUPERTX if (inter_block) read_inter_block_mode_info(pbi, xd, #if (CONFIG_OBMC || CONFIG_EXT_INTER) && CONFIG_SUPERTX mi, mi_row, mi_col, r, supertx_enabled); #else mi, mi_row, mi_col, r); #endif // CONFIG_OBMC && CONFIG_SUPERTX else read_intra_block_mode_info(cm, xd, mi, r); if (!FIXED_TX_TYPE) { #if CONFIG_EXT_TX if (get_ext_tx_types(mbmi->tx_size, mbmi->sb_type, inter_block) > 1 && cm->base_qindex > 0 && !mbmi->skip && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { int eset = get_ext_tx_set(mbmi->tx_size, mbmi->sb_type, inter_block); FRAME_COUNTS *counts = xd->counts; if (inter_block) { if (eset > 0) { mbmi->tx_type = vpx_read_tree(r, vp10_ext_tx_inter_tree[eset], cm->fc->inter_ext_tx_prob[eset][mbmi->tx_size]); if (counts) ++counts->inter_ext_tx[eset][mbmi->tx_size][mbmi->tx_type]; } } else if (ALLOW_INTRA_EXT_TX) { if (eset > 0) { mbmi->tx_type = vpx_read_tree(r, vp10_ext_tx_intra_tree[eset], cm->fc->intra_ext_tx_prob[eset] [mbmi->tx_size][mbmi->mode]); if (counts) ++counts->intra_ext_tx[eset][mbmi->tx_size] [mbmi->mode][mbmi->tx_type]; } } } else { mbmi->tx_type = DCT_DCT; } #else if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { FRAME_COUNTS *counts = xd->counts; if (inter_block) { mbmi->tx_type = vpx_read_tree( r, vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[mbmi->tx_size]); if (counts) ++counts->inter_ext_tx[mbmi->tx_size][mbmi->tx_type]; } else { const TX_TYPE tx_type_nom = intra_mode_to_tx_type_context[mbmi->mode]; mbmi->tx_type = vpx_read_tree( r, vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[mbmi->tx_size][tx_type_nom]); if (counts) ++counts->intra_ext_tx[mbmi->tx_size][tx_type_nom][mbmi->tx_type]; } } else { mbmi->tx_type = DCT_DCT; } #endif // CONFIG_EXT_TX } } void vp10_read_mode_info(VP10Decoder *const pbi, MACROBLOCKD *xd, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX int mi_row, int mi_col, vpx_reader *r, int x_mis, int y_mis) { VP10_COMMON *const cm = &pbi->common; MODE_INFO *const mi = xd->mi[0]; MV_REF* frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; int w, h; if (frame_is_intra_only(cm)) { read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r); #if CONFIG_REF_MV for (h = 0; h < y_mis; ++h) { MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; for (w = 0; w < x_mis; ++w) { MV_REF *const mv = frame_mv + w; mv->ref_frame[0] = NONE; mv->ref_frame[1] = NONE; } } #endif } else { read_inter_frame_mode_info(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r); for (h = 0; h < y_mis; ++h) { MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; for (w = 0; w < x_mis; ++w) { MV_REF *const mv = frame_mv + w; mv->ref_frame[0] = mi->mbmi.ref_frame[0]; mv->ref_frame[1] = mi->mbmi.ref_frame[1]; mv->mv[0].as_int = mi->mbmi.mv[0].as_int; mv->mv[1].as_int = mi->mbmi.mv[1].as_int; } } } }