From c74330e85035c2d47f101fa33797e93ecaaebcd3 Mon Sep 17 00:00:00 2001 From: Jean-Marc Valin <jmvalin@amazon.com> Date: Thu, 15 Jul 2021 16:06:56 -0400 Subject: [PATCH] Pre-compute GRU B conditioning Adapted from PR: https://github.com/mozilla/LPCNet/pull/134 by zhuxiaoxu <zhuxiaoxu@ainirobot.com> but had to be reworked due to previous weight quantization changes. --- dnn/lpcnet.c | 17 +++++++------ dnn/nnet.c | 44 +++++++++++++++++++++++++++++++++ dnn/nnet.h | 2 ++ dnn/training_tf2/dump_lpcnet.py | 27 ++++++++++++++------ 4 files changed, 76 insertions(+), 14 deletions(-) diff --git a/dnn/lpcnet.c b/dnn/lpcnet.c index a59cfbcab..101d27205 100644 --- a/dnn/lpcnet.c +++ b/dnn/lpcnet.c @@ -54,9 +54,10 @@ static void print_vector(float *x, int N) } #endif -void run_frame_network(LPCNetState *lpcnet, float *condition, float *gru_a_condition, const float *features, int pitch) +void run_frame_network(LPCNetState *lpcnet, float *gru_a_condition, float *gru_b_condition, const float *features, int pitch) { NNetState *net; + float condition[FEATURE_DENSE2_OUT_SIZE]; float in[FRAME_INPUT_SIZE]; float conv1_out[FEATURE_CONV1_OUT_SIZE]; float conv2_out[FEATURE_CONV2_OUT_SIZE]; @@ -74,13 +75,15 @@ void run_frame_network(LPCNetState *lpcnet, float *condition, float *gru_a_condi compute_dense(&feature_dense1, dense1_out, conv2_out); compute_dense(&feature_dense2, condition, dense1_out); compute_dense(&gru_a_dense_feature, gru_a_condition, condition); + compute_dense(&gru_b_dense_feature, gru_b_condition, condition); if (lpcnet->frame_count < 1000) lpcnet->frame_count++; } -int run_sample_network(NNetState *net, const float *condition, const float *gru_a_condition, int last_exc, int last_sig, int pred, const float *sampling_logit_table) +int run_sample_network(NNetState *net, const float *gru_a_condition, const float *gru_b_condition, int last_exc, int last_sig, int pred, const float *sampling_logit_table) { float gru_a_input[3*GRU_A_STATE_SIZE]; float in_b[GRU_A_STATE_SIZE+FEATURE_DENSE2_OUT_SIZE]; + float gru_b_input[3*GRU_B_STATE_SIZE]; #if 1 compute_gru_a_input(gru_a_input, gru_a_condition, GRU_A_STATE_SIZE, &gru_a_embed_sig, last_sig, &gru_a_embed_pred, pred, &gru_a_embed_exc, last_exc); #else @@ -92,8 +95,8 @@ int run_sample_network(NNetState *net, const float *condition, const float *gru_ /*compute_gru3(&gru_a, net->gru_a_state, gru_a_input);*/ compute_sparse_gru(&sparse_gru_a, net->gru_a_state, gru_a_input); RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE); - RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE); - compute_gru2(&gru_b, net->gru_b_state, in_b); + RNN_COPY(gru_b_input, gru_b_condition, 3*GRU_B_STATE_SIZE); + compute_gruB(&gru_b, gru_b_input, net->gru_b_state, in_b); return sample_mdense(&dual_fc, net->gru_b_state, sampling_logit_table); } @@ -131,16 +134,16 @@ LPCNET_EXPORT void lpcnet_destroy(LPCNetState *lpcnet) LPCNET_EXPORT void lpcnet_synthesize(LPCNetState *lpcnet, const float *features, short *output, int N) { int i; - float condition[FEATURE_DENSE2_OUT_SIZE]; float lpc[LPC_ORDER]; float gru_a_condition[3*GRU_A_STATE_SIZE]; + float gru_b_condition[3*GRU_B_STATE_SIZE]; int pitch; /* Matches the Python code -- the 0.1 avoids rounding issues. */ pitch = (int)floor(.1 + 50*features[36]+100); pitch = IMIN(255, IMAX(33, pitch)); memmove(&lpcnet->old_gain[1], &lpcnet->old_gain[0], (FEATURES_DELAY-1)*sizeof(lpcnet->old_gain[0])); lpcnet->old_gain[0] = features[PITCH_GAIN_FEATURE]; - run_frame_network(lpcnet, condition, gru_a_condition, features, pitch); + run_frame_network(lpcnet, gru_a_condition, gru_b_condition, features, pitch); memcpy(lpc, lpcnet->old_lpc[FEATURES_DELAY-1], LPC_ORDER*sizeof(lpc[0])); memmove(lpcnet->old_lpc[1], lpcnet->old_lpc[0], (FEATURES_DELAY-1)*LPC_ORDER*sizeof(lpc[0])); lpc_from_cepstrum(lpcnet->old_lpc[0], features); @@ -160,7 +163,7 @@ LPCNET_EXPORT void lpcnet_synthesize(LPCNetState *lpcnet, const float *features, for (j=0;j<LPC_ORDER;j++) pred -= lpcnet->last_sig[j]*lpc[j]; last_sig_ulaw = lin2ulaw(lpcnet->last_sig[0]); pred_ulaw = lin2ulaw(pred); - exc = run_sample_network(&lpcnet->nnet, condition, gru_a_condition, lpcnet->last_exc, last_sig_ulaw, pred_ulaw, lpcnet->sampling_logit_table); + exc = run_sample_network(&lpcnet->nnet, gru_a_condition, gru_b_condition, lpcnet->last_exc, last_sig_ulaw, pred_ulaw, lpcnet->sampling_logit_table); pcm = pred + ulaw2lin(exc); RNN_MOVE(&lpcnet->last_sig[1], &lpcnet->last_sig[0], LPC_ORDER-1); lpcnet->last_sig[0] = pcm; diff --git a/dnn/nnet.c b/dnn/nnet.c index 9cd0d13fb..566268ec1 100644 --- a/dnn/nnet.c +++ b/dnn/nnet.c @@ -296,6 +296,50 @@ void compute_gru2(const GRULayer *gru, float *state, const float *input) state[i] = h[i]; } +void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input) +{ + int i; + int N, M; + int stride; + float zrh[3*MAX_RNN_NEURONS]; + float recur[3*MAX_RNN_NEURONS]; + float *z; + float *r; + float *h; + M = gru->nb_inputs; + N = gru->nb_neurons; + z = zrh; + r = &zrh[N]; + h = &zrh[2*N]; + celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS); + celt_assert(input != state); + celt_assert(gru->reset_after); + stride = 3*N; + /* Compute update gate. */ +#ifdef USE_SU_BIAS + for (i=0;i<3*N;i++) + zrh[i] = gru->subias[i] + gru_b_condition[i]; +#else + for (i=0;i<3*N;i++) + zrh[i] = gru->bias[i] + gru_b_condition[i]; +#endif + sgemv_accum8x4(zrh, gru->input_weights, 3*N, M, stride, input); + for (i=0;i<3*N;i++) + recur[i] = gru->bias[3*N + i]; + sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state); + for (i=0;i<2*N;i++) + zrh[i] += recur[i]; + compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID); + for (i=0;i<N;i++) + h[i] += recur[2*N+i]*r[i]; + compute_activation(h, h, N, gru->activation); + for (i=0;i<N;i++) + h[i] = z[i]*state[i] + (1-z[i])*h[i]; + for (i=0;i<N;i++) + state[i] = h[i]; +} + + void compute_gru3(const GRULayer *gru, float *state, const float *input) { int i; diff --git a/dnn/nnet.h b/dnn/nnet.h index 12648cbbd..b7e9b6905 100644 --- a/dnn/nnet.h +++ b/dnn/nnet.h @@ -103,6 +103,8 @@ void compute_gru(const GRULayer *gru, float *state, const float *input); void compute_gru2(const GRULayer *gru, float *state, const float *input); +void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input); + void compute_gru3(const GRULayer *gru, float *state, const float *input); void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input); diff --git a/dnn/training_tf2/dump_lpcnet.py b/dnn/training_tf2/dump_lpcnet.py index a5edefd69..6980d28b9 100755 --- a/dnn/training_tf2/dump_lpcnet.py +++ b/dnn/training_tf2/dump_lpcnet.py @@ -126,16 +126,16 @@ def dump_sparse_gru(self, f, hf): hf.write('extern const SparseGRULayer {};\n\n'.format(name)); return True -def dump_gru_layer(self, f, hf): +def dump_grub(self, f, hf, gru_a_size): global max_rnn_neurons name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() f.write('#ifdef DOT_PROD\n') - qweight = np.clip(np.round(128.*weights[0]).astype('int'), -128, 127) + qweight = np.clip(np.round(128.*weights[0][:gru_a_size, :]).astype('int'), -128, 127) printVector(f, qweight, name + '_weights', dotp=True, dtype='qweight') f.write('#else /*DOT_PROD*/\n') - printVector(f, weights[0], name + '_weights') + printVector(f, weights[0][:gru_a_size, :], name + '_weights') f.write('#endif /*DOT_PROD*/\n') printVector(f, weights[1], name + '_recurrent_weights') printVector(f, weights[-1], name + '_bias') @@ -153,12 +153,18 @@ def dump_gru_layer(self, f, hf): neurons = weights[0].shape[1]//3 max_rnn_neurons = max(max_rnn_neurons, neurons) f.write('const GRULayer {} = {{\n {}_bias,\n {}_subias,\n {}_weights,\n {}_recurrent_weights,\n {}, {}, ACTIVATION_{}, {}\n}};\n\n' - .format(name, name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after)) - hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) - hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) + .format(name, name, name, name, name, gru_a_size, weights[0].shape[1]//3, activation, reset_after)) hf.write('extern const GRULayer {};\n\n'.format(name)); return True -GRU.dump_layer = dump_gru_layer + +def dump_gru_layer_dummy(self, f, hf): + name = self.name + weights = self.get_weights() + hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) + hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) + return True; + +GRU.dump_layer = dump_gru_layer_dummy def dump_dense_layer_impl(name, weights, bias, activation, f, hf): printVector(f, weights, name + '_weights') @@ -272,6 +278,13 @@ W = model.get_layer('gru_a').get_weights()[0][3*embed_size:,:] b = model.get_layer('gru_a').get_weights()[2] dump_dense_layer_impl('gru_a_dense_feature', W, b, 'LINEAR', f, hf) +W = model.get_layer('gru_b').get_weights()[0][model.rnn_units1:,:] +b = model.get_layer('gru_b').get_weights()[2] +# Set biases to zero because they'll be included in the GRU input part +# (we need regular and SU biases) +dump_dense_layer_impl('gru_b_dense_feature', W, 0*b, 'LINEAR', f, hf) +dump_grub(model.get_layer('gru_b'), f, hf, model.rnn_units1) + layer_list = [] for i, layer in enumerate(model.layers): if layer.dump_layer(f, hf): -- GitLab