/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include // qsort() #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "./aom_scale_rtcd.h" #include "./av1_rtcd.h" #include "aom/aom_codec.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/bitreader.h" #include "aom_dsp/bitreader_buffer.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/mem_ops.h" #include "aom_scale/aom_scale.h" #include "aom_util/aom_thread.h" #include "av1/common/alloccommon.h" #if CONFIG_CLPF #include "av1/common/clpf.h" #endif #include "av1/common/common.h" #if CONFIG_DERING #include "av1/common/dering.h" #endif // CONFIG_DERING #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/idct.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/seg_common.h" #include "av1/common/thread_common.h" #include "av1/common/tile_common.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/decodemv.h" #include "av1/decoder/decoder.h" #include "av1/decoder/detokenize.h" #include "av1/decoder/dsubexp.h" #define MAX_AV1_HEADER_SIZE 80 static int is_compound_reference_allowed(const AV1_COMMON *cm) { int i; if (frame_is_intra_only(cm)) return 0; for (i = 1; i < REFS_PER_FRAME; ++i) if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; return 0; } static void setup_compound_reference_mode(AV1_COMMON *cm) { #if CONFIG_EXT_REFS cm->comp_fwd_ref[0] = LAST_FRAME; cm->comp_fwd_ref[1] = LAST2_FRAME; cm->comp_fwd_ref[2] = LAST3_FRAME; cm->comp_fwd_ref[3] = GOLDEN_FRAME; cm->comp_bwd_ref[0] = BWDREF_FRAME; cm->comp_bwd_ref[1] = ALTREF_FRAME; #else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } #endif // CONFIG_EXT_REFS } static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return len != 0 && len <= (size_t)(end - start); } static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) { const int data = aom_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } #if CONFIG_MISC_FIXES static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); } #else static TX_MODE read_tx_mode(aom_reader *r) { TX_MODE tx_mode = aom_read_literal(r, 2); if (tx_mode == ALLOW_32X32) tx_mode += aom_read_bit(r); return tx_mode; } #endif static void read_tx_mode_probs(struct tx_probs *tx_probs, aom_reader *r) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = TX_4X4; j < TX_SIZES - 3; ++j) av1_diff_update_prob(r, &tx_probs->p8x8[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = TX_4X4; j < TX_SIZES - 2; ++j) av1_diff_update_prob(r, &tx_probs->p16x16[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = TX_4X4; j < TX_SIZES - 1; ++j) av1_diff_update_prob(r, &tx_probs->p32x32[i][j]); } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) { for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); #if CONFIG_DAALA_EC av1_tree_to_cdf(av1_switchable_interp_tree, fc->switchable_interp_prob[j], fc->switchable_interp_cdf[j]); #endif } } static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i; #if CONFIG_REF_MV for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->newmv_prob[i]); for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->zeromv_prob[i]); for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->refmv_prob[i]); for (i = 0; i < DRL_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->drl_prob[i]); #else int j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) av1_diff_update_prob(r, &fc->inter_mode_probs[i][j]); #endif } #if CONFIG_MISC_FIXES static REFERENCE_MODE read_frame_reference_mode( const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { if (is_compound_reference_allowed(cm)) { return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE); } else { return SINGLE_REFERENCE; } } #else static REFERENCE_MODE read_frame_reference_mode(const AV1_COMMON *cm, aom_reader *r) { if (is_compound_reference_allowed(cm)) { return aom_read_bit(r) ? (aom_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE) : SINGLE_REFERENCE; } else { return SINGLE_REFERENCE; } } #endif static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) { FRAME_CONTEXT *const fc = cm->fc; int i, j; if (cm->reference_mode == REFERENCE_MODE_SELECT) for (i = 0; i < COMP_INTER_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->comp_inter_prob[i]); if (cm->reference_mode != COMPOUND_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) for (j = 0; j < (SINGLE_REFS - 1); ++j) av1_diff_update_prob(r, &fc->single_ref_prob[i][j]); if (cm->reference_mode != SINGLE_REFERENCE) #if CONFIG_EXT_REFS for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < (FWD_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_fwdref_prob[i][j]); for (j = 0; j < (BWD_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j]); } #else for (i = 0; i < REF_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->comp_ref_prob[i]); #endif // CONFIG_EXT_REFS } static void update_mv_probs(aom_prob *p, int n, aom_reader *r) { int i; for (i = 0; i < n; ++i) #if CONFIG_MISC_FIXES av1_diff_update_prob(r, &p[i]); #else if (aom_read(r, MV_UPDATE_PROB)) p[i] = (aom_read_literal(r, 7) << 1) | 1; #endif } static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) { int i, j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); update_mv_probs(comp_ctx->fp, 3, r); } if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane, const TX_SIZE tx_size, uint8_t *dst, int stride, int eob, int block) { struct macroblockd_plane *const pd = &xd->plane[plane]; TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block); const int seg_id = xd->mi[0]->mbmi.segment_id; if (eob > 0) { tran_low_t *const dqcoeff = pd->dqcoeff; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (tx_size) { case TX_4X4: av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, xd->bd, tx_type, xd->lossless[seg_id]); break; case TX_8X8: av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, xd->bd, tx_type); break; case TX_16X16: av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, xd->bd, tx_type); break; case TX_32X32: av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, xd->bd, tx_type); break; default: assert(0 && "Invalid transform size"); return; } } else { #endif // CONFIG_AOM_HIGHBITDEPTH switch (tx_size) { case TX_4X4: av1_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, tx_type, xd->lossless[seg_id]); break; case TX_8X8: av1_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, tx_type); break; case TX_16X16: av1_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, tx_type); break; case TX_32X32: av1_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, tx_type); break; default: assert(0 && "Invalid transform size"); return; } #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH if (eob == 1) { dqcoeff[0] = 0; } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) memset(dqcoeff, 0, 4 * tx_size_1d[tx_size] * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else memset(dqcoeff, 0, (1 << (tx_size_1d_log2[tx_size] * 2)) * sizeof(dqcoeff[0])); } } } static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane, const TX_TYPE tx_type, const TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; const int seg_id = xd->mi[0]->mbmi.segment_id; if (eob > 0) { tran_low_t *const dqcoeff = pd->dqcoeff; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (tx_size) { case TX_4X4: av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, xd->bd, tx_type, xd->lossless[seg_id]); break; case TX_8X8: av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, xd->bd, tx_type); break; case TX_16X16: av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, xd->bd, tx_type); break; case TX_32X32: av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, xd->bd, tx_type); break; default: assert(0 && "Invalid transform size"); return; } } else { #endif // CONFIG_AOM_HIGHBITDEPTH switch (tx_size) { case TX_4X4: av1_inv_txfm_add_4x4(dqcoeff, dst, stride, eob, tx_type, xd->lossless[seg_id]); break; case TX_8X8: av1_inv_txfm_add_8x8(dqcoeff, dst, stride, eob, tx_type); break; case TX_16X16: av1_inv_txfm_add_16x16(dqcoeff, dst, stride, eob, tx_type); break; case TX_32X32: av1_inv_txfm_add_32x32(dqcoeff, dst, stride, eob, tx_type); break; default: assert(0 && "Invalid transform size"); return; } #if CONFIG_AOM_HIGHBITDEPTH } #endif // CONFIG_AOM_HIGHBITDEPTH if (eob == 1) { dqcoeff[0] = 0; } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) memset(dqcoeff, 0, 4 * tx_size_1d[tx_size] * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else memset(dqcoeff, 0, (1 << (tx_size_1d_log2[tx_size] * 2)) * sizeof(dqcoeff[0])); } } } static void predict_and_reconstruct_intra_block(MACROBLOCKD *const xd, aom_reader *r, MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) { struct macroblockd_plane *const pd = &xd->plane[plane]; PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; uint8_t *dst; int block_idx = (row << 1) + col; dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; if (mbmi->sb_type < BLOCK_8X8) if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; av1_predict_intra_block(xd, pd->n4_wl, pd->n4_hl, tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride, col, row, plane); if (!mbmi->skip) { TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx); const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type); const int eob = av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size, r, mbmi->segment_id); inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst, pd->dst.stride, eob); } } static int reconstruct_inter_block(MACROBLOCKD *const xd, aom_reader *r, MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) { struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; int block_idx = (row << 1) + col; TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx); const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type); const int eob = av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size, r, mbmi->segment_id); inverse_transform_block_inter( xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col], pd->dst.stride, eob, block_idx); return eob; } static INLINE TX_SIZE dec_get_uv_tx_size(const MB_MODE_INFO *mbmi, int n4_wl, int n4_hl) { // get minimum log2 num4x4s dimension const int x = AOMMIN(n4_wl, n4_hl); return AOMMIN(mbmi->tx_size, x); } static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { struct macroblockd_plane *const pd = &xd->plane[i]; memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w); memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h); } } static MB_MODE_INFO *set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, int bh, int x_mis, int y_mis, int bwl, int bhl) { const int offset = mi_row * cm->mi_stride + mi_col; int x, y; const TileInfo *const tile = &xd->tile; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = &cm->mi[offset]; // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of // passing bsize from decode_partition(). xd->mi[0]->mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; set_plane_n4(xd, bw, bh, bwl, bhl); set_skip_context(xd, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); return &xd->mi[0]->mbmi; } static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r, BLOCK_SIZE bsize, int bwl, int bhl) { AV1_COMMON *const cm = &pbi->common; const int less8x8 = bsize < BLOCK_8X8; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, bhl); if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { const BLOCK_SIZE uv_subsize = ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; if (uv_subsize == BLOCK_INVALID) aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, "Invalid block size."); } av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); if (mbmi->skip) { dec_reset_skip_context(xd); } if (!is_inter_block(mbmi)) { int plane; #if CONFIG_PALETTE for (plane = 0; plane <= 1; ++plane) { if (mbmi->palette_mode_info.palette_size[plane]) av1_decode_palette_tokens(xd, plane, r); } #endif // CONFIG_PALETTE for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) : mbmi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = tx_size_1d_in_unit[tx_size]; int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) predict_and_reconstruct_intra_block(xd, r, mbmi, plane, row, col, tx_size); } } else { // Prediction av1_build_inter_predictors_sb(xd, mi_row, mi_col, AOMMAX(bsize, BLOCK_8X8)); #if CONFIG_MOTION_VAR if (mbmi->motion_mode == OBMC_CAUSAL) av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); #endif // CONFIG_MOTION_VAR // Reconstruction if (!mbmi->skip) { int eobtotal = 0; int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) : mbmi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = tx_size_1d_in_unit[tx_size]; int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) eobtotal += reconstruct_inter_block(xd, r, mbmi, plane, row, col, tx_size); } if (!less8x8 && eobtotal == 0) #if CONFIG_MISC_FIXES mbmi->has_no_coeffs = 1; // skip loopfilter #else mbmi->skip = 1; // skip loopfilter #endif } } xd->corrupted |= aom_reader_has_error(r); } static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, int mi_row, int mi_col, int bsl) { const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; // assert(bsl >= 0); return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } static INLINE void dec_update_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, int bw) { PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. memset(above_ctx, partition_context_lookup[subsize].above, bw); memset(left_ctx, partition_context_lookup[subsize].left, bw); } static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, aom_reader *r, int has_rows, int has_cols, int bsl) { const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl); const aom_prob *const probs = cm->fc->partition_prob[ctx]; FRAME_COUNTS *counts = xd->counts; PARTITION_TYPE p; if (has_rows && has_cols) #if CONFIG_DAALA_EC p = (PARTITION_TYPE)aom_read_symbol(r, cm->fc->partition_cdf[ctx], PARTITION_TYPES); #else p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs); #endif else if (!has_rows && has_cols) p = aom_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; else if (has_rows && !has_cols) p = aom_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; else p = PARTITION_SPLIT; if (counts) ++counts->partition[ctx][p]; return p; } // TODO(slavarnway): eliminate bsize and subsize in future commits static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r, BLOCK_SIZE bsize, int n4x4_l2) { AV1_COMMON *const cm = &pbi->common; const int n8x8_l2 = n4x4_l2 - 1; const int num_8x8_wh = 1 << n8x8_l2; const int hbs = num_8x8_wh >> 1; PARTITION_TYPE partition; BLOCK_SIZE subsize; const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = read_partition(cm, xd, mi_row, mi_col, r, has_rows, has_cols, n8x8_l2); subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); if (!hbs) { // calculate bmode block dimensions (log 2) xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); decode_block(pbi, xd, mi_row, mi_col, r, subsize, 1, 1); } else { switch (partition) { case PARTITION_NONE: decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n4x4_l2); break; case PARTITION_HORZ: decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n8x8_l2); if (has_rows) decode_block(pbi, xd, mi_row + hbs, mi_col, r, subsize, n4x4_l2, n8x8_l2); break; case PARTITION_VERT: decode_block(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2, n4x4_l2); if (has_cols) decode_block(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2, n4x4_l2); break; case PARTITION_SPLIT: decode_partition(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2); decode_partition(pbi, xd, mi_row + hbs, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2); break; default: assert(0 && "Invalid partition type"); } } // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh); #if CONFIG_DERING if (bsize == BLOCK_64X64) { if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = aom_read_literal(r, DERING_REFINEMENT_BITS); } else { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = 0; } } #endif } static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, size_t read_size, struct aom_internal_error_info *error_info, aom_reader *r, aom_decrypt_cb decrypt_cb, void *decrypt_state) { // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void read_coef_probs_common(av1_coeff_probs_model *coef_probs, aom_reader *r) { int i, j, k, l, m; if (aom_read_bit(r)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) for (m = 0; m < UNCONSTRAINED_NODES; ++m) av1_diff_update_prob(r, &coef_probs[i][j][k][l][m]); } static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = 0; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); #if CONFIG_RANS || CONFIG_DAALA_EC av1_coef_pareto_cdfs(fc); #endif // CONFIG_RANS } static void setup_segmentation(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { struct segmentation *const seg = &cm->seg; #if !CONFIG_MISC_FIXES struct segmentation_probs *const segp = &cm->segp; #endif int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = aom_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update if (frame_is_intra_only(cm) || cm->error_resilient_mode) { seg->update_map = 1; } else { seg->update_map = aom_rb_read_bit(rb); } if (seg->update_map) { #if !CONFIG_MISC_FIXES for (i = 0; i < SEG_TREE_PROBS; i++) { segp->tree_probs[i] = aom_rb_read_bit(rb) ? aom_rb_read_literal(rb, 8) : MAX_PROB; } #if CONFIG_DAALA_EC av1_tree_to_cdf(av1_segment_tree, segp->tree_probs, segp->tree_cdf); #endif #endif if (frame_is_intra_only(cm) || cm->error_resilient_mode) { seg->temporal_update = 0; } else { seg->temporal_update = aom_rb_read_bit(rb); } #if !CONFIG_MISC_FIXES if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) segp->pred_probs[i] = aom_rb_read_bit(rb) ? aom_rb_read_literal(rb, 8) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) segp->pred_probs[i] = MAX_PROB; } #endif } // Segmentation data update seg->update_data = aom_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = aom_rb_read_bit(rb); av1_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = aom_rb_read_bit(rb); if (feature_enabled) { av1_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, av1_seg_feature_data_max(j)); if (av1_is_segfeature_signed(j)) data = aom_rb_read_bit(rb) ? -data : data; } av1_set_segdata(seg, i, j, data); } } } } static void setup_loopfilter(struct loopfilter *lf, struct aom_read_bit_buffer *rb) { lf->filter_level = aom_rb_read_literal(rb, 6); lf->sharpness_level = aom_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = aom_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < MAX_REF_FRAMES; i++) if (aom_rb_read_bit(rb)) lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (aom_rb_read_bit(rb)) lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); } } } #if CONFIG_CLPF static void setup_clpf(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { cm->clpf_blocks = 0; cm->clpf_strength = aom_rb_read_literal(rb, 2); if (cm->clpf_strength) { cm->clpf_size = aom_rb_read_literal(rb, 2); if (cm->clpf_size) { int i; cm->clpf_numblocks = aom_rb_read_literal(rb, av1_clpf_maxbits(cm)); CHECK_MEM_ERROR(cm, cm->clpf_blocks, aom_malloc(cm->clpf_numblocks)); for (i = 0; i < cm->clpf_numblocks; i++) { cm->clpf_blocks[i] = aom_rb_read_literal(rb, 1); } } } } static int clpf_bit(UNUSED int k, UNUSED int l, UNUSED const YV12_BUFFER_CONFIG *rec, UNUSED const YV12_BUFFER_CONFIG *org, UNUSED const AV1_COMMON *cm, UNUSED int block_size, UNUSED int w, UNUSED int h, UNUSED unsigned int strength, UNUSED unsigned int fb_size_log2, uint8_t *bit) { return *bit; } #endif #if CONFIG_DERING static void setup_dering(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { cm->dering_level = aom_rb_read_literal(rb, DERING_LEVEL_BITS); } #endif // CONFIG_DERING static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, CONFIG_MISC_FIXES ? 6 : 4) : 0; } static void setup_quantization(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); cm->y_dc_delta_q = read_delta_q(rb); cm->uv_dc_delta_q = read_delta_q(rb); cm->uv_ac_delta_q = read_delta_q(rb); cm->dequant_bit_depth = cm->bit_depth; #if CONFIG_AOM_QM cm->using_qmatrix = aom_rb_read_bit(rb); if (cm->using_qmatrix) { cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); } else { cm->min_qmlevel = 0; cm->max_qmlevel = 0; } #endif } static void setup_segmentation_dequant(AV1_COMMON *const cm) { // Build y/uv dequant values based on segmentation. int i = 0; #if CONFIG_AOM_QM int lossless; int j = 0; int qmlevel; int using_qm = cm->using_qmatrix; int minqm = cm->min_qmlevel; int maxqm = cm->max_qmlevel; #endif if (cm->seg.enabled) { for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex); cm->y_dequant[i][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[i][0] = av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[i][1] = av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); #if CONFIG_AOM_QM lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; // NB: depends on base index so there is only 1 set per frame // No quant weighting when lossless or signalled not using QM qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); for (j = 0; j < TX_SIZES; ++j) { cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); } #endif } } else { const int qindex = cm->base_qindex; // When segmentation is disabled, only the first value is used. The // remaining are don't cares. cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[0][0] = av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[0][1] = av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); #if CONFIG_AOM_QM lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; // No quant weighting when lossless or signalled not using QM qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); for (j = 0; j < TX_SIZES; ++j) { cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); } #endif } } static InterpFilter read_interp_filter(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? SWITCHABLE : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); } static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { cm->render_width = cm->width; cm->render_height = cm->height; if (aom_rb_read_bit(rb)) av1_read_frame_size(rb, &cm->render_width, &cm->render_height); } static void resize_mv_buffer(AV1_COMMON *cm) { aom_free(cm->cur_frame->mvs); cm->cur_frame->mi_rows = cm->mi_rows; cm->cur_frame->mi_cols = cm->mi_cols; cm->cur_frame->mvs = (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cm->cur_frame->mvs)); } static void resize_context_buffers(AV1_COMMON *cm, int width, int height) { #if CONFIG_SIZE_LIMIT if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Dimensions of %dx%d beyond allowed size of %dx%d.", width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); #endif if (cm->width != width || cm->height != height) { const int new_mi_rows = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; const int new_mi_cols = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; // Allocations in av1_alloc_context_buffers() depend on individual // dimensions as well as the overall size. if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { if (av1_alloc_context_buffers(cm, width, height)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } else { av1_set_mb_mi(cm, width, height); } av1_init_context_buffers(cm); cm->width = width; cm->height = height; } if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || cm->mi_cols > cm->cur_frame->mi_cols) { resize_mv_buffer(cm); } } static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int width, height; BufferPool *const pool = cm->buffer_pool; av1_read_frame_size(rb, &width, &height); resize_context_buffers(cm, width, height); setup_render_size(cm, rb); lock_buffer_pool(pool); if (aom_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, int ref_xss, int ref_yss, aom_bit_depth_t this_bit_depth, int this_xss, int this_yss) { return ref_bit_depth == this_bit_depth && ref_xss == this_xss && ref_yss == this_yss; } static void setup_frame_size_with_refs(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int width, height; int found = 0, i; int has_valid_ref_frame = 0; BufferPool *const pool = cm->buffer_pool; for (i = 0; i < REFS_PER_FRAME; ++i) { if (aom_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; width = buf->y_crop_width; height = buf->y_crop_height; #if CONFIG_MISC_FIXES cm->render_width = buf->render_width; cm->render_height = buf->render_height; #endif found = 1; break; } } if (!found) { av1_read_frame_size(rb, &width, &height); #if CONFIG_MISC_FIXES setup_render_size(cm, rb); #endif } if (width <= 0 || height <= 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid frame size"); // Check to make sure at least one of frames that this frame references // has valid dimensions. for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width, ref_frame->buf->y_crop_height, width, height); } if (!has_valid_ref_frame) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Referenced frame has invalid size"); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth, ref_frame->buf->subsampling_x, ref_frame->buf->subsampling_y, cm->bit_depth, cm->subsampling_x, cm->subsampling_y)) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Referenced frame has incompatible color format"); } resize_context_buffers(cm, width, height); #if !CONFIG_MISC_FIXES setup_render_size(cm, rb); #endif lock_buffer_pool(pool); if (aom_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static void setup_tile_info(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int min_log2_tile_cols, max_log2_tile_cols, max_ones; av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns max_ones = max_log2_tile_cols - min_log2_tile_cols; cm->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++; if (cm->log2_tile_cols > 6) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid number of tile columns"); // rows cm->log2_tile_rows = aom_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb); #if CONFIG_MISC_FIXES // tile size magnitude if (cm->log2_tile_rows > 0 || cm->log2_tile_cols > 0) { cm->tile_sz_mag = aom_rb_read_literal(rb, 2); } #else cm->tile_sz_mag = 3; #endif } typedef struct TileBuffer { const uint8_t *data; size_t size; int col; // only used with multi-threaded decoding } TileBuffer; static int mem_get_varsize(const uint8_t *data, const int mag) { switch (mag) { case 0: return data[0]; case 1: return mem_get_le16(data); case 2: return mem_get_le24(data); case 3: return mem_get_le32(data); } assert("Invalid tile size marker value" && 0); return -1; } // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, const int tile_sz_mag, int is_last, struct aom_internal_error_info *error_info, const uint8_t **data, aom_decrypt_cb decrypt_cb, void *decrypt_state, TileBuffer *buf) { size_t size; if (!is_last) { if (!read_is_valid(*data, 4, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, tile_sz_mag + 1); size = mem_get_varsize(be_data, tile_sz_mag) + CONFIG_MISC_FIXES; } else { size = mem_get_varsize(*data, tile_sz_mag) + CONFIG_MISC_FIXES; } *data += tile_sz_mag + 1; if (size > (size_t)(data_end - *data)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); } else { size = data_end - *data; } buf->data = *data; buf->size = size; *data += size; } static void get_tile_buffers(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, int tile_cols, int tile_rows, TileBuffer (*tile_buffers)[1 << 6]) { int r, c; for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c) { const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); TileBuffer *const buf = &tile_buffers[r][c]; buf->col = c; get_tile_buffer(data_end, pbi->common.tile_sz_mag, is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); } } } static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { AV1_COMMON *const cm = &pbi->common; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; TileBuffer tile_buffers[4][1 << 6]; int tile_row, tile_col; int mi_row, mi_col; TileData *tile_data = NULL; if (cm->lf.filter_level && !cm->skip_loop_filter && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, aom_memalign(32, sizeof(LFWorkerData))); pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker; if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { aom_internal_error(&cm->error, AOM_CODEC_ERROR, "Loop filter thread creation failed"); } } if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; // Be sure to sync as we might be resuming after a failed frame decode. winterface->sync(&pbi->lf_worker); av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, pbi->mb.plane); } assert(tile_rows <= 4); assert(tile_cols <= (1 << 6)); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_cols); get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); if (pbi->tile_data == NULL || (tile_cols * tile_rows) != pbi->total_tiles) { aom_free(pbi->tile_data); CHECK_MEM_ERROR( cm, pbi->tile_data, aom_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data)))); pbi->total_tiles = tile_rows * tile_cols; } // Load all tile information into tile_data. for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; tile_data = pbi->tile_data + tile_cols * tile_row + tile_col; tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; tile_data->xd.counts = cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD ? &cm->counts : NULL; av1_zero(tile_data->dqcoeff); av1_tile_init(&tile_data->xd.tile, tile_data->cm, tile_row, tile_col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); av1_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); #if CONFIG_PALETTE tile_data->xd.plane[0].color_index_map = tile_data->color_index_map[0]; tile_data->xd.plane[1].color_index_map = tile_data->color_index_map[1]; #endif // CONFIG_PALETTE } } for (tile_row = 0; tile_row < tile_rows; ++tile_row) { TileInfo tile; av1_tile_set_row(&tile, cm, tile_row); for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; mi_row += MAX_MIB_SIZE) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const int col = pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col; tile_data = pbi->tile_data + tile_cols * tile_row + col; av1_tile_set_col(&tile, tile_data->cm, col); av1_zero(tile_data->xd.left_context); av1_zero(tile_data->xd.left_seg_context); for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; mi_col += MAX_MIB_SIZE) { decode_partition(pbi, &tile_data->xd, mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64, 4); } pbi->mb.corrupted |= tile_data->xd.corrupted; if (pbi->mb.corrupted) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Failed to decode tile data"); } // Loopfilter one row. if (cm->lf.filter_level && !cm->skip_loop_filter) { const int lf_start = mi_row - MAX_MIB_SIZE; LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; // delay the loopfilter by 1 macroblock row. if (lf_start < 0) continue; // decoding has completed: finish up the loop filter in this thread. if (mi_row + MAX_MIB_SIZE >= cm->mi_rows) continue; winterface->sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = mi_row; if (pbi->max_threads > 1) { winterface->launch(&pbi->lf_worker); } else { winterface->execute(&pbi->lf_worker); } } // After loopfiltering, the last 7 row pixels in each superblock row may // still be changed by the longest loopfilter of the next superblock // row. if (cm->frame_parallel_decode) av1_frameworker_broadcast(pbi->cur_buf, mi_row << MAX_MIB_SIZE_LOG2); } } // Loopfilter remaining rows in the frame. if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } // Get last tile data. tile_data = pbi->tile_data + tile_cols * tile_rows - 1; if (cm->frame_parallel_decode) av1_frameworker_broadcast(pbi->cur_buf, INT_MAX); #if CONFIG_ANS return data_end; #else return aom_reader_find_end(&tile_data->bit_reader); #endif } static int tile_worker_hook(TileWorkerData *const tile_data, const TileInfo *const tile) { int mi_row, mi_col; if (setjmp(tile_data->error_info.jmp)) { tile_data->error_info.setjmp = 0; tile_data->xd.corrupted = 1; return 0; } tile_data->error_info.setjmp = 1; tile_data->xd.error_info = &tile_data->error_info; for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MAX_MIB_SIZE) { av1_zero(tile_data->xd.left_context); av1_zero(tile_data->xd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MAX_MIB_SIZE) { decode_partition(tile_data->pbi, &tile_data->xd, mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64, 4); } } return !tile_data->xd.corrupted; } // sorts in descending order static int compare_tile_buffers(const void *a, const void *b) { const TileBuffer *const buf1 = (const TileBuffer *)a; const TileBuffer *const buf2 = (const TileBuffer *)b; return (int)(buf2->size - buf1->size); } static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { AV1_COMMON *const cm = &pbi->common; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const uint8_t *bit_reader_end = NULL; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols); TileBuffer tile_buffers[1][1 << 6]; int n; int final_worker = -1; assert(tile_cols <= (1 << 6)); assert(tile_rows == 1); (void)tile_rows; // TODO(jzern): See if we can remove the restriction of passing in max // threads to the decoder. if (pbi->num_tile_workers == 0) { const int num_threads = pbi->max_threads & ~1; int i; CHECK_MEM_ERROR(cm, pbi->tile_workers, aom_malloc(num_threads * sizeof(*pbi->tile_workers))); // Ensure tile data offsets will be properly aligned. This may fail on // platforms without DECLARE_ALIGNED(). assert((sizeof(*pbi->tile_worker_data) % 16) == 0); CHECK_MEM_ERROR( cm, pbi->tile_worker_data, aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data))); CHECK_MEM_ERROR(cm, pbi->tile_worker_info, aom_malloc(num_threads * sizeof(*pbi->tile_worker_info))); for (i = 0; i < num_threads; ++i) { AVxWorker *const worker = &pbi->tile_workers[i]; ++pbi->num_tile_workers; winterface->init(worker); if (i < num_threads - 1 && !winterface->reset(worker)) { aom_internal_error(&cm->error, AOM_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Reset tile decoding hook for (n = 0; n < num_workers; ++n) { AVxWorker *const worker = &pbi->tile_workers[n]; winterface->sync(worker); worker->hook = (AVxWorkerHook)tile_worker_hook; worker->data1 = &pbi->tile_worker_data[n]; worker->data2 = &pbi->tile_worker_info[n]; } // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols); memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_mi_cols); // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); // Sort the buffers based on size in descending order. qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]), compare_tile_buffers); // Rearrange the tile buffers such that per-tile group the largest, and // presumably the most difficult, tile will be decoded in the main thread. // This should help minimize the number of instances where the main thread is // waiting for a worker to complete. { int group_start = 0; while (group_start < tile_cols) { const TileBuffer largest = tile_buffers[0][group_start]; const int group_end = AOMMIN(group_start + num_workers, tile_cols) - 1; memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1, (group_end - group_start) * sizeof(tile_buffers[0][0])); tile_buffers[0][group_end] = largest; group_start = group_end + 1; } } // Initialize thread frame counts. if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { int i; for (i = 0; i < num_workers; ++i) { TileWorkerData *const tile_data = (TileWorkerData *)pbi->tile_workers[i].data1; av1_zero(tile_data->counts); } } n = 0; while (n < tile_cols) { int i; for (i = 0; i < num_workers && n < tile_cols; ++i) { AVxWorker *const worker = &pbi->tile_workers[i]; TileWorkerData *const tile_data = (TileWorkerData *)worker->data1; TileInfo *const tile = (TileInfo *)worker->data2; TileBuffer *const buf = &tile_buffers[0][n]; tile_data->pbi = pbi; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; tile_data->xd.counts = cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD ? &tile_data->counts : NULL; av1_zero(tile_data->dqcoeff); av1_tile_init(tile, cm, 0, buf->col); av1_tile_init(&tile_data->xd.tile, cm, 0, buf->col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); av1_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); #if CONFIG_PALETTE tile_data->xd.plane[0].color_index_map = tile_data->color_index_map[0]; tile_data->xd.plane[1].color_index_map = tile_data->color_index_map[1]; #endif // CONFIG_PALETTE worker->had_error = 0; if (i == num_workers - 1 || n == tile_cols - 1) { winterface->execute(worker); } else { winterface->launch(worker); } if (buf->col == tile_cols - 1) { final_worker = i; } ++n; } for (; i > 0; --i) { AVxWorker *const worker = &pbi->tile_workers[i - 1]; // TODO(jzern): The tile may have specific error data associated with // its aom_internal_error_info which could be propagated to the main info // in cm. Additionally once the threads have been synced and an error is // detected, there's no point in continuing to decode tiles. pbi->mb.corrupted |= !winterface->sync(worker); } if (final_worker > -1) { TileWorkerData *const tile_data = (TileWorkerData *)pbi->tile_workers[final_worker].data1; bit_reader_end = aom_reader_find_end(&tile_data->bit_reader); final_worker = -1; } // Accumulate thread frame counts. if (n >= tile_cols && cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { for (i = 0; i < num_workers; ++i) { TileWorkerData *const tile_data = (TileWorkerData *)pbi->tile_workers[i].data1; av1_accumulate_frame_counts(cm, &tile_data->counts, 1); } } } return bit_reader_end; } static void error_handler(void *data) { AV1_COMMON *const cm = (AV1_COMMON *)data; aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); } static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { if (cm->profile >= PROFILE_2) { cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10; #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth = 1; #endif } else { cm->bit_depth = AOM_BITS_8; #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } cm->color_space = aom_rb_read_literal(rb, 3); if (cm->color_space != AOM_CS_SRGB) { // [16,235] (including xvycc) vs [0,255] range cm->color_range = aom_rb_read_bit(rb); if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { cm->subsampling_x = aom_rb_read_bit(rb); cm->subsampling_y = aom_rb_read_bit(rb); if (cm->subsampling_x == 1 && cm->subsampling_y == 1) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "4:2:0 color not supported in profile 1 or 3"); if (aom_rb_read_bit(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. // 4:2:2 or 4:4:0 chroma sampling is not allowed. cm->subsampling_y = cm->subsampling_x = 0; if (aom_rb_read_bit(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "4:4:4 color not supported in profile 0 or 2"); } } } static size_t read_uncompressed_header(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { AV1_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; BufferPool *const pool = cm->buffer_pool; RefCntBuffer *const frame_bufs = pool->frame_bufs; int i, mask, ref_index = 0; size_t sz; cm->last_frame_type = cm->frame_type; cm->last_intra_only = cm->intra_only; #if CONFIG_EXT_REFS // NOTE: By default all coded frames to be used as a reference cm->is_reference_frame = 1; #endif // CONFIG_EXT_REFS if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->profile = av1_read_profile(rb); #if CONFIG_AOM_HIGHBITDEPTH if (cm->profile >= MAX_PROFILES) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #else if (cm->profile >= PROFILE_2) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #endif cm->show_existing_frame = aom_rb_read_bit(rb); if (cm->show_existing_frame) { // Show an existing frame directly. const int frame_to_show = cm->ref_frame_map[aom_rb_read_literal(rb, 3)]; lock_buffer_pool(pool); if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Buffer %d does not contain a decoded frame", frame_to_show); } ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); unlock_buffer_pool(pool); cm->lf.filter_level = 0; cm->show_frame = 1; #if CONFIG_EXT_REFS // NOTE: The existing frame to show is adopted as a reference frame. pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); for (i = 0; i < REFS_PER_FRAME; ++i) { const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb); } for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; #if CONFIG_AOM_HIGHBITDEPTH av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height, cm->use_highbitdepth); #else // CONFIG_AOM_HIGHBITDEPTH av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); #endif // CONFIG_AOM_HIGHBITDEPTH } // Generate next_ref_frame_map. lock_buffer_pool(pool); for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { if (mask & 1) { cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; ++frame_bufs[cm->new_fb_idx].ref_count; } else { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; } // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; ++ref_index; } for (; ref_index < REF_FRAMES; ++ref_index) { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; } unlock_buffer_pool(pool); pbi->hold_ref_buf = 1; #else pbi->refresh_frame_flags = 0; if (cm->frame_parallel_decode) { for (i = 0; i < REF_FRAMES; ++i) cm->next_ref_frame_map[i] = cm->ref_frame_map[i]; } #endif // CONFIG_EXT_REFS return 0; } cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb); cm->show_frame = aom_rb_read_bit(rb); cm->error_resilient_mode = aom_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { if (!av1_read_sync_code(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; for (i = 0; i < REFS_PER_FRAME; ++i) { cm->frame_refs[i].idx = INVALID_IDX; cm->frame_refs[i].buf = NULL; } setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } #if CONFIG_PALETTE if (frame_is_intra_only(cm)) cm->allow_screen_content_tools = aom_rb_read_bit(rb); #endif // CONFIG_PALETTE } else { cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb); if (cm->error_resilient_mode) { cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL; } else { #if CONFIG_MISC_FIXES if (cm->intra_only) { cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_ALL : RESET_FRAME_CONTEXT_CURRENT; } else { cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_CURRENT : RESET_FRAME_CONTEXT_NONE; if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_ALL : RESET_FRAME_CONTEXT_CURRENT; } #else static const RESET_FRAME_CONTEXT_MODE reset_frame_context_conv_tbl[4] = { RESET_FRAME_CONTEXT_NONE, RESET_FRAME_CONTEXT_NONE, RESET_FRAME_CONTEXT_CURRENT, RESET_FRAME_CONTEXT_ALL }; cm->reset_frame_context = reset_frame_context_conv_tbl[aom_rb_read_literal(rb, 2)]; #endif } if (cm->intra_only) { if (!av1_read_sync_code(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); #if CONFIG_MISC_FIXES read_bitdepth_colorspace_sampling(cm, rb); #else if (cm->profile > PROFILE_0) { read_bitdepth_colorspace_sampling(cm, rb); } else { // NOTE: The intra-only frame header does not include the specification // of either the color format or color sub-sampling in profile 0. AV1 // specifies that the default color format should be YUV 4:2:0 in this // case (normative). cm->color_space = AOM_CS_BT_601; cm->color_range = 0; cm->subsampling_y = cm->subsampling_x = 1; cm->bit_depth = AOM_BITS_8; #if CONFIG_AOM_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } #endif pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } } else if (pbi->need_resync != 1) { /* Skip if need resync */ pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); #if CONFIG_EXT_REFS if (!pbi->refresh_frame_flags) { // NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame // will not be used as a reference cm->is_reference_frame = 0; } #endif // CONFIG_EXT_REFS for (i = 0; i < REFS_PER_FRAME; ++i) { const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb); } setup_frame_size_with_refs(cm, rb); cm->allow_high_precision_mv = aom_rb_read_bit(rb); cm->interp_filter = read_interp_filter(rb); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; #if CONFIG_AOM_HIGHBITDEPTH av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height, cm->use_highbitdepth); #else av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); #endif } } } #if CONFIG_AOM_HIGHBITDEPTH get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; #endif get_frame_new_buffer(cm)->color_space = cm->color_space; get_frame_new_buffer(cm)->color_range = cm->color_range; get_frame_new_buffer(cm)->render_width = cm->render_width; get_frame_new_buffer(cm)->render_height = cm->render_height; if (pbi->need_resync) { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Keyframe / intra-only frame required to reset decoder" " state"); } if (!cm->error_resilient_mode) { cm->refresh_frame_context = aom_rb_read_bit(rb) ? REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_OFF; if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) { cm->refresh_frame_context = aom_rb_read_bit(rb) ? REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_BACKWARD; #if !CONFIG_MISC_FIXES } else { aom_rb_read_bit(rb); // parallel decoding mode flag #endif } } else { cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_OFF; } // This flag will be overridden by the call to av1_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); // Generate next_ref_frame_map. lock_buffer_pool(pool); for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { if (mask & 1) { cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; ++frame_bufs[cm->new_fb_idx].ref_count; } else { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; } // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; ++ref_index; } for (; ref_index < REF_FRAMES; ++ref_index) { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; } unlock_buffer_pool(pool); pbi->hold_ref_buf = 1; if (frame_is_intra_only(cm) || cm->error_resilient_mode) av1_setup_past_independence(cm); setup_loopfilter(&cm->lf, rb); #if CONFIG_CLPF setup_clpf(cm, rb); #endif #if CONFIG_DERING setup_dering(cm, rb); #endif setup_quantization(cm, rb); #if CONFIG_AOM_HIGHBITDEPTH xd->bd = (int)cm->bit_depth; #endif setup_segmentation(cm, rb); for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = CONFIG_MISC_FIXES && cm->seg.enabled ? av1_get_qindex(&cm->seg, i, cm->base_qindex) : cm->base_qindex; xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; } setup_segmentation_dequant(cm); #if CONFIG_MISC_FIXES cm->tx_mode = (!cm->seg.enabled && xd->lossless[0]) ? ONLY_4X4 : read_tx_mode(rb); cm->reference_mode = read_frame_reference_mode(cm, rb); #endif setup_tile_info(cm, rb); sz = aom_rb_read_literal(rb, 16); if (sz == 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j, k; if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (j = 0; j < TX_TYPES; ++j) { for (k = 0; k < TX_TYPES - 1; ++k) av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k]); #if CONFIG_DAALA_EC av1_tree_to_cdf(av1_ext_tx_tree, fc->intra_ext_tx_prob[i][j], fc->intra_ext_tx_cdf[i][j]); #endif } } } if (aom_read(r, GROUP_DIFF_UPDATE_PROB)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (k = 0; k < TX_TYPES - 1; ++k) av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k]); #if CONFIG_DAALA_EC av1_tree_to_cdf(av1_ext_tx_tree, fc->inter_ext_tx_prob[i], fc->inter_ext_tx_cdf[i]); #endif } } } static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, size_t partition_size) { AV1_COMMON *const cm = &pbi->common; #if !CONFIG_MISC_FIXES MACROBLOCKD *const xd = &pbi->mb; #endif FRAME_CONTEXT *const fc = cm->fc; aom_reader r; int k, i, j; if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb, pbi->decrypt_state)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); #if !CONFIG_MISC_FIXES cm->tx_mode = xd->lossless[0] ? ONLY_4X4 : read_tx_mode(&r); #endif if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r); read_coef_probs(fc, cm->tx_mode, &r); for (k = 0; k < SKIP_CONTEXTS; ++k) av1_diff_update_prob(&r, &fc->skip_probs[k]); #if CONFIG_MISC_FIXES if (cm->seg.enabled && cm->seg.update_map) { if (cm->seg.temporal_update) { for (k = 0; k < PREDICTION_PROBS; k++) av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k]); } for (k = 0; k < MAX_SEGMENTS - 1; k++) av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k]); #if CONFIG_DAALA_EC av1_tree_to_cdf(av1_segment_tree, cm->fc->seg.tree_probs, cm->fc->seg.tree_cdf); #endif } for (j = 0; j < INTRA_MODES; j++) for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i]); for (j = 0; j < PARTITION_CONTEXTS; ++j) { for (i = 0; i < PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[j][i]); #if CONFIG_DAALA_EC av1_tree_to_cdf(av1_partition_tree, fc->partition_prob[j], fc->partition_cdf[j]); #endif } #endif if (frame_is_intra_only(cm)) { av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob); #if CONFIG_MISC_FIXES for (k = 0; k < INTRA_MODES; k++) for (j = 0; j < INTRA_MODES; j++) for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i]); #endif } else { #if !CONFIG_REF_MV nmv_context *const nmvc = &fc->nmvc; #endif read_inter_mode_probs(fc, &r); #if CONFIG_MOTION_VAR for (j = 0; j < BLOCK_SIZES; ++j) if (is_motion_variation_allowed_bsize(j)) { for (i = 0; i < MOTION_MODES - 1; ++i) av1_diff_update_prob(&r, &fc->motion_mode_prob[j][i]); } #endif // CONFIG_MOTION_VAR if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) av1_diff_update_prob(&r, &fc->intra_inter_prob[i]); #if !CONFIG_MISC_FIXES cm->reference_mode = read_frame_reference_mode(cm, &r); #endif if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm); read_frame_reference_mode_probs(cm, &r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &fc->y_mode_prob[j][i]); #if !CONFIG_MISC_FIXES for (j = 0; j < PARTITION_CONTEXTS; ++j) { for (i = 0; i < PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[j][i]); #if CONFIG_DAALA_EC av1_tree_to_cdf(av1_partition_tree, fc->partition_prob[j], fc->partition_cdf[j]); #endif } #endif #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r); #else read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); #endif read_ext_tx_probs(fc, &r); } return aom_reader_has_error(&r); } #ifdef NDEBUG #define debug_check_frame_counts(cm) (void)0 #else // !NDEBUG // Counts should only be incremented when frame_parallel_decoding_mode and // error_resilient_mode are disabled. static void debug_check_frame_counts(const AV1_COMMON *const cm) { FRAME_COUNTS zero_counts; av1_zero(zero_counts); assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD || cm->error_resilient_mode); assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, sizeof(cm->counts.y_mode))); assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, sizeof(cm->counts.uv_mode))); assert(!memcmp(cm->counts.partition, zero_counts.partition, sizeof(cm->counts.partition))); assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, sizeof(cm->counts.eob_branch))); assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, sizeof(cm->counts.switchable_interp))); assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, sizeof(cm->counts.inter_mode))); #if CONFIG_MOTION_VAR assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode, sizeof(cm->counts.motion_mode))); #endif // CONFIG_MOTION_VAR assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, sizeof(cm->counts.intra_inter))); assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, sizeof(cm->counts.comp_inter))); assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, sizeof(cm->counts.single_ref))); #if CONFIG_EXT_REFS assert(!memcmp(cm->counts.comp_fwdref, zero_counts.comp_fwdref, sizeof(cm->counts.comp_fwdref))); assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref, sizeof(cm->counts.comp_bwdref))); #else assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, sizeof(cm->counts.comp_ref))); #endif // CONFIG_EXT_REFS assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx))); assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); #if CONFIG_REF_MV assert( !memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0]))); assert( !memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0]))); #else assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); #endif assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx, sizeof(cm->counts.intra_ext_tx))); assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx, sizeof(cm->counts.inter_ext_tx))); } #endif // NDEBUG static struct aom_read_bit_buffer *init_read_bit_buffer( AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) { rb->bit_offset = 0; rb->error_handler = error_handler; rb->error_handler_data = &pbi->common; if (pbi->decrypt_cb) { const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data); pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); rb->bit_buffer = clear_data; rb->bit_buffer_end = clear_data + n; } else { rb->bit_buffer = data; rb->bit_buffer_end = data_end; } return rb; } //------------------------------------------------------------------------------ int av1_read_sync_code(struct aom_read_bit_buffer *const rb) { return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 && aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 && aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2; } void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width, int *height) { *width = aom_rb_read_literal(rb, 16) + 1; *height = aom_rb_read_literal(rb, 16) + 1; } BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { int profile = aom_rb_read_bit(rb); profile |= aom_rb_read_bit(rb) << 1; if (profile > 2) profile += aom_rb_read_bit(rb); return (BITSTREAM_PROFILE)profile; } void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { AV1_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct aom_read_bit_buffer rb; int context_updated = 0; uint8_t clear_data[MAX_AV1_HEADER_SIZE]; const size_t first_partition_size = read_uncompressed_header( pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); const int tile_rows = 1 << cm->log2_tile_rows; const int tile_cols = 1 << cm->log2_tile_cols; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); xd->cur_buf = new_fb; if (!first_partition_size) { // showing a frame directly #if CONFIG_EXT_REFS if (cm->show_existing_frame) *p_data_end = data + aom_rb_bytes_read(&rb); else #endif // CONFIG_EXT_REFS *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); return; } data += aom_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->width == cm->last_width && cm->height == cm->last_height && !cm->last_intra_only && cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); #if CONFIG_EXT_REFS // NOTE(zoeliu): As cm->prev_frame can take neither a frame of // show_exisiting_frame=1, nor can it take a frame not used as // a reference, it is probable that by the time it is being // referred to, the frame buffer it originally points to may // already get expired and have been reassigned to the current // newly coded frame. Hence, we need to check whether this is // the case, and if yes, we have 2 choices: // (1) Simply disable the use of previous frame mvs; or // (2) Have cm->prev_frame point to one reference frame buffer, // e.g. LAST_FRAME. if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) { // Reassign the LAST_FRAME buffer to cm->prev_frame. RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME]; cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]; } #endif // CONFIG_EXT_REFS av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); *cm->fc = cm->frame_contexts[cm->frame_context_idx]; if (!cm->fc->initialized) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Uninitialized entropy context."); av1_zero(cm->counts); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); if (new_fb->corrupted) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data header is corrupted."); if (cm->lf.filter_level && !cm->skip_loop_filter) { av1_loop_filter_frame_init(cm, cm->lf.filter_level); } // If encoded in frame parallel mode, frame context is ready after decoding // the frame header. if (cm->frame_parallel_decode && cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) { AVxWorker *const worker = pbi->frame_worker_owner; FrameWorkerData *const frame_worker_data = worker->data1; if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) { context_updated = 1; cm->frame_contexts[cm->frame_context_idx] = *cm->fc; } av1_frameworker_lock_stats(worker); pbi->cur_buf->row = -1; pbi->cur_buf->col = -1; frame_worker_data->frame_context_ready = 1; // Signal the main thread that context is ready. av1_frameworker_signal_stats(worker); av1_frameworker_unlock_stats(worker); } if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) { // Multi-threaded tile decoder *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); if (!xd->corrupted) { if (!cm->skip_loop_filter) { // If multiple threads are used to decode tiles, then we use those // threads to do parallel loopfiltering. av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level, 0, 0, pbi->tile_workers, pbi->num_tile_workers, &pbi->lf_row_sync); } } else { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } } else { *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); } #if CONFIG_CLPF if (cm->clpf_strength && !cm->skip_loop_filter) { YV12_BUFFER_CONFIG dst; // Buffer for the result dst = pbi->cur_buf->buf; CHECK_MEM_ERROR(cm, dst.y_buffer, aom_malloc(dst.y_stride * dst.y_height)); av1_clpf_frame(&dst, &pbi->cur_buf->buf, 0, cm, !!cm->clpf_size, cm->clpf_strength + (cm->clpf_strength == 3), 4 + cm->clpf_size, cm->clpf_blocks, clpf_bit); // Copy result memcpy(pbi->cur_buf->buf.y_buffer, dst.y_buffer, dst.y_height * dst.y_stride); aom_free(dst.y_buffer); } if (cm->clpf_blocks) aom_free(cm->clpf_blocks); #endif #if CONFIG_DERING if (cm->dering_level && !cm->skip_loop_filter) { av1_dering_frame(&pbi->cur_buf->buf, cm, &pbi->mb, cm->dering_level); } #endif // CONFIG_DERING if (!xd->corrupted) { if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { av1_adapt_coef_probs(cm); #if CONFIG_MISC_FIXES av1_adapt_intra_frame_probs(cm); #endif if (!frame_is_intra_only(cm)) { #if !CONFIG_MISC_FIXES av1_adapt_intra_frame_probs(cm); #endif av1_adapt_inter_frame_probs(cm); av1_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } else { debug_check_frame_counts(cm); } } else { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } // Non frame parallel update frame context here. if (cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF && !context_updated) cm->frame_contexts[cm->frame_context_idx] = *cm->fc; }