diff --git a/dnn/lpcnet_plc.c b/dnn/lpcnet_plc.c
index 5e9ac8f72d2ee9003dbbbb834c0d3be9123250bb..a764fb42d3b74af3341896a332d17d89cf21b2e1 100644
--- a/dnn/lpcnet_plc.c
+++ b/dnn/lpcnet_plc.c
@@ -69,7 +69,7 @@ static void compute_plc_pred(PLCNetState *net, float *out, const float *in) {
 #if 1
 
 /* In this causal version of the code, the DNN model implemented by compute_plc_pred()
-   returns the predicted features from frame t+1, using the input features from frame t.*/
+   needs to generate two feature vectors to conceal the first lost packet.*/
 
 LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
   int i;
@@ -83,7 +83,11 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
     /*fprintf(stderr, "skip update\n");*/
     if (st->blend) {
       short tmp[FRAME_SIZE-TRAINING_OFFSET];
-      lpcnet_synthesize_tail_impl(&st->lpcnet, tmp, FRAME_SIZE-TRAINING_OFFSET, 0);
+      float zeros[2*NB_BANDS+NB_FEATURES+1] = {0};
+      RNN_COPY(zeros, plc_features, 2*NB_BANDS);
+      zeros[2*NB_BANDS+NB_FEATURES] = 1;
+      compute_plc_pred(&st->plc_net, st->features, zeros);
+      lpcnet_synthesize_impl(&st->lpcnet, &st->features[0], tmp, FRAME_SIZE-TRAINING_OFFSET, 0);
       for (i=0;i<FRAME_SIZE-TRAINING_OFFSET;i++) {
         float w;
         w = .5 - .5*cos(M_PI*i/(FRAME_SIZE-TRAINING_OFFSET));
@@ -104,11 +108,6 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
   preemphasis(x, &st->enc.mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
   compute_frame_features(&st->enc, x);
   process_single_frame(&st->enc, NULL);
-  if (st->skip_analysis <= 1) {
-    RNN_COPY(&plc_features[2*NB_BANDS], st->enc.features[0], NB_FEATURES);
-    plc_features[2*NB_BANDS+NB_FEATURES] = 1;
-    compute_plc_pred(&st->plc_net, st->features, plc_features);
-  }
   if (st->skip_analysis) {
     float lpc[LPC_ORDER];
     float gru_a_condition[3*GRU_A_STATE_SIZE];
@@ -117,6 +116,9 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
     run_frame_network(&st->lpcnet, gru_a_condition, gru_b_condition, lpc, st->enc.features[0]);
     st->skip_analysis--;
   } else {
+    RNN_COPY(&plc_features[2*NB_BANDS], st->enc.features[0], NB_FEATURES);
+    plc_features[2*NB_BANDS+NB_FEATURES] = 1;
+    compute_plc_pred(&st->plc_net, st->features, plc_features);
     for (i=0;i<FRAME_SIZE;i++) st->pcm[PLC_BUF_SIZE+i] = pcm[i];
     RNN_COPY(output, &st->pcm[0], FRAME_SIZE);
     lpcnet_synthesize_impl(&st->lpcnet, st->enc.features[0], output, FRAME_SIZE, FRAME_SIZE);
@@ -138,7 +140,7 @@ LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) {
     int update_count;
     update_count = IMIN(st->pcm_fill, FRAME_SIZE);
     RNN_COPY(output, &st->pcm[0], update_count);
-    if (st->pcm_fill > FRAME_SIZE) compute_plc_pred(&st->plc_net, st->features, zeros);
+    compute_plc_pred(&st->plc_net, st->features, zeros);
     lpcnet_synthesize_impl(&st->lpcnet, &st->features[0], output, update_count, update_count);
     RNN_MOVE(st->pcm, &st->pcm[FRAME_SIZE], PLC_BUF_SIZE);
     st->pcm_fill -= update_count;
@@ -167,7 +169,7 @@ LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) {
 #else
 
 /* In this non-causal version of the code, the DNN model implemented by compute_plc_pred()
-   returns the predicted features from frame t, using the input features from frame t.*/
+   is always called once per frame. We process audio up to the current position minus TRAINING_OFFSET. */
 
 LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
   int i;
diff --git a/dnn/training_tf2/train_plc.py b/dnn/training_tf2/train_plc.py
index 18bfd0b35fec092cef4a4e520bc0a3b25e13c465..547e70acb6fe53af8fdc1ec4880e498f6d1c615d 100644
--- a/dnn/training_tf2/train_plc.py
+++ b/dnn/training_tf2/train_plc.py
@@ -49,7 +49,6 @@ parser.add_argument('--lr', metavar='<learning rate>', type=float, help='learnin
 parser.add_argument('--decay', metavar='<decay>', type=float, help='learning rate decay')
 parser.add_argument('--band-loss', metavar='<weight>', default=1.0, type=float, help='weight of band loss (default 1.0)')
 parser.add_argument('--loss-bias', metavar='<bias>', default=0.0, type=float, help='loss bias towards low energy (default 0.0)')
-parser.add_argument('--non-causal', dest='non_causal', action='store_true', help='train non-causal model')
 parser.add_argument('--logdir', metavar='<log dir>', help='directory for tensorboard log files')
 
 
@@ -98,18 +97,10 @@ if args.decay is not None:
 if retrain:
     input_model = args.retrain
 
-delay = not args.non_causal
-
 def plc_loss(alpha=1.0, bias=0.):
     def loss(y_true,y_pred):
-        if delay:
-            mask = .2 + .8*y_true[:,1:,-1:]
-            y_true = y_true[:,1:,:-1]
-            y_pred = y_pred[:,:-1,:]
-        else:
-            mask = y_true[:,:,-1:]
-            y_true = y_true[:,:,:-1]
-            
+        mask = y_true[:,:,-1:]
+        y_true = y_true[:,:,:-1]
         e = (y_pred - y_true)*mask
         e_bands = tf.signal.idct(e[:,:,:-2], norm='ortho')
         l1_loss = K.mean(K.abs(e)) + bias*K.mean(K.maximum(e[:,:,:1], 0.)) + alpha*K.mean(K.abs(e_bands) + bias*K.maximum(e_bands, 0.))
@@ -118,13 +109,8 @@ def plc_loss(alpha=1.0, bias=0.):
 
 def plc_l1_loss():
     def L1_loss(y_true,y_pred):
-        if delay:
-            mask = y_true[:,1:,-1:]
-            y_true = y_true[:,1:,:-1]
-            y_pred = y_pred[:,:-1,:]
-        else:
-            mask = y_true[:,:,-1:]
-            y_true = y_true[:,:,:-1]
+        mask = y_true[:,:,-1:]
+        y_true = y_true[:,:,:-1]
         e = (y_pred - y_true)*mask
         l1_loss = K.mean(K.abs(e))
         return l1_loss
@@ -132,14 +118,8 @@ def plc_l1_loss():
 
 def plc_band_loss():
     def L1_band_loss(y_true,y_pred):
-        mask = y_true[:,1:,-1:]
-        if delay:
-            mask = y_true[:,1:,-1:]
-            y_true = y_true[:,1:,:-1]
-            y_pred = y_pred[:,:-1,:]
-        else:
-            mask = y_true[:,:,-1:]
-            y_true = y_true[:,:,:-1]
+        mask = y_true[:,:,-1:]
+        y_true = y_true[:,:,:-1]
         e = (y_pred - y_true)*mask
         e_bands = tf.signal.idct(e[:,:,:-2], norm='ortho')
         l1_loss = K.mean(K.abs(e_bands))