From 7a7913f3881c24379de3386d83e0fd1ec4c3b5e3 Mon Sep 17 00:00:00 2001 From: Jean-Marc Valin <jmvalin@amazon.com> Date: Mon, 7 Feb 2022 15:14:56 -0500 Subject: [PATCH] cleanup --- dnn/lpcnet_plc.c | 46 +++++++--------------------------------------- 1 file changed, 7 insertions(+), 39 deletions(-) diff --git a/dnn/lpcnet_plc.c b/dnn/lpcnet_plc.c index 5dbd46a37..5e9ac8f72 100644 --- a/dnn/lpcnet_plc.c +++ b/dnn/lpcnet_plc.c @@ -32,10 +32,6 @@ #include "lpcnet.h" #include "plc_data.h" -#define PLC_DUMP_FEATURES 0 -#define PLC_READ_FEATURES 0 -#define PLC_DNN_PRED 1 - LPCNET_EXPORT int lpcnet_plc_get_size() { return sizeof(LPCNetPLCState); } @@ -71,15 +67,17 @@ static void compute_plc_pred(PLCNetState *net, float *out, const float *in) { } #if 1 + +/* In this causal version of the code, the DNN model implemented by compute_plc_pred() + returns the predicted features from frame t+1, using the input features from frame t.*/ + LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) { int i; float x[FRAME_SIZE]; short output[FRAME_SIZE]; -#if PLC_DNN_PRED float plc_features[2*NB_BANDS+NB_FEATURES+1]; for (i=0;i<FRAME_SIZE;i++) x[i] = pcm[i]; burg_cepstral_analysis(plc_features, x); -#endif st->enc.pcount = 0; if (st->skip_analysis) { /*fprintf(stderr, "skip update\n");*/ @@ -106,15 +104,11 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) { preemphasis(x, &st->enc.mem_preemph, x, PREEMPHASIS, FRAME_SIZE); compute_frame_features(&st->enc, x); process_single_frame(&st->enc, NULL); -#if PLC_DNN_PRED if (st->skip_analysis <= 1) { RNN_COPY(&plc_features[2*NB_BANDS], st->enc.features[0], NB_FEATURES); plc_features[2*NB_BANDS+NB_FEATURES] = 1; compute_plc_pred(&st->plc_net, st->features, plc_features); } -#else - RNN_COPY(st->features, st->enc.features[0], NB_TOTAL_FEATURES); -#endif if (st->skip_analysis) { float lpc[LPC_ORDER]; float gru_a_condition[3*GRU_A_STATE_SIZE]; @@ -126,13 +120,6 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) { for (i=0;i<FRAME_SIZE;i++) st->pcm[PLC_BUF_SIZE+i] = pcm[i]; RNN_COPY(output, &st->pcm[0], FRAME_SIZE); lpcnet_synthesize_impl(&st->lpcnet, st->enc.features[0], output, FRAME_SIZE, FRAME_SIZE); -#if PLC_READ_FEATURES - for (i=0;i<NB_FEATURES;i++) scanf("%f", &st->features[i]); -#endif -#if PLC_DUMP_FEATURES - for (i=0;i<NB_FEATURES;i++) printf("%f ", st->enc.features[0][i]); - printf("1\n"); -#endif RNN_MOVE(st->pcm, &st->pcm[FRAME_SIZE], PLC_BUF_SIZE); } st->loss_count = 0; @@ -141,9 +128,6 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) { static const float att_table[10] = {0, 0, -.2, -.2, -.4, -.4, -.8, -.8, -1.6, -1.6}; LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) { -#if PLC_READ_FEATURES || PLC_DUMP_FEATURES - int i; -#endif short output[FRAME_SIZE]; float zeros[2*NB_BANDS+NB_FEATURES+1] = {0}; st->enc.pcount = 0; @@ -154,35 +138,17 @@ LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) { int update_count; update_count = IMIN(st->pcm_fill, FRAME_SIZE); RNN_COPY(output, &st->pcm[0], update_count); -#if PLC_DNN_PRED if (st->pcm_fill > FRAME_SIZE) compute_plc_pred(&st->plc_net, st->features, zeros); -#endif -#if PLC_READ_FEATURES - for (i=0;i<NB_FEATURES;i++) scanf("%f", &st->features[i]); -#endif -#if PLC_DUMP_FEATURES - for (i=0;i<NB_FEATURES+1;i++) printf("%f ", 0.); - printf("\n"); -#endif lpcnet_synthesize_impl(&st->lpcnet, &st->features[0], output, update_count, update_count); RNN_MOVE(st->pcm, &st->pcm[FRAME_SIZE], PLC_BUF_SIZE); st->pcm_fill -= update_count; st->skip_analysis++; } lpcnet_synthesize_tail_impl(&st->lpcnet, pcm, FRAME_SIZE-TRAINING_OFFSET, 0); -#if PLC_DNN_PRED compute_plc_pred(&st->plc_net, st->features, zeros); if (st->loss_count >= 10) st->features[0] = MAX16(-10, st->features[0]+att_table[9] - 2*(st->loss_count-9)); else st->features[0] = MAX16(-10, st->features[0]+att_table[st->loss_count]); if (st->loss_count > 4) st->features[NB_FEATURES-1] = MAX16(-.5, st->features[NB_FEATURES-1]-.1*(st->loss_count-4)); -#endif -#if PLC_READ_FEATURES - for (i=0;i<NB_FEATURES;i++) scanf("%f", &st->features[i]); -#endif -#if PLC_DUMP_FEATURES - for (i=0;i<NB_FEATURES+1;i++) printf("%f ", 0.); - printf("\n"); -#endif lpcnet_synthesize_impl(&st->lpcnet, &st->features[0], &pcm[FRAME_SIZE-TRAINING_OFFSET], TRAINING_OFFSET, 0); { int i; @@ -200,6 +166,9 @@ LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) { #else +/* In this non-causal version of the code, the DNN model implemented by compute_plc_pred() + returns the predicted features from frame t, using the input features from frame t.*/ + LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) { int i; float x[FRAME_SIZE]; @@ -212,7 +181,6 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) { if (st->loss_count > 0) { LPCNetState copy; /* Handle blending. */ - short tmp[FRAME_SIZE-TRAINING_OFFSET]; float zeros[2*NB_BANDS+NB_FEATURES+1] = {0}; RNN_COPY(zeros, plc_features, 2*NB_BANDS); zeros[2*NB_BANDS+NB_FEATURES] = 1; -- GitLab