diff --git a/dnn/training_tf2/train_lpcnet.py b/dnn/training_tf2/train_lpcnet.py index c1abc8c8b1499097f3fbae909c6a4518a1b5ab2a..0e90a28fa65277e29c334a062d01da41083c46d7 100755 --- a/dnn/training_tf2/train_lpcnet.py +++ b/dnn/training_tf2/train_lpcnet.py @@ -37,17 +37,17 @@ import tensorflow.keras.backend as K import h5py import tensorflow as tf -gpus = tf.config.experimental.list_physical_devices('GPU') -if gpus: - try: - tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)]) - except RuntimeError as e: - print(e) +#gpus = tf.config.experimental.list_physical_devices('GPU') +#if gpus: +# try: +# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)]) +# except RuntimeError as e: +# print(e) nb_epochs = 120 # Try reducing batch_size if you run out of memory on your GPU -batch_size = 64 +batch_size = 128 model, _, _ = lpcnet.new_lpcnet_model(training=True) @@ -102,15 +102,14 @@ del pred del in_exc # dump models to disk as we go -checkpoint = ModelCheckpoint('lpcnet32y_384_10_G16_{epoch:02d}.h5') +checkpoint = ModelCheckpoint('lpcnet33_384_{epoch:02d}.h5') #Set this to True to adapt an existing model (e.g. on new data) adaptation = False -model.load_weights('lpcnet32v_384_10_G16_00.h5') if adaptation: #Adapting from an existing model - model.load_weights('lpcnet32v_384_10_G16_100.h5') + model.load_weights('lpcnet32v_384_100.h5') sparsify = lpcnet.Sparsify(0, 0, 1, (0.05, 0.05, 0.2)) lr = 0.0001 decay = 0 @@ -121,5 +120,5 @@ else: decay = 5e-5 model.compile(optimizer=Adam(lr, decay=decay, beta_2=0.99), loss='sparse_categorical_crossentropy') -model.save_weights('lpcnet32y_384_10_G16_00.h5'); +model.save_weights('lpcnet33_384_00.h5'); model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, sparsify])