Commit 648aeb0b authored by Angie Chiang's avatar Angie Chiang

Add adapt_scan APIs and some helping functions

av1_init_scan_order
initialize data structures related to adaptive scan order

av1_update_scan_prob
update nonzero probabilities from nonzero counts

av1_augment_prob
embed r + c and coeff_idx info with nonzero probabilities.
When sorting the nonzero probabilities, if there is a tie,
the coefficient with smaller r + c will be scanned first

av1_update_sort_order
apply quick sort on nonzero probabilities to obtain a sort order

av1_update_scan_order
apply topological sort on the nonzero probabilities sorting order to
guarantee each to-be-scanned coefficient's upper and left coefficient
will be scanned before the to-be-scanned coefficient.

av1_update_neighbors
For each coeff_idx in scan[], update its above and left neighbors in
neighbors[] accordingly.

Change-Id: I64c4938057daf8e30e48609a00ecc08d2e3062f4
parent 37fb8edd
......@@ -848,4 +848,8 @@ static const int partition_supertx_context_lookup[PARTITION_TYPES] = { -1, 0, 0,
} // extern "C"
#endif
static const int tx_size_1d[TX_SIZES] = { 4, 8, 16, 32 };
static const int tx_size_2d[TX_SIZES] = { 16, 64, 256, 1024 };
#endif // AV1_COMMON_COMMON_DATA_H_
......@@ -11,6 +11,7 @@
#include <assert.h>
#include "av1/common/common_data.h"
#include "av1/common/scan.h"
DECLARE_ALIGNED(16, static const int16_t, default_scan_4x4[16]) = {
......@@ -4166,3 +4167,239 @@ const SCAN_ORDER av1_intra_scan_orders[TX_SIZES][TX_TYPES] = {
}
};
#endif // CONFIG_EXT_TX
#if CONFIG_ADAPT_SCAN
// TX_32X32 will has 1024 coefficients whose indexes can be represented in 10
// bits
#define COEFF_IDX_BITS 10
#define COEFF_IDX_SIZE (1 << COEFF_IDX_BITS)
#define COEFF_IDX_MASK (COEFF_IDX_SIZE - 1)
static uint32_t *get_non_zero_prob(FRAME_CONTEXT *fc, TX_SIZE tx_size,
TX_TYPE tx_type) {
switch (tx_size) {
case TX_4X4: return fc->non_zero_prob_4X4[tx_type];
case TX_8X8: return fc->non_zero_prob_8X8[tx_type];
case TX_16X16: return fc->non_zero_prob_16X16[tx_type];
case TX_32X32: return fc->non_zero_prob_32X32[tx_type];
default: assert(0); return NULL;
}
}
static int16_t *get_adapt_scan(FRAME_CONTEXT *fc, TX_SIZE tx_size,
TX_TYPE tx_type) {
switch (tx_size) {
case TX_4X4: return fc->scan_4X4[tx_type];
case TX_8X8: return fc->scan_8X8[tx_type];
case TX_16X16: return fc->scan_16X16[tx_type];
case TX_32X32: return fc->scan_32X32[tx_type];
default: assert(0); return NULL;
}
}
static int16_t *get_adapt_iscan(FRAME_CONTEXT *fc, TX_SIZE tx_size,
TX_TYPE tx_type) {
switch (tx_size) {
case TX_4X4: return fc->iscan_4X4[tx_type];
case TX_8X8: return fc->iscan_8X8[tx_type];
case TX_16X16: return fc->iscan_16X16[tx_type];
case TX_32X32: return fc->iscan_32X32[tx_type];
default: assert(0); return NULL;
}
}
static int16_t *get_adapt_nb(FRAME_CONTEXT *fc, TX_SIZE tx_size,
TX_TYPE tx_type) {
switch (tx_size) {
case TX_4X4: return fc->nb_4X4[tx_type];
case TX_8X8: return fc->nb_8X8[tx_type];
case TX_16X16: return fc->nb_16X16[tx_type];
case TX_32X32: return fc->nb_32X32[tx_type];
default: assert(0); return NULL;
}
}
static uint32_t *get_non_zero_counts(FRAME_COUNTS *counts, TX_SIZE tx_size,
TX_TYPE tx_type) {
switch (tx_size) {
case TX_4X4: return counts->non_zero_count_4X4[tx_type];
case TX_8X8: return counts->non_zero_count_8X8[tx_type];
case TX_16X16: return counts->non_zero_count_16X16[tx_type];
case TX_32X32: return counts->non_zero_count_32X32[tx_type];
default: assert(0); return NULL;
}
}
void av1_update_scan_prob(AV1_COMMON *cm, TX_SIZE tx_size, TX_TYPE tx_type,
int rate_16) {
FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx];
uint32_t *prev_non_zero_prob = get_non_zero_prob(pre_fc, tx_size, tx_type);
uint32_t *non_zero_prob = get_non_zero_prob(cm->fc, tx_size, tx_type);
uint32_t *non_zero_count = get_non_zero_counts(&cm->counts, tx_size, tx_type);
const int tx2d_size = tx_size_2d[tx_size];
unsigned int block_num = cm->counts.txb_count[tx_size][tx_type];
int i;
for (i = 0; i < tx2d_size; i++) {
int64_t curr_prob =
block_num == 0 ? 0 : (non_zero_count[i] << 16) / block_num;
int64_t prev_prob = prev_non_zero_prob[i];
int64_t pred_prob =
(curr_prob * rate_16 + prev_prob * ((1 << 16) - rate_16)) >> 16;
non_zero_prob[i] = clamp(pred_prob, 0, UINT16_MAX);
}
}
static void update_scan_count(int16_t *scan, int max_scan,
const tran_low_t *dqcoeffs,
uint32_t *non_zero_count) {
int i;
for (i = 0; i < max_scan; ++i) {
int coeff_idx = scan[i];
non_zero_count[coeff_idx] += (dqcoeffs[coeff_idx] != 0);
}
}
void av1_update_scan_count_facade(AV1_COMMON *cm, TX_SIZE tx_size,
TX_TYPE tx_type, const tran_low_t *dqcoeffs,
int max_scan) {
int16_t *scan = get_adapt_scan(cm->fc, tx_size, tx_type);
uint32_t *non_zero_count = get_non_zero_counts(&cm->counts, tx_size, tx_type);
update_scan_count(scan, max_scan, dqcoeffs, non_zero_count);
++cm->counts.txb_count[tx_size][tx_type];
}
static int cmp_prob(const void *a, const void *b) {
return *(const uint32_t *)b > *(const uint32_t *)a ? 1 : -1;
}
void av1_augment_prob(uint32_t *prob, int size, int tx1d_size) {
int r, c;
for (r = 0; r < size; r++) {
for (c = 0; c < size; c++) {
const int coeff_idx = r * tx1d_size + c;
const int idx = r * size + c;
const uint32_t mask_16 = ((1 << 16) - 1);
const uint32_t tie_breaker = ~(((r + c) << COEFF_IDX_BITS) | coeff_idx);
// prob[idx]: 16 bits r+c: 6 bits coeff_idx: 10 bits
prob[idx] = (prob[idx] << 16) | (mask_16 & tie_breaker);
}
}
}
// topological sort
static void dfs_scan(int tx1d_size, int *scan_idx, int coeff_idx, int16_t *scan,
int16_t *iscan) {
const int r = coeff_idx / tx1d_size;
const int c = coeff_idx % tx1d_size;
if (iscan[coeff_idx] != -1) return;
if (r > 0) dfs_scan(tx1d_size, scan_idx, coeff_idx - tx1d_size, scan, iscan);
if (c > 0) dfs_scan(tx1d_size, scan_idx, coeff_idx - 1, scan, iscan);
scan[*scan_idx] = coeff_idx;
iscan[coeff_idx] = *scan_idx;
++(*scan_idx);
}
void av1_update_neighbors(int tx_size, const int16_t *scan,
const int16_t *iscan, int16_t *neighbors) {
const int tx1d_size = tx_size_1d[tx_size];
const int tx2d_size = tx_size_2d[tx_size];
int scan_idx;
for (scan_idx = 0; scan_idx < tx2d_size; ++scan_idx) {
const int coeff_idx = scan[scan_idx];
const int r = coeff_idx / tx1d_size;
const int c = coeff_idx % tx1d_size;
const int has_left = c > 0 && iscan[coeff_idx - 1] < scan_idx;
const int has_above = r > 0 && iscan[coeff_idx - tx1d_size] < scan_idx;
if (has_left && has_above) {
neighbors[scan_idx * MAX_NEIGHBORS + 0] = coeff_idx - 1;
neighbors[scan_idx * MAX_NEIGHBORS + 1] = coeff_idx - tx1d_size;
} else if (has_left) {
neighbors[scan_idx * MAX_NEIGHBORS + 0] = coeff_idx - 1;
neighbors[scan_idx * MAX_NEIGHBORS + 1] = coeff_idx - 1;
} else if (has_above) {
neighbors[scan_idx * MAX_NEIGHBORS + 0] = coeff_idx - tx1d_size;
neighbors[scan_idx * MAX_NEIGHBORS + 1] = coeff_idx - tx1d_size;
} else {
neighbors[scan_idx * MAX_NEIGHBORS + 0] = scan[0];
neighbors[scan_idx * MAX_NEIGHBORS + 1] = scan[0];
}
}
neighbors[tx2d_size * MAX_NEIGHBORS + 0] = scan[0];
neighbors[tx2d_size * MAX_NEIGHBORS + 1] = scan[0];
}
void av1_update_sort_order(TX_SIZE tx_size, const uint32_t *non_zero_prob,
int16_t *sort_order) {
uint32_t temp[COEFF_IDX_SIZE];
const int tx1d_size = tx_size_1d[tx_size];
const int tx2d_size = tx_size_2d[tx_size];
int sort_idx;
assert(tx2d_size <= COEFF_IDX_SIZE);
memcpy(temp, non_zero_prob, tx2d_size * sizeof(*non_zero_prob));
av1_augment_prob(temp, tx1d_size, tx1d_size);
qsort(temp, tx2d_size, sizeof(*temp), cmp_prob);
for (sort_idx = 0; sort_idx < tx2d_size; ++sort_idx) {
const int coeff_idx = (temp[sort_idx] & COEFF_IDX_MASK) ^ COEFF_IDX_MASK;
sort_order[sort_idx] = coeff_idx;
}
}
void av1_update_scan_order(TX_SIZE tx_size, int16_t *sort_order, int16_t *scan,
int16_t *iscan) {
int coeff_idx;
int scan_idx;
int sort_idx;
const int tx1d_size = tx_size_1d[tx_size];
const int tx2d_size = tx_size_2d[tx_size];
for (coeff_idx = 0; coeff_idx < tx2d_size; ++coeff_idx) {
iscan[coeff_idx] = -1;
}
scan_idx = 0;
for (sort_idx = 0; sort_idx < tx2d_size; ++sort_idx) {
coeff_idx = sort_order[sort_idx];
dfs_scan(tx1d_size, &scan_idx, coeff_idx, scan, iscan);
}
}
void av1_update_scan_order_facade(AV1_COMMON *cm, TX_SIZE tx_size,
TX_TYPE tx_type) {
int16_t sort_order[1024];
uint32_t *non_zero_prob = get_non_zero_prob(cm->fc, tx_size, tx_type);
int16_t *scan = get_adapt_scan(cm->fc, tx_size, tx_type);
int16_t *iscan = get_adapt_iscan(cm->fc, tx_size, tx_type);
int16_t *nb = get_adapt_nb(cm->fc, tx_size, tx_type);
const int tx2d_size = tx_size_2d[tx_size];
assert(tx2d_size <= 1024);
av1_update_sort_order(tx_size, non_zero_prob, sort_order);
av1_update_scan_order(tx_size, sort_order, scan, iscan);
av1_update_neighbors(tx_size, scan, iscan, nb);
}
void av1_init_scan_order(AV1_COMMON *cm) {
TX_SIZE tx_size;
TX_TYPE tx_type;
for (tx_size = TX_4X4; tx_size < TX_SIZES; ++tx_size) {
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
uint32_t *non_zero_prob = get_non_zero_prob(cm->fc, tx_size, tx_type);
const int tx2d_size = tx_size_2d[tx_size];
int i;
SCAN_ORDER *sc = &cm->fc->sc[tx_size][tx_type];
for (i = 0; i < tx2d_size; ++i) {
non_zero_prob[i] = (1 << 16) / 2; // init non_zero_prob to 0.5
}
av1_update_scan_order_facade(cm, tx_size, tx_type);
sc->scan = get_adapt_scan(cm->fc, tx_size, tx_type);
sc->iscan = get_adapt_iscan(cm->fc, tx_size, tx_type);
sc->neighbors = get_adapt_nb(cm->fc, tx_size, tx_type);
}
}
}
#endif // CONFIG_ADAPT_SCAN
......@@ -16,6 +16,7 @@
#include "aom_ports/mem.h"
#include "av1/common/enums.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/blockd.h"
#ifdef __cplusplus
......@@ -27,6 +28,37 @@ extern "C" {
extern const SCAN_ORDER av1_default_scan_orders[TX_SIZES];
extern const SCAN_ORDER av1_intra_scan_orders[TX_SIZES][TX_TYPES];
#if CONFIG_ADAPT_SCAN
void av1_update_scan_prob(AV1_COMMON *cm, TX_SIZE tx_size, TX_TYPE tx_type,
int rate_16);
void av1_update_scan_count_facade(AV1_COMMON *cm, TX_SIZE tx_size,
TX_TYPE tx_type, const tran_low_t *dqcoeffs,
int max_scan);
// embed r + c and coeff_idx info with nonzero probabilities. When sorting the
// nonzero probabilities, if there is a tie, the coefficient with smaller r + c
// will be scanned first
void av1_augment_prob(uint32_t *prob, int size, int tx1d_size);
// apply quick sort on nonzero probabilities to obtain a sort order
void av1_update_sort_order(TX_SIZE tx_size, const uint32_t *non_zero_prob,
int16_t *sort_order);
// apply topological sort on the nonzero probabilities sorting order to
// guarantee each to-be-scanned coefficient's upper and left coefficient will be
// scanned before the to-be-scanned coefficient.
void av1_update_scan_order(TX_SIZE tx_size, int16_t *sort_order, int16_t *scan,
int16_t *iscan);
// For each coeff_idx in scan[], update its above and left neighbors in
// neighbors[] accordingly.
void av1_update_neighbors(int tx_size, const int16_t *scan,
const int16_t *iscan, int16_t *neighbors);
void av1_update_scan_order_facade(AV1_COMMON *cm, TX_SIZE tx_size,
TX_TYPE tx_type);
void av1_init_scan_order(AV1_COMMON *cm);
#endif
static INLINE int get_coef_context(const int16_t *neighbors,
const uint8_t *token_cache, int c) {
return (1 + token_cache[neighbors[MAX_NEIGHBORS * c + 0]] +
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment