diff --git a/dnn/train_lpcnet.py b/dnn/train_lpcnet.py index 0b5e0ba2529564c938f8a95c61b8dc9934c98fba..4c0cdfa3c5ec81d8f70a5016f784826adc52feec 100755 --- a/dnn/train_lpcnet.py +++ b/dnn/train_lpcnet.py @@ -103,7 +103,7 @@ del pred del in_exc # dump models to disk as we go -checkpoint = ModelCheckpoint('lpcnet24g_384_10_G16_{epoch:02d}.h5') +checkpoint = ModelCheckpoint('lpcnet30_384_10_G16_{epoch:02d}.h5') #Set this to True to adapt an existing model (e.g. on new data) adaptation = False @@ -121,4 +121,5 @@ else: decay = 5e-5 model.compile(optimizer=Adam(lr, amsgrad=True, decay=decay), loss='sparse_categorical_crossentropy') +model.save_weights('lpcnet30_384_10_G16_00.h5'); model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, sparsify])